Mirkwai clan
Temperaments of the mirkwai clan temper out the mirkwai comma, [0 3 4 -5⟩ = 16875/16807, a no-twos comma.
Canopus
Subgroup: 3.5.7
Comma list: 16875/16807
Sval mapping: [⟨1 3 3], ⟨0 -5 -4]]
- sval mapping generators: ~3, ~7/5
Optimal tuning (POTE): ~3 = 1\1edt, ~7/5 = 583.9584
Optimal ET sequence: b13, b62, b75, b88, b101, b114, b355, b469, b583, b697
Overview to extensions
The full 7-limit extensions' relation to canopus is clearer if the mapping is normalized in terms of 3.5.7.2. In fact, the strong extensions are nusecond and octoid.
The others are weak extensions. Mirkat tempers out 19683/19600, splitting the generator in two with a semitwelfth period. Sqrtphi tempers out 15625/15552, splitting the period in six. Miracle tempers out 225/224. Pluto tempers out 4000/3969. These split the generator in five. Quanharuk tempers out 32805/32768, splitting the generator in three with a 1/5-twelfth period. Semisept tempers out 1728/1715 and 3136/3125, splitting the generator in six. Kwai tempers out 5120/5103, splitting the generator in ten. Grendel tempers out 6144/6125, splitting the generator in eleven. Finally, eris tempers out 65625/65536, splitting the generator in sixteen.
Members of the clan considered below are grendel, kwai, pluto, mirkat, eris, subsemifourth, septendesemi, gaster, subsedia, hemiseptisix, browser, and grazer. Discussed elsewhere are:
- Octokaidecal (+28/27 or 50/49) → Trienstonic clan
- Meantritone (+81/80) → Meantone family
- Nusecond (+126/125) → Starling temperaments
- Miracle (+225/224) → Gamelismic clan
- Bohpier (+245/243) → Sensamagic clan
- Semisept (+1728/1715 or 3136/3125) → Hemimean clan
- Quinmage (+3125/3072) → Magic family
- Octoid (+4375/4374) → Ragismic microtemperaments
- Sqrtphi (+15625/15552) → Kleismic family
- Quanharuk (+32805/32768) → Schismatic family
- Familia (+1600000/1594323) → Amity family
- Rainwell (+2100875/2097152) → Semicomma family
- Quintiquart (+390625000/387420489) → Quartonic family
For no-twos extensions, see No-twos subgroup temperaments#Canopus.
Grendel
- For the 5-limit version of this temperament, see Syntonic–31 equivalence continuum #Counterwürschmidt.
Subgroup: 2.3.5.7
Comma list: 6144/6125, 16875/16807
Mapping: [⟨1 9 2 7], ⟨0 -23 1 -13]]
- mapping generators: ~2, ~5/4
Wedgie: ⟨⟨ 23 -1 13 -55 -44 33 ]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 386.863
Optimal ET sequence: 31, 90, 121, 152, 335d
Badness: 0.051834
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1375/1372, 5632/5625
Mapping: [⟨1 9 2 7 17], ⟨0 -23 1 -13 -42]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 386.856
Optimal ET sequence: 31, 90e, 121, 152, 335d, 487d
Badness: 0.019845
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 540/539, 625/624, 1375/1372
Mapping: [⟨1 9 2 7 17 -5], ⟨0 -23 1 -13 -42 27]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 386.826
Optimal ET sequence: 31, 121, 152f, 425deff
Badness: 0.024839
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 256/255, 352/351, 625/624, 715/714, 1275/1274
Mapping: [⟨1 9 2 7 17 -5 -3], ⟨0 -23 1 -13 -42 27 22]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 386.812
Optimal ET sequence: 31, 121, 273defgg
Badness: 0.021400
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 256/255, 352/351, 375/374, 400/399, 456/455, 715/714
Mapping: [⟨1 9 2 7 17 -5 -3 -8], ⟨0 -23 1 -13 -42 27 22 38]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 386.819
Optimal ET sequence: 31, 121, 152fg, 273defgg
Badness: 0.018413
Kwai
- For the 5-limit version of this temperament, see High badness temperaments #Kwai.
Named by Gene Ward Smith in 2004 for its "bridgeability"[1], kwai is generated by a fifth, and can be described as 41 & 70.
Subgroup: 2.3.5.7
Comma list: 5120/5103, 16875/16807
Mapping: [⟨1 0 -50 -40], ⟨0 1 33 27]]
- mapping generators: ~2, ~3
Wedgie: ⟨⟨ 1 33 27 50 40 -30 ]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.616
Optimal ET sequence: 41, 111, 152, 345, 497d
Badness: 0.054476
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1375/1372, 5120/5103
Mapping: [⟨1 0 -50 -40 32], ⟨0 1 33 27 -18]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.623
Optimal ET sequence: 29cd, 41, 111, 152
Badness: 0.026219
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 540/539, 729/728, 1375/1372
Mapping: [⟨1 0 -50 -40 32 27], ⟨0 1 33 27 -18 -21]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.644
Optimal ET sequence: 29cd, 41, 111, 152f
Badness: 0.024555
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 256/255, 352/351, 540/539, 715/714, 1089/1088
Mapping: [⟨1 0 -50 -40 32 27 58], ⟨0 1 33 27 -18 -21 -34]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.660
Optimal ET sequence: 29cdg, 41, 111, 152fg, 263dfg
Badness: 0.021950
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 256/255, 352/351, 400/399, 456/455, 715/714, 847/845
Mapping: [⟨1 0 -50 -40 32 27 58 -56], ⟨0 1 33 27 -18 -21 -34 38]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.657
Optimal ET sequence: 29cdgh, 41, 111, 152fg, 263dfgh
Badness: 0.016957
Hemikwai
Subgroup: 2.3.5.7.11.13
Comma list: 540/539, 676/675, 1375/1372, 5120/5103
Mapping: [⟨1 0 -50 -40 32 -51], ⟨0 2 66 54 -36 69]]
- mapping generators: ~2, ~26/15
Optimal tuning (POTE): ~2 = 1\1, ~26/15 = 951.314
Optimal ET sequence: 82, 111, 193, 304d
Badness: 0.044108
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 442/441, 540/539, 676/675, 715/714, 5120/5103
Mapping: [⟨1 0 -50 -40 32 -51 -30], ⟨0 2 66 54 -36 69 43]]
Optimal tuning (POTE): ~2 = 1\1, ~26/15 = 951.314
Optimal ET sequence: 82, 111, 193, 304d
Badness: 0.025806
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 400/399, 442/441, 540/539, 676/675, 715/714, 1445/1444
Mapping: [⟨1 0 -50 -40 32 -51 -30 -56], ⟨0 2 66 54 -36 69 43 76]]
Optimal tuning (POTE): ~2 = 1\1, ~26/15 = 951.313
Optimal ET sequence: 82, 111, 193, 304dh
Badness: 0.019146
Pluto
- Not to be confused with plutus.
Pluto, named by Gene Ward Smith in 2010[2], can be described as the 41 & 80 temperament. It is generated by a sharpened 7/5, and 59\121 is about perfect as a tuning.
Subgroup: 2.3.5.7
Comma list: 4000/3969, 10976/10935
Mapping: [⟨1 5 15 15], ⟨0 -7 -26 -25]]
Wedgie: ⟨⟨ 7 26 25 25 20 -15 ]]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 585.147
Optimal ET sequence: 39d, 41, 80, 121, 404bd
Badness: 0.057514
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 896/891, 1375/1372
Mapping: [⟨1 5 15 15 2], ⟨0 -7 -26 -25 3]]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 585.114
Optimal ET sequence: 39d, 41, 80, 121
Badness: 0.029844
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 352/351, 364/363, 540/539
Mapping: [⟨1 5 15 15 2 -8], ⟨0 -7 -26 -25 3 24]]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 585.123
Optimal ET sequence: 39d, 41, 80, 121
Badness: 0.025717
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 256/255, 325/324, 352/351, 364/363, 540/539
Mapping: [⟨1 5 15 15 2 -8 -12], ⟨0 -7 -26 -25 3 24 33]]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 585.116
Optimal ET sequence: 39d, 41, 80, 121
Badness: 0.021463
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 190/189, 256/255, 325/324, 352/351, 361/360, 595/594
Mapping: [⟨1 5 15 15 2 -8 -12 14], ⟨0 -7 -26 -25 3 24 33 -20]]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 585.109
Optimal ET sequence: 39d, 41, 80, 121
Badness: 0.017650
Orcus
Subgroup: 2.3.5.7.11.13
Comma list: 144/143, 196/195, 275/273, 896/891
Mapping: [⟨1 5 15 15 2 12], ⟨0 -7 -26 -25 3 -17]]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 585.111
Optimal ET sequence: 39df, 41, 80f, 121ff
Badness: 0.033441
Plutino
Subgroup: 2.3.5.7.11
Comma list: 100/99, 245/242, 10976/10935
Mapping: [⟨1 5 15 15 22], ⟨0 -7 -26 -25 -38]]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 585.283
Optimal ET sequence: 39dee, 41
Badness: 0.057966
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 100/99, 196/195, 245/242, 729/728
Mapping: [⟨1 5 15 15 22 12], ⟨0 -7 -26 -25 -38 -17]]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 585.232
Optimal ET sequence: 39deef, 41
Badness: 0.040182
Mirkat
Subgroup: 2.3.5.7
Comma list: 16875/16807, 19683/19600
Mapping: [⟨3 2 1 2], ⟨0 6 13 14]]
Wedgie: ⟨⟨ 18 39 42 20 16 -12 ]]
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 183.539
Optimal ET sequence: 39d, 72, 111, 183, 255
Badness: 0.059376
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1375/1372, 8019/8000
Mapping: [⟨3 2 1 2 9], ⟨0 6 13 14 3]]
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 183.528
Optimal ET sequence: 39d, 72, 111, 183, 255
Badness: 0.022126
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 351/350, 540/539, 676/675, 1375/1372
Mapping: [⟨3 2 1 2 9 1], ⟨0 6 13 14 3 22]]
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 183.577
Optimal ET sequence: 39df, 72, 111, 183
Badness: 0.018632
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 351/350, 442/441, 540/539, 561/560, 715/714
Mapping: [⟨3 2 1 2 9 1 4], ⟨0 6 13 14 3 22 18]]
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 183.579
Optimal ET sequence: 39dfg, 72, 111, 183
Badness: 0.011775
Eris
Subgroup: 2.3.5.7
Comma list: 16875/16807, 65625/65536
Mapping: [⟨1 10 0 6], ⟨0 -29 8 -11]]
Wedgie: ⟨⟨ 29 -8 11 -80 -64 48 ]]
Optimal tuning (POTE): ~2 = 1\1, ~60/49 = 348.216
Optimal ET sequence: 31, 131, 162, 193, 224, 1823cd, 2271cd
Badness: 0.074719
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1375/1372, 65625/65536
Mapping: [⟨1 10 0 6 20], ⟨0 -29 8 -11 -57]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 348.219
Optimal ET sequence: 31, 193, 224, 703, 927d, 1151cd
Badness: 0.027621
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 540/539, 625/624, 1375/1372, 4096/4095
Mapping: [⟨1 10 0 6 20 -14], ⟨0 -29 8 -11 -57 61]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 348.213
Optimal ET sequence: 31, 193, 224
Badness: 0.025137
Subsemifourth
Subgroup: 2.3.5.7
Comma list: 16875/16807, 26873856/26796875
Mapping: [⟨1 39 27 45], ⟨0 -47 -31 -53]]
- mapping generators: ~2, ~125/72
Wedgie: ⟨⟨ 47 31 53 -60 -48 36 ]]
Optimal tuning (POTE): ~2 = 1\1, ~144/125 = 244.719
Optimal ET sequence: 49, 103, 152, 255, 407
Badness: 0.135173
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1375/1372, 234375/234256
Mapping: [⟨1 39 27 45 56], ⟨0 -47 -31 -53 -66]]
Optimal tuning (POTE): ~2 = 1\1, ~121/105 = 244.719
Optimal ET sequence: 49, 103, 152, 255, 407, 966d
Badness: 0.034276
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 540/539, 847/845, 1375/1372, 1575/1573
Mapping: [⟨1 39 27 45 56 65], ⟨0 -47 -31 -53 -66 -77]]
Optimal tuning (POTE): ~2 = 1\1, ~15/13 = 244.714
Optimal ET sequence: 49f, 103, 152f, 255, 407f, 662df
Badness: 0.028387
Septendesemi
The name septendesemi means a septendecimal semitone (17/16). The septendesemi temperament (80 & 103) tempers out the mirkwai comma and 1959552/1953125 (parkleiness comma, zotritrigu) in the 7-limit. 183edo provides an excellent tuning for 7, 11, 13, and 17-limit septendesemi.
Subgroup: 2.3.5.7
Comma list: 16875/16807, 1959552/1953125
Mapping: [⟨1 39 37 53], ⟨0 -41 -38 -55]]
- mapping generators: ~2, ~648/343
Wedgie: ⟨⟨ 41 38 55 -35 -28 21 ]]
Optimal tuning (POTE): ~2 = 1\1, ~343/324 = 104.916
Optimal ET sequence: 80, 103, 183
Badness: 0.146795
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1375/1372, 43923/43750
Mapping: [⟨1 39 37 53 50], ⟨0 -41 -38 -55 -51]]
Optimal tuning (POTE): ~2 = 1\1, ~35/33 = 104.916
Optimal ET sequence: 80, 103, 183
Badness: 0.041554
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 351/350, 540/539, 1375/1372, 4225/4224
Mapping: [⟨1 39 37 53 50 11], ⟨0 -41 -38 -55 -51 -8]]
Optimal tuning (POTE): ~2 = 1\1, ~35/33 = 104.908
Optimal ET sequence: 80, 103, 183, 469f, 652def
Badness: 0.027908
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 351/350, 540/539, 561/560, 715/714, 4225/4224
Mapping: [⟨1 39 37 53 50 11 5], ⟨0 -41 -38 -55 -51 -8 -1]]
Optimal tuning (POTE): ~2 = 1\1, ~17/16 = 104.909
Optimal ET sequence: 80, 103, 183, 469f, 652def
Badness: 0.020128
Gaster
- For the 5-limit version of this temperament, see Very high accuracy temperaments #Gaster.
The gaster temperament (111 & 113) tempers out [-70 72 -19⟩ (quadbila-negu) in the 5-limit; mirkwai comma (16875/16807) and skeetsma (14348907/14336000) in the 7-limit. The word "gaster" means abdomen or stomach, but also a restructuring of the words "gassormic tritone", which is a generator of this temperament. This temperament is sufficient to obtain high prime limit harmonics like a stomach, so that patent vals 111, 113 and 224 support it even in the 41-limit.
Subgroup: 2.3.5.7
Comma list: 16875/16807, 14348907/14336000
Mapping: [⟨1 11 38 37], ⟨0 -19 -72 -69]]
Wedgie: ⟨⟨ 19 72 69 70 56 -42 ]]
Optimal tuning (POTE): ~2 = 1\1, ~800/567 = 594.641
Badness: 0.154521
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1375/1372, 14348907/14336000
Mapping: [⟨1 11 38 37 -1], ⟨0 -19 -72 -69 9]]
Optimal tuning (POTE): ~2 = 1\1, ~512/363 = 594.639
Optimal ET sequence: 111, 224, 783d, 1007d, 1231dd
Badness: 0.054060
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 540/539, 729/728, 1375/1372, 2200/2197
Mapping: [⟨1 11 38 37 -1 26], ⟨0 -19 -72 -69 9 -45]]
Optimal tuning (POTE): ~2 = 1\1, ~55/39 = 594.639
Optimal ET sequence: 111, 224, 783df, 1007df, 1231ddf
Badness: 0.024882
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 540/539, 715/714, 729/728, 936/935, 2200/2197
Mapping: [⟨1 11 38 37 -1 26 14], ⟨0 -19 -72 -69 9 -45 -20]]
Optimal tuning (POTE): ~2 = 1\1, ~24/17 = 594.636
Optimal ET sequence: 111, 224, 559dgg
Badness: 0.021436
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 324/323, 400/399, 495/494, 540/539, 715/714, 1445/1444
Mapping: [⟨1 11 38 37 -1 26 14 32], ⟨0 -19 -72 -69 9 -45 -20 -56]]
Optimal tuning (POTE): ~2 = 1\1, ~24/17 = 594.636
Badness: 0.018370
23-limit
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 324/323, 400/399, 460/459, 495/494, 529/528, 540/539, 715/714
Mapping: [⟨1 11 38 37 -1 26 14 32 7], ⟨0 -19 -72 -69 9 -45 -20 -56 -5]]
Optimal tuning (POTE): ~2 = 1\1, ~24/17 = 594.641
Badness: 0.017619
29-limit
Subgroup: 2.3.5.7.11.13.17.19.23.29
Comma list: 290/289, 324/323, 400/399, 460/459, 495/494, 529/528, 540/539, 715/714
Mapping: [⟨1 11 38 37 -1 26 14 32 7 -11], ⟨0 -19 -72 -69 9 -45 -20 -56 -5 32]]
Optimal tuning (POTE): ~2 = 1\1, ~24/17 = 594.646
Optimal ET sequence: 111, 113, 224
Badness: 0.016815
31-limit
Subgroup: 2.3.5.7.11.13.17.19.23.29.31
Comma list: 290/289, 324/323, 400/399, 435/434, 460/459, 495/494, 528/527, 540/539, 715/714
Mapping: [⟨1 11 38 37 -1 26 14 32 7 -11 0], ⟨0 -19 -72 -69 9 -45 -20 -56 -5 32 10]]
Optimal tuning (POTE): ~2 = 1\1, ~24/17 = 594.644
Optimal ET sequence: 111, 113, 224
Badness: 0.014790
37-limit
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37
Comma list: 290/289, 324/323, 400/399, 435/434, 460/459, 495/494, 528/527, 540/539, 667/666, 715/714
Mapping: [⟨1 11 38 37 -1 26 14 32 7 -11 0 -27], ⟨0 -19 -72 -69 9 -45 -20 -56 -5 32 10 65]]
Optimal tuning (POTE): ~2 = 1\1, ~24/17 = 594.644
Optimal ET sequence: 111, 113, 224
Badness: 0.014377
41-limit
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37.41
Comma list: 290/289, 324/323, 400/399, 435/434, 460/459, 495/494, 528/527, 533/532, 540/539, 575/574, 667/666
Mapping: [⟨1 11 38 37 -1 26 14 32 7 -11 0 -27 45], ⟨0 -19 -72 -69 9 -45 -20 -56 -5 32 10 65 -80]]
Optimal tuning (POTE): ~2 = 1\1, ~24/17 = 594.643
Optimal ET sequence: 111, 113, 224
Badness: 0.012858
Subsedia
The generator for subsedia (10 & 111) is 0.5 cents flat of 15/14-wide semitone and tempers out the mirkwai comma and 65536/64827 (buzzardisma, saquadru comma). In this temperament, three generators makes ~16/13, five of them equals ~24/17, twelve of them equals ~16/7, sixteen of them equals ~3/1, and 45 of them equals ~22/1.
Subgroup: 2.3.5.7
Comma list: 16875/16807, 65536/64827
Mapping: [⟨1 0 5 4], ⟨0 16 -27 -12]]
Wedgie: ⟨⟨ 16 -27 -12 -80 -64 48 ]]
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 118.965
Optimal ET sequence: 10, 101, 111, 121, 232d
Badness: 0.157658
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1375/1372, 65536/64827
Mapping: [⟨1 0 5 4 -1], ⟨0 16 -27 -12 45]]
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 118.968
Optimal ET sequence: 10, 101, 111, 121, 232d
Badness: 0.066838
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 540/539, 676/675, 1375/1372
Mapping: [⟨1 0 5 4 -1 4], ⟨0 16 -27 -12 45 -3]]
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 118.968
Optimal ET sequence: 10, 101, 111, 121, 232d
Badness: 0.031635
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 256/255, 352/351, 442/441, 540/539, 715/714
Mapping: [⟨1 0 5 4 -1 4 3], ⟨0 16 -27 -12 45 -3 11]]
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 118.968
Optimal ET sequence: 10, 101, 111, 121, 232dg
Badness: 0.019707
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 256/255, 352/351, 400/399, 442/441, 456/455, 715/714
Mapping: [⟨1 0 5 4 -1 4 3 10], ⟨0 16 -27 -12 45 -3 11 -58]]
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 118.964
Optimal ET sequence: 10, 101h, 111, 121, 232dg
Badness: 0.017935
Hemiseptisix
The name hemiseptisix means a half of septimal major sixth (12/7). The hemiseptisix temperament (103 & 121) tempers out the mirkwai comma and 95703125/95551488 (pontiqak comma, lazozotritriyo) in the 7-limit. 224edo provides an excellent tuning for 7-, 11-, and 13-limit hemiseptisix.
Subgroup: 2.3.5.7
Comma list: 16875/16807, 95703125/95551488
Mapping: [⟨1 34 17 34], ⟨0 -53 -24 -51]]
- mapping generators: ~2, ~75/49
Wedgie: ⟨⟨ 53 24 51 -85 -68 51 ]]
Optimal tuning (POTE): ~2 = 1\1, ~98/75 = 466.071
Optimal ET sequence: 103, 121, 224
Badness: 0.162826
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1375/1372, 2734375/2725888
Mapping: [⟨1 34 17 34 53], ⟨0 -53 -24 -51 -81]]
Optimal tuning (POTE): ~2 = 1\1, ~55/42 = 466.070
Optimal ET sequence: 103, 121, 224
Badness: 0.043381
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 540/539, 625/624, 1375/1372, 2200/2197
Mapping: [⟨1 34 17 34 53 30], ⟨0 -53 -24 -51 -81 -43]]
Optimal tuning (POTE): ~2 = 1\1, ~55/42 = 466.071
Optimal ET sequence: 103, 121, 224
Badness: 0.021127
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 375/374, 540/539, 625/624, 715/714, 2200/2197
Mapping: [⟨1 34 17 34 53 30 31], ⟨0 -53 -24 -51 -81 -43 -44]]
Optimal tuning (POTE): ~2 = 1\1, ~17/13 = 466.074
Optimal ET sequence: 103, 121, 224
Badness: 0.018611
Browser
Subgroup: 2.3.5.7
Comma list: 16875/16807, 78732/78125
Mapping: [⟨1 6 8 10], ⟨0 -35 -45 -57]]
Wedgie: ⟨⟨ 35 45 57 -10 -8 6 ]]
Optimal tuning (POTE): ~2 = 1\1, ~49/45 = 151.399
Optimal ET sequence: 103, 111, 214
Badness: 0.180645
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1375/1372, 78732/78125
Mapping: [⟨1 6 8 10 8], ⟨0 -35 -45 -57 -36]]
Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 151.405
Badness: 0.057634
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 351/350, 540/539, 847/845, 1375/1372
Mapping: [⟨1 6 8 10 8 9], ⟨0 -35 -45 -57 -36 -42]]
Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 151.403
Optimal ET sequence: 103, 111, 214
Badness: 0.028822
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 351/350, 540/539, 561/560, 715/714, 847/845
Mapping: [⟨1 6 8 10 8 9 8], ⟨0 -35 -45 -57 -36 -42 -31]]
Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 151.397
Optimal ET sequence: 103, 111, 214
Badness: 0.020384
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 324/323, 351/350, 456/455, 495/494, 540/539, 715/714
Mapping: [⟨1 6 8 10 8 9 8 18], ⟨0 -35 -45 -57 -36 -42 -31 -109]]
Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 151.396
Optimal ET sequence: 103h, 111, 214
Badness: 0.017570
Grazer
Subgroup: 2.3.5.7
Comma list: 16875/16807, 1071875/1062882
Mapping: [⟨1 34 47 58], ⟨0 -37 -51 -63]]
- mapping generators: ~2, ~90/49
Wedgie: ⟨⟨ 37 51 63 -5 -4 3 ]]
Optimal tuning (POTE): ~2 = 1\1, ~49/45 = 148.719
Optimal ET sequence: 113, 121, 234
Badness: 0.217166
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1375/1372, 218750/216513
Mapping: [⟨1 34 47 58 35], ⟨0 -37 -51 -63 -36]]
Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 148.729
Optimal ET sequence: 113, 121, 234, 355e, 589cee
Badness: 0.076062
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 364/363, 540/539, 2200/2197
Mapping: [⟨1 34 47 58 35 44], ⟨0 -37 -51 -63 -36 -46]]
Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 148.729
Optimal ET sequence: 113, 121, 234, 355e, 589cee
Badness: 0.036248
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 325/324, 364/363, 540/539, 595/594, 2000/1989
Mapping: [⟨1 34 47 58 35 44 33], ⟨0 -37 -51 -63 -36 -46 -33]]
Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 148.735
Optimal ET sequence: 113, 121, 234g, 355eg
Badness: 0.025410
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 325/324, 364/363, 400/399, 540/539, 595/594, 665/663
Mapping: [⟨1 34 47 58 35 44 33 6], ⟨0 -37 -51 -63 -36 -46 -33 -2]]
Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 148.727
Optimal ET sequence: 113, 121, 234g, 355eg, 589ceegg
Badness: 0.022574