Porwell temperaments

From Xenharmonic Wiki
(Redirected from Icositritonic)
Jump to navigation Jump to search

This family of temperaments tempers out the porwell comma, [11 1 -3 -2 = 6144/6125, and includes hendecatonic, hemischis, twothirdtonic, nessafof, septisuperfourth, whoops, and polypyth.

Discussed elsewhere are:

Hendecatonic

The hendecatonic temperament has a period of 1/11 octave, which represents 16/15 and four times of which represents 9/7.


Subgroup: 2.3.5.7

Comma list: 6144/6125, 10976/10935

Mapping: [11 0 43 -4], 0 1 -1 2]]

Wedgie⟨⟨11 -11 22 -43 4 82]]

POTE generator: ~3/2 = 703.054

Vals22, 55, 77, 99

Badness: 0.041081

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 10976/10935

Mapping: [11 0 43 -4 38], 0 1 -1 2 0]]

POTE generator: ~3/2 = 702.636

Vals: 22, 55, 77, 99, 176e, 275e

Badness: 0.046088

Icosidillic

Subgroup: 2.3.5.7.11

Comma list: 3388/3375, 6144/6125, 9801/9800

Mapping: [22 0 86 -8 111], 0 1 -1 2 -1]]

POTE generator: ~3/2 = 702.914

Vals: 22, 154, 176, 198

Badness: 0.057725

Hemischis

See also: Schismatic family

Subgroup: 2.3.5.7

Comma list: 6144/6125, 19683/19600

Mapping: [1 0 15 -17], 0 2 -16 25]]

Wedgie⟨⟨2 -16 25 -30 34 103]]

POTE generator: ~81/70 = 249.203

Vals24, 53, 130, 183, 313

Badness: 0.045817

11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 5632/5625, 8019/8000

Mapping: [1 0 15 -17 51], 0 2 -16 25 -60]]

POTE generator: ~81/70 = 249.199

Vals: 24e, 53, 130, 183, 313

Badness: 0.036289

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 540/539, 676/675, 4096/4095

Mapping: [1 0 15 -17 51 14], 0 2 -16 25 -60 -13]]

POTE generator: ~15/13 = 249.199

Vals: 24e, 53, 130, 183, 313

Badness: 0.020816

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 351/350, 442/441, 561/560, 676/675, 4096/4095

Map: [1 0 15 -17 51 14 -49], 0 2 -16 25 -60 -13 67]]

POTE generator: ~15/13 = 249.190

Vals: 53, 130, 183, 679df

Badness: 0.021073

Twothirdtonic

Subgroup: 2.3.5.7

Comma list: 686/675, 6144/6125

Mapping: [1 3 2 4], 0 -13 3 -11]]

Wedgie⟨⟨13 -3 11 -35 -19 34]]

POTE generator: ~15/14 = 130.401

Vals9, 28b, 37, 46

Badness: 0.099601

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 686/675

Mapping: [1 3 2 4 4], 0 -13 3 -11 -5]]

POTE generator: ~15/14 = 130.430

Vals: 9, 28b, 37, 46

Badness: 0.040768

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 121/120, 169/168, 176/175

Mapping: [1 3 2 4 4 5], 0 -13 3 -11 -5 -12]]

POTE generator: ~13/12 = 130.409

Vals: 9, 28b, 37, 46

Badness: 0.025941

Semaja

Subgroup: 2.3.5.7

Comma list: 3125/3087, 6144/6125

Mapping: [1 -2 1 3], 0 19 7 -1]]

Wedgie⟨⟨19 7 -1 -33 -55 -22]]

POTE generator: ~8/7 = 226.4834

Vals16, 37, 53, 196d

Badness: 0.107023

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 3125/3087

Mapping: [1 -2 1 3 1], 0 19 7 -1 13]]

POTE generator: ~8/7 = 226.4856

Vals: 16, 37, 53

Badness: 0.059838

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 169/168, 176/175, 275/273

Mapping: [1 -2 1 3 1 2], 0 19 7 -1 13 9]]

POTE generator: ~8/7 = 226.4794

Vals: 16, 37, 53

Badness: 0.032564

Nessafof

Subgroup: 2.3.5.7

Comma list: 6144/6125, 250047/250000

Mapping: [3 2 5 10], 0 7 5 -4]]

Wedgie⟨⟨21 15 -12 -25 -78 -70]]

POTE generator: ~35/32 = 157.480

Vals15, 54b, 69, 84, 99, 282, 381

Badness: 0.045048

Septisuperfourth

Subgroup: 2.3.5.7

Comma list: 6144/6125, 118098/117649

Mapping: [2 4 4 7], 0 -9 7 -15]]

Wedgie⟨⟨18 -14 30 -64 -3 109]]

POTE generator: ~48/35 = 544.680

Vals22, 86, 108, 130, 152, 282

Badness: 0.059241

11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 4000/3993, 5632/5625

Mapping: [2 4 4 7 6], 0 -9 7 -15 10]]

POTE generator: ~48/35 = 544.696

Vals: 22, 86, 108, 130, 152, 282, 434de, 716de

Badness: 0.024619

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 540/539, 729/728, 4000/3993, 21168/21125

Mapping: [2 4 4 7 6 11], 0 -9 7 -15 10 -39]]

POTE generator: ~48/35 = 544.675

Vals: 22f, 108f, 130, 282

Badness: 0.022887

Septisuperquad

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 364/363, 540/539, 5632/5625

Mapping: [2 4 4 7 6 5], 0 -9 7 -15 10 26]]

POTE generator: ~48/35 = 544.641

Vals: 22, 86f, 108, 130

Badness: 0.033038

Aufo

For the 5-limit version of this temperament, see High badness temperaments #Aufo.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 177147/175616

Mapping: [1 6 -7 19], 0 -9 19 -33]]

Wedgie⟨⟨9 -19 33 -51 27 130]]

POTE generator: ~45/32 = 588.782

Vals53, 161, 214

Badness: 0.121428

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 177147/175616

Mapping: [1 6 -7 19 1], 0 -9 19 -33 5]]

POTE generator: ~45/32 = 588.811

Vals: 53, 108e, 161e

Badness: 0.088631

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 176/175, 351/350, 58806/57967

Mapping: [1 6 -7 19 1 -12], 0 -9 19 -33 5 32]]

POTE generator: ~45/32 = 588.788

Vals: 53, 108e, 161e, 214ee

Badness: 0.058507

Whoops

See also: Very high accuracy temperaments #Whoosh

Subgroup: 2.3.5.7

Comma list: 6144/6125, 244140625/243045684

Mapping: [1 17 14 -7], 0 -33 -25 21]]

Wedgie⟨⟨33 25 -21 -37 -126 -119]]

POTE generator: ~441/320 = 560.519

Vals15, 122d, 137, 152, 608d, 623bd, 775bcd

Badness: 0.1758

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4000/3993, 6144/6125

Mapping: [1 17 14 -7 10], 0 -33 -25 21 -14]]

POTE generator: ~242/175 = 560.519

Vals: 15, 122d, 137, 152, 608de, 623bde, 775bcde

Badness: 0.0437

Polypyth

Polypyth (46&121) tempers out the same 5-limit comma as the leapday temperament (29&46), but with the porwell (6144/6125) rather than the hemifamity (5120/5103) tempered out.


Subgroup: 2.3.5.7

Comma list: 6144/6125, 179200/177147

Mapping: [1 0 -31 52], 0 1 21 -31]]

POTE generator: ~3/2 = 704.174

Vals46, 121, 167, 288b, 455bcd, 743bcd

Badness: 0.137995

11-limit

Subgroup: 2.3.5.7.11

Comma list: 896/891, 2200/2187, 6144/6125

Mapping: [1 0 -31 52 59], 0 1 21 -31 -35]]

POTE generator: ~3/2 = 704.177

Vals: 46, 121, 167, 288be, 455bcde

Badness: 0.051131

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 352/351, 364/363, 1716/1715

Mapping: [1 0 -31 52 59 64], 0 1 21 -31 -35 -38]]

POTE generator: ~3/2 = 704.168

Vals: 46, 121, 167, 288be

Badness: 0.030292

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 256/255, 325/324, 352/351, 364/363, 1716/1715

Mapping: [1 0 -31 52 59 64 39], 0 1 21 -31 -35 -38 -22]]

POTE generator: ~3/2 = 704.168

Vals: 46, 121, 167, 288beg

Badness: 0.019051

Icositritonic

The icositritonic temperament (46&161) has a period of 1/23 octave, so six period represents 6/5 and nine period represents 21/16.


Subgroup: 2.3.5.7

Comma list: 6144/6125, 9920232/9765625

Mapping: [23 37 54 64], 0 -1 -1 1]]

Wedgie⟨⟨23 23 -23 -17 -101 -118]]

POTE generator: ~64/63 = 29.3586

Vals23, 46, 115, 161, 207, 368c

Badness: 0.196622

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 6144/6125, 35937/35840

Mapping: [23 37 54 64 79], 0 -1 -1 1 1]]

POTE generator: ~64/63 = 29.3980

Vals: 23, 46, 115, 161, 207, 368c

Badness: 0.064613

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 441/440, 847/845, 3584/3575

Mapping: [23 37 54 64 79 84], 0 -1 -1 1 1 2]]

POTE generator: ~64/63 = 29.2830

Vals: 46, 115, 161, 207, 368c

Badness: 0.040484

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 351/350, 441/440, 561/560, 847/845, 1089/1088

Mapping: [23 37 54 64 79 84 94], 0 -1 -1 1 1 2 0]]

POTE generator: ~64/63 = 29.2800

Vals: 46, 115, 161, 207, 368c

Badness: 0.024676

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 351/350, 441/440, 456/455, 476/475, 513/512, 847/845

Mapping: [23 37 54 64 79 84 94 96], 0 -1 -1 1 1 2 0 3]]

POTE generator: ~64/63 = 29.3760

Vals: 46, 115, 161, 207, 368c

Badness: 0.021579

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 276/275, 351/350, 391/390, 441/440, 456/455, 476/475, 847/845

Mapping: [23 37 54 64 79 84 94 96 104], 0 -1 -1 1 1 2 0 3 0]]

POTE generator: ~64/63 = 29.3471

Vals: 46, 115, 161, 207, 368ci

Badness: 0.017745

Countermiracle

The countermiracle temperament (31&145) tempers out the trimyna, 50421/50000 and the quince comma, 823543/819200.


Subgroup: 2.3.5.7

Comma list: 6144/6125, 50421/50000

Mapping: [1 4 3 3], 0 -25 -7 -2]]

Wedgie⟨⟨25 7 2 -47 -67 -15]]

POTE generator: ~343/320 = 115.9169

Vals31, 114, 145, 176, 559cc, 735cc

Badness: 0.102326

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 3388/3375, 6144/6125

Mapping: [1 4 3 3 8], 0 -25 -7 -2 -47]]

POTE generator: ~77/72 = 115.9158

Vals: 31, 114e, 145, 176

Badness: 0.039162

Countermiraculous

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351, 1001/1000, 6144/6125

Mapping: [1 4 3 3 8 1], 0 -25 -7 -2 -47 28]]

POTE generator: ~77/72 = 115.8803

Vals: 31, 83e, 114e, 145, 321ceff

Badness: 0.039271

Counterbenediction

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 441/440, 3146/3125, 3584/3575

Mapping: [1 4 3 3 8 -2], 0 -25 -7 -2 -47 59]]

POTE generator: ~77/72 = 115.9335

Vals: 31, 145f, 176, 207, 383c, 590cc

Badness: 0.045569

Countermanna

Subgroup: 2.3.5.7.11.13

Comma list: 364/363, 441/440, 3388/3375, 6144/6125

Mapping: [1 4 3 3 8 15], 0 -25 -7 -2 -47 -117]]

POTE generator: ~77/72 = 115.8898

Vals: 31f, 145, 176, 321ce

Badness: 0.053409

Counterrevelation

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 50421/50000

Mapping: [1 4 3 3 5], 0 -25 -7 -2 -16]]

POTE generator: ~343/320 = 115.9192

Vals: 31, 114, 145e, 176e

Badness: 0.064070

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 176/175, 196/195, 13750/13689

Mapping: [1 4 3 3 5 1], 0 -25 -7 -2 -16 28]]

POTE generator: ~273/256 = 115.8624

Vals: 31, 83, 114, 145e

Badness: 0.057497