Magic family
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
The magic family of temperaments tempers out 3125/3072, the small diesis or magic comma. The septimal version of magic is locally optimal, for some searches, in the 9-odd-limit. Magic has a slightly higher complexity than meantone but it is closer to just intonation. It is the simplest rank-2 temperament that tunes every 9-odd-limit interval better than is possible in 12edo. The most prominent deficiency is that it lacks proper or nearly-proper mos scales in the 5- to 10-note region. Properties may depend on tuning and extension.
Magic
The generator of magic is a major third, and to get to the interval class of fifths requires five of these. In fact, (5/4)5 = 3 × 3125/3072. 13\41 is a highly recommendable generator, though 19\60, the optimal patent val generator, also makes a lot of sense, and using 19edo or 22edo is always possible.
Subgroup: 2.3.5
Comma list: 3125/3072
Mapping: [⟨1 0 2], ⟨0 5 1]]
- mapping generators: ~2, ~5/4
- CTE: ~2 = 1200.000, ~5/4 = 380.499
- error map: ⟨0.000 +0.542 -5.814]
- POTE: ~2 = 1200.000, ~5/4 = 380.058
- error map: ⟨0.000 -1.663 -6.255]
- 5-odd-limit: ~5/4 = [0 1/5 0⟩
- 5-odd-limit diamond monotone: ~5/4 = [360.000, 400.000] (3\10 to 1\3)
- 5-odd-limit diamond tradeoff: ~5/4 = [378.910, 386.314] (1/4-comma to untempered)
Algebraic generator: Terzbirat, the positive root of 9x2 - 8x - 4 = (4 + 2√13)/9; approximately 380.3175 cents.
Optimal ET sequence: 3, 13b, 16, 19, 41, 60, 221cc, 281cc
Badness (Smith): 0.039163
Overview to extensions
Apart from magic, we also consider other extensions. The second comma of the normal comma list defines which 7-limit family member we are looking at. 875/864, the keemic comma, gives septimal magic, and 525/512, Avicenna's enharmonic diesis, gives his annoying brother muggles. Both use the major third as a generator, as well as low-accuracy extensions including darkstone and brightstone.
Weak extensions considered below are hocum, trismegistus, quadrimage, quinmage and warlock. Discussed elsewhere are
Septimal magic
Septimal magic tempers out not only 3125/3072 and 875/864, but also 225/224, 245/243, and 10976/10935. 41edo is a good magic tuning, and 19- or 22-note mosses are possible scales. Five major thirds approximate 3/1. Twelve major thirds, less an octave, approximate 7/1.
This temperament, with its accurate fifths, works well with 9-odd-limit harmony. It is more accurate than meantone and simpler than garibaldi. It is a little tricky to work with because its fifths are a relatively complex interval and it does not naturally work with scales of around seven notes to the octave.
225/224 is the marvel comma. Because the augmented triad is the simplest triad in magic temperaments, it is especially significant in magic temperament. 245/243, the sensamagic comma, leads to another essentially tempered 9-odd-limit triad with two thirds approximating 9/7 and the other 6/5. It also divides the approximate 3/2 into two steps of 7/6 and one of 10/9.
By adding 100/99 to the list of commas, magic can be extended to an 11-limit version. For this, 104edo provides an excellent tuning, as it does also for the rank-3 temperaments tempering out 100/99 with 225/224, 245/243 or 875/864. Septimage (see below) is also an excellent 11-limit magic tuning.
Subgroup: 2.3.5.7
Comma list: 225/224, 245/243
Mapping: [⟨1 0 2 -1], ⟨0 5 1 12]]
- mapping generators: ~2, ~5/4
- CTE: ~2 = 1200.000, ~5/4 = 380.651
- error map: ⟨0.000 +1.301 -5.662 -1.011]
- POTE: ~2 = 1200.000, ~5/4 = 380.352
- error map: ⟨0.000 -0.195 -5.962 -4.602]
- 7- and 9-odd-limit: ~5/4 = [0 1/5 0 0⟩
- 7- and 9-odd-limit diamond monotone: ~5/4 = [378.947, 381.818] (6\19 to 7\22)
- 7- and 9-odd-limit diamond tradeoff: ~5/4 = [378.910, 386.314] (1/4-comma to untempered)
Algebraic generator: Tirzbirat or Septimage, the real root of 5x5 + 4x - 20, 380.7604 cents.
Optimal ET sequence: 19, 41, 142cd, 183cd, 224ccd
Badness (Smith): 0.018918
11-limit
Tempering out 100/99 allows for a tritone substitution where the extended 5-limit tuning of a dominant seventh with a 9/5 above the root shares its tritone with an 8:10:11:12:16 chord rooted on the seventh of the original chord. (The tritone of the dominant seventh is (9/5)/(5/4) = 36/25. (16/11)/(36/25) = 100/99.)
Subgroup: 2.3.5.7.11
Comma list: 100/99, 225/224, 245/243
Mapping: [⟨1 0 2 -1 6], ⟨0 5 1 12 -8]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.720
- POTE: ~2 = 1200.000, ~5/4 = 380.696
Minimax tuning:
- 11-odd-limit: ~5/4 = [1/3 1/9 0 0 -1/18⟩
- unchanged-interval (eigenmonzo) basis: 2.11/9
Tuning ranges:
- 11-odd-limit diamond monotone: ~5/4 = [378.947, 381.818] (6\19 to 7\22)
- 11-odd-limit diamond tradeoff: ~5/4 = [378.910, 386.314] (1/4-comma to untempered)
Optimal ET sequence: 19, 22, 41, 104
Badness (Smith): 0.020352
13-limit
A notable patent val tuning beyond the optimal patent val of 41edo is 19 + 41 = 60edo.
Subgroup: 2.3.5.7.11.13
Comma list: 100/99, 105/104, 144/143, 196/195
Mapping: [⟨1 0 2 -1 6 -2], ⟨0 5 1 12 -8 18]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.435
- POTE: ~2 = 1200.000, ~5/4 = 380.427
Tuning ranges:
- 13- and 15-odd-limit diamond monotone: ~5/4 = [378.947, 381.818] (6\19 to 7\22)
- 13- and 15-odd-limit diamond tradeoff: ~5/4 = [378.617, 386.314]
Optimal ET sequence: 19, 22f, 41
Badness (Smith): 0.021509
Magical
Subgroup: 2.3.5.7.11.13.17
Comma list: 100/99, 105/104, 120/119, 144/143, 154/153
Mapping: [⟨1 0 2 -1 6 -2 6], ⟨0 5 1 12 -8 18 -6]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.510
- POTE: ~2 = 1200.000, ~5/4 = 380.604
Optimal ET sequence: 19, 22f, 41
Badness (Smith): 0.020633
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 100/99, 105/104, 120/119, 133/132, 144/143, 154/153
Mapping: [⟨1 0 2 -1 6 -2 6 9], ⟨0 5 1 12 -8 18 -6 -15]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.451
Badness (Smith): 0.020881
Magica
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 100/99, 105/104, 120/119, 144/143, 154/153, 171/169
Mapping: [⟨1 0 2 -1 6 -2 6 -4], ⟨0 5 1 12 -8 18 -6 26]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.573
Badness (Smith): 0.019945
Magia
Subgroup: 2.3.5.7.11.13.17
Comma list: 100/99, 105/104, 144/143, 170/169, 196/195
Mapping: [⟨1 0 2 -1 6 -2 -7], ⟨0 5 1 12 -8 18 35]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.271
Optimal ET sequence: 19g, 41, 60
Badness (Smith): 0.026232
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 100/99, 105/104, 144/143, 170/169, 171/169, 196/195
Mapping: [⟨1 0 2 -1 6 -2 -7 -4], ⟨0 5 1 12 -8 18 35 26]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.360
Badness (Smith): 0.023709
Evening
Evening is a remarkable subgroup temperament of 19 & 41 with prime harmonics of 29 and 31.
Subgroup: 2.3.5.7.11.13.29.31
Comma list: 100/99, 105/104, 144/143, 145/144, 155/154, 196/195
Sval mapping: [⟨1 0 2 -1 6 -2 2 4], ⟨0 5 1 12 -8 18 9 3]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.478
- POTE: ~2 = 1200.000, ~5/4 = 380.416
Optimal ET sequence: 19, 22f, 41
Sorcery
Subgroup: 2.3.5.7.11.13
Comma list: 65/64, 78/77, 91/90, 100/99
Mapping: [⟨1 0 2 -1 6 4], ⟨0 5 1 12 -8 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.674
- POTE: ~2 = 1200.000, ~5/4 = 380.477
Optimal ET sequence: 19, 22, 41f
Badness (Smith): 0.025829
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 52/51, 65/64, 78/77, 91/90, 100/99
Mapping: [⟨1 0 2 -1 6 4 6], ⟨0 5 1 12 -8 -1 -6]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.784
- POTE: ~2 = 1200.000, ~5/4 = 380.729
Badness (Smith): 0.023768
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 52/51, 65/64, 78/77, 91/90, 100/99, 133/132
Mapping: [⟨1 0 2 -1 6 4 6 9], ⟨0 5 1 12 -8 -1 -6 -15]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.625
- CWE: ~2 = 1200.000, ~5/4 = 380.621
Badness (Smith): 0.023232
Necromancy
Subgroup: 2.3.5.7.11.13
Comma list: 100/99, 225/224, 245/243, 275/273
Mapping: [⟨1 0 2 -1 6 11], ⟨0 5 1 12 -8 -23]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.788
- POTE: ~2 = 1200.000, ~5/4 = 380.787
Optimal ET sequence: 19f, 22, 41, 63, 104
Badness (Smith): 0.025275
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 100/99, 120/119, 154/153, 225/224, 273/272
Mapping: [⟨1 0 2 -1 6 11 6], ⟨0 5 1 12 -8 -23 -6]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.837
- POTE: ~2 = 1200.000, ~5/4 = 380.827
Optimal ET sequence: 19f, 22, 41, 63
Badness (Smith): 0.022032
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 100/99, 120/119, 133/132, 154/153, 209/208, 225/224
Mapping: [⟨1 0 2 -1 6 11 6 9], ⟨0 5 1 12 -8 -23 -6 -15]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.741
- CWE: ~2 = 1200.000, ~5/4 = 380.735
Optimal ET sequence: 19f, 22, 41
Badness (Smith): 0.021101
Soothsaying
Subgroup: 2.3.5.7.11.13
Comma list: 100/99, 225/224, 245/243, 1352/1331
Mapping: [⟨2 0 4 -2 12 15], ⟨0 5 1 12 -8 -12]]
Optimal tunings:
- CTE: ~55/39 = 600.000, ~5/4 = 380.539
- POTE: ~55/39 = 600.000, ~5/4 = 380.508
Optimal ET sequence: 22, 60, 82
Badness (Smith): 0.055443
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 100/99, 221/220, 225/224, 245/243, 273/272
Mapping: [⟨2 0 4 -2 12 15 5], ⟨0 5 1 12 -8 -12 5]]
Optimal tunings:
- CTE: ~17/12 = 600.000, ~5/4 = 380.553
- POTE: ~17/12 = 600.000, ~5/4 = 380.508
Optimal ET sequence: 22, 60, 82
Badness (Smith): 0.035654
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 100/99, 133/132, 221/220, 225/224, 245/243, 273/272
Mapping: [⟨2 0 4 -2 12 15 5 18], ⟨0 5 1 12 -8 -12 5 -15]]
Optimal tunings:
- CTE: ~17/12 = 600.000, ~5/4 = 380.470
- CWE: ~17/12 = 600.000, ~5/4 = 380.470
Optimal ET sequence: 22, 60, 82
Badness (Smith): 0.031291
Telepathy
Subgroup: 2.3.5.7.11
Comma list: 55/54, 99/98, 176/175
Mapping: [⟨1 0 2 -1 -1], ⟨0 5 1 12 14]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 381.231
- POTE: ~2 = 1200.000, ~5/4 = 381.019
Optimal ET sequence: 19e, 22, 41e, 63e
Badness (Smith): 0.027109
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 91/90, 99/98
Mapping: [⟨1 0 2 -1 -1 4], ⟨0 5 1 12 14 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 381.196
- POTE: ~2 = 1200.000, ~5/4 = 380.520
Optimal ET sequence: 19e, 22, 41ef
Badness (Smith): 0.025522
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 55/54, 65/64, 85/84, 91/90, 99/98
Mapping: [⟨1 0 2 -1 -1 4 -1], ⟨0 5 1 12 14 -1 16]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 381.288
- POTE: ~2 = 1200.000, ~5/4 = 380.619
Optimal ET sequence: 19eg, 22, 41efg
Badness (Smith): 0.020201
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 55/54, 57/56, 65/64, 76/75, 85/84, 99/98
Mapping: [⟨1 0 2 -1 -1 4 -1 2], ⟨0 5 1 12 14 -1 16 7]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 381.464
- CWE: ~2 = 1200.000, ~5/4 = 380.735
Optimal ET sequence: 19egh, 22, 41efghh
Badness (Smith): 0.019004
Intuition
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 66/65, 99/98, 105/104
Mapping: [⟨1 0 2 -1 -1 -2], ⟨0 5 1 12 14 18]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.816
- POTE: ~2 = 1200.000, ~5/4 = 380.483
Badness (Smith): 0.026089
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 55/54, 66/65, 85/84, 99/98, 105/104
Mapping: [⟨1 0 2 -1 -1 -2 -1], ⟨0 5 1 12 14 18 16]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.952
- POTE: ~2 = 1200.000, ~5/4 = 380.604
Optimal ET sequence: 19eg, 22f
Badness (Smith): 0.020274
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 55/54, 66/65, 77/76, 85/84, 99/98, 105/104
Mapping: [⟨1 0 2 -1 -1 -2 -1 -4], ⟨0 5 1 12 14 18 16 26]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.866
- CWE: ~2 = 1200.000, ~5/4 = 380.628
Optimal ET sequence: 19egh, 22fh
Badness (Smith): 0.019518
Horcrux
Subgroup: 2.3.5.7.11
Comma list: 45/44, 56/55, 245/243
Mapping: [⟨1 0 2 -1 0], ⟨0 5 1 12 11]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 379.796
- POTE: ~2 = 1200.000, ~5/4 = 379.642
Optimal ET sequence: 3de, 16d, 19
Badness (Smith): 0.039282
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 56/55, 78/77, 245/243
Mapping: [⟨1 0 2 -1 0 -2], ⟨0 5 1 12 11 18]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 379.885
- POTE: ~2 = 1200.000, ~5/4 = 379.791
Optimal ET sequence: 3def, 16dff, 19
Badness (Smith): 0.031938
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 45/44, 56/55, 78/77, 85/84, 245/243
Mapping: [⟨1 0 2 -1 0 -2 0], ⟨0 5 1 12 11 18 16]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.216
- CWE: ~2 = 1200.000, ~5/4 = 380.148
Optimal ET sequence: 3defg, 16dffgg, 19g
Badness (Smith): 0.028074
Horcruxic
Subgroup: 2.3.5.7.11.13.17
Comma list: 35/34, 45/44, 52/51, 56/55, 245/243
Mapping: [⟨1 0 2 -1 0 -2 0], ⟨0 5 1 12 11 18 13]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 379.524
- CWE: ~2 = 1200.000, ~5/4 = 379.571
Optimal ET sequence: 3defg, 16dff, 19
Badness (Smith): 0.029556
Glamour
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 56/55, 65/64, 245/243
Mapping: [⟨1 0 2 -1 0 4], ⟨0 5 1 12 11 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 379.757
- POTE: ~2 = 1200.000, ~5/4 = 379.116
Optimal ET sequence: 3de, 16d, 19
Badness (Smith): 0.033317
Witchcraft
Subgroup: 2.3.5.7.11
Comma list: 225/224, 245/243, 441/440
Mapping: [⟨1 0 2 -1 -7], ⟨0 5 1 12 33]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.416
- POTE: ~2 = 1200.000, ~5/4 = 380.232
Optimal ET sequence: 19e, 41, 60e, 101cd, 243ccdde
Badness (Smith): 0.030706
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 196/195, 245/243, 275/273
Mapping: [⟨1 0 2 -1 -7 -2], ⟨0 5 1 12 33 18]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.352
- POTE: ~2 = 1200.000, ~5/4 = 380.189
Optimal ET sequence: 19e, 41, 60e, 101cd
Badness (Smith): 0.023547
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 105/104, 154/153, 170/169, 196/195, 245/243
Mapping: [⟨1 0 2 -1 -7 -2 -7], ⟨0 5 1 12 33 18 35]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.281
- POTE: ~2 = 1200.000, ~5/4 = 380.114
Optimal ET sequence: 19eg, 41, 60e, 101cd
Badness (Smith): 0.020756
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 105/104, 133/132, 154/153, 170/169, 171/169, 196/195
Mapping: [⟨1 0 2 -1 -7 -2 -7 -4], ⟨0 5 1 12 33 18 35 26]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 380.339
- CWE: ~2 = 1200.000, ~5/4 = 380.205
Optimal ET sequence: 19egh, 41, 60eh
Badness (Smith): 0.018625
Divination
Subgroup: 2.3.5.7.11
Comma list: 121/120, 225/224, 245/243
Mapping: [⟨2 0 4 -2 5], ⟨0 5 1 12 3]]
Optimal tunings:
- CTE: ~99/70 = 600.000, ~5/4 = 380.732
- POTE: ~99/70 = 600.000, ~5/4 = 380.223
Optimal ET sequence: 22, 38d, 60e, 142cdee, 202ccddeee
Badness (Smith): 0.035864
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 121/120, 196/195, 245/243
Mapping: [⟨2 0 4 -2 5 -4], ⟨0 5 1 12 3 18]]
Optimal tunings:
- CTE: ~99/70 = 600.000, ~5/4 = 380.417
- POTE: ~99/70 = 600.000, ~5/4 = 379.920
Optimal ET sequence: 22f, 38df, 60e
Badness (Smith): 0.034551
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 105/104, 121/120, 154/153, 196/195, 245/243
Mapping: [⟨2 0 4 -2 5 -4 5], ⟨0 5 1 12 3 18 5]]
Optimal tunings:
- CTE: ~17/12 = 600.000, ~5/4 = 380.433
- CWE: ~17/12 = 600.000, ~5/4 = 380.067
Optimal ET sequence: 22f, 38df, 60e
Badness (Smith): 0.023775
Hocus
Subgroup: 2.3.5.7.11
Comma list: 225/224, 243/242, 245/242
Mapping: [⟨1 5 3 11 12], ⟨0 -10 -2 -24 -25]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~14/11 = 409.760
- POTE: ~2 = 1200.000, ~14/11 = 409.910
Optimal ET sequence: 38d, 41, 120cd
Badness (Smith): 0.038519
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 196/195, 243/242, 245/242
Mapping: [⟨1 5 3 11 12 16], ⟨0 -10 -2 -24 -25 -36]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~14/11 = 409.842
- POTE: ~2 = 1200.000, ~14/11 = 410.004
Optimal ET sequence: 38df, 41, 79d, 120cd
Badness (Smith): 0.030280
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 105/104, 154/153, 196/195, 243/242, 245/242
Mapping: [⟨1 5 3 11 12 16 14], ⟨0 -10 -2 -24 -25 -36 -29]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~14/11 = 409.896
- CWE: ~2 = 1200.000, ~14/11 = 409.994
Optimal ET sequence: 38df, 41, 79d
Badness (Smith): 0.025491
19-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 105/104, 154/153, 196/195, 243/242, 245/242
Mapping: [⟨1 5 3 11 12 16 14 8], ⟨0 -10 -2 -24 -25 -36 -29 -11]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~14/11 = 409.884
- CWE: ~2 = 1200.000, ~14/11 = 410.012
Optimal ET sequence: 38df, 41, 79dh
Badness (Smith): 0.020277
Muggles
Aside from 3125/3072 and 525/512 muggles also tempers out 126/125 and 1323/1280. A good muggles tuning is 19edo, in which tuning it is the same thing as magic. Muggles works better for small scales than magic in the sense that 7- or 10-note mosses are reasonable choices, as while the flatter generator compromises the accuracy of the 5-limit intervals, it grants simpler access to some higher-limit ones, and makes the small steps larger and more melodically effective.
Subgroup: 2.3.5.7
Comma list: 126/125, 525/512
Mapping: [⟨1 0 2 5], ⟨0 5 1 -7]]
- CTE: ~2 = 1200.000, ~5/4 = 378.744
- error map: ⟨0.000 -8.235 -7.570 -20.034]
- POTE: ~2 = 1200.000, ~5/4 = 378.479
- error map: ⟨0.000 -9.558 -7.834 -18.181]
- 7-odd-limit diamond monotone: ~5/4 = [375.000, 378.947] (5\16 to 6\19)
- 9-odd-limit diamond monotone: ~5/4 = 378.947 (6\19)
- 7- and 9-odd-limit diamond tradeoff: ~5/4 = [375.882, 386.314]
Optimal ET sequence: 16, 19, 73bcd, 92bcdd, 111bcddd
Badness (Smith): 0.056206
11-limit
Subgroup: 2.3.5.7.11
Comma list: 45/44, 126/125, 385/384
Mapping: [⟨1 0 2 5 0], ⟨0 5 1 -7 11]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 378.228
- POTE: ~2 = 1200.000, ~5/4 = 377.724
Tuning ranges:
- 11-odd-limit diamond monotone: ~5/4 = 378.947 (6\19)
- 11-odd-limit diamond tradeoff: ~5/4 = [347.408, 386.314]
Optimal ET sequence: 16, 19, 35, 54bd
Badness (Smith): 0.048038
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 65/64, 78/77, 126/125
Mapping: [⟨1 0 2 5 0 4], ⟨0 5 1 -7 11 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 378.176
- POTE: ~2 = 1200.000, ~5/4 = 377.653
Optimal ET sequence: 16, 19, 35f, 54bdf
Badness (Smith): 0.030386
Muggloid
Subgroup: 2.3.5.7.11
Comma list: 33/32, 126/125, 176/175
Mapping: [⟨1 0 2 5 5], ⟨0 5 1 -7 -5]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 377.724
- POTE: ~2 = 1200.000, ~5/4 = 377.832
Optimal ET sequence: 3, 16, 19e, 35ee, 54bdeee
Badness (Smith): 0.046970
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 33/32, 65/64, 105/104, 126/125
Mapping: [⟨1 0 2 5 5 4], ⟨0 5 1 -7 -5 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 377.652
- POTE: ~2 = 1200.000, ~5/4 = 377.838
Optimal ET sequence: 3, 16, 19e, 35eef
Badness (Smith): 0.028732
Darkstone
Darkstone (16 & 19d) is a low-accuacy temperament which tempers out 36/35 and 1875/1792. It makes the major third and the fifth even flatter than those of muggles. In Encyclopedia of Microtonal Music Theory, Tonalsoft, this temperament is given a name witch.
Subgroup: 2.3.5.7
Comma list: 36/35, 1875/1792
Mapping: [⟨1 0 2 0], ⟨0 5 1 9]]
- CTE: ~2 = 1200.000, ~5/4 = 377.385
- error map: ⟨0.000 -15.028 -8.928 +27.643]
- CWE: ~2 = 1200.000, ~5/4 = 376.963
- error map: ⟨0.000 -18.198 -9.562 +21.937]
Optimal ET sequence: 3d, …, 13b, 16
Badness (Smith): 0.084213
11-limit
Subgroup: 2.3.5.7.11
Comma list: 36/35, 45/44, 363/343
Mapping: [⟨1 0 2 0 0], ⟨0 5 1 9 11]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 377.388
- CWE: ~2 = 1200.000, ~5/4 = 376.973
Optimal ET sequence: 3de, 13be, 16
Badness (Smith): 0.046775
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 27/26, 36/35, 45/44, 363/343
Mapping: [⟨1 0 2 0 0 -1], ⟨0 5 1 9 11 15]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 376.914
- CWE: ~2 = 1200.000, ~5/4 = 376.422
Optimal ET sequence: 3def, 13beff, 16
Badness (Smith): 0.038328
Brightstone
Subgroup: 2.3.5.7
Comma list: 64/63, 3125/3024
Mapping: [⟨1 0 2 6], ⟨0 5 1 -10]]
- CTE: ~2 = 1200.000, ~5/4 = 381.955
- error map: ⟨0.000 +7.818 -4.359 +11.627]
- CWE: ~2 = 1200.000, ~5/4 = 381.956
- error map: ⟨0.000 +7.826 -4.358 +11.613]
Optimal ET sequence: 3, 19d, 22
Badness (Smith): 0.088072
11-limit
Subgroup: 2.3.5.7.11
Comma list: 64/63, 100/99, 605/588
Mapping: [⟨1 0 2 6 6], ⟨0 5 1 -10 -8]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 381.790
- CWE: ~2 = 1200.000, ~5/4 = 381.712
Optimal ET sequence: 3, 19d, 22
Badness (Smith): 0.047379
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 64/63, 65/63, 100/99, 169/165
Mapping: [⟨1 0 2 6 6 4], ⟨0 5 1 -10 -8 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 381.732
- CWE: ~2 = 1200.000, ~5/4 = 381.736
Badness (Smith): 0.039703
Hocum
Subgroup: 2.3.5.7
Comma list: 3125/3072, 4000/3969
Mapping: [⟨1 5 3 -3], ⟨0 -10 -2 17]]
- mapping generators: ~2, ~63/50
- CTE: ~2 = 1200.000, ~63/50 = 409.836
- error map: ⟨0.000 -0.316 -5.986 -1.612]
- POTE: ~2 = 1200.000, ~63/50 = 410.108
- error map: ⟨0.000 -0.437 -6.010 -1.406]
Optimal ET sequence: 3, 38, 41, 161c
Badness (Smith): 0.107115
Trismegistus
Subgroup: 2.3.5.7
Comma list: 1029/1024, 3125/3072
Mapping: [⟨1 10 4 0], ⟨0 -15 -3 5]]
- mapping generators: ~2, ~147/100
- CTE: ~2 = 1200.000, ~147/100 = 673.187
- error map: ⟨0.000 +0.240 -5.875 -2.891]
- POTE: ~2 = 1200.000, ~147/100 = 673.290
- error map: ⟨0.000 -0.932 -6.109 -2.500]
Optimal ET sequence: 16, 25, 41, 139c, 180c, 221cc, 262ccd
Badness (Smith): 0.098334
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 441/440, 625/616
Mapping: [⟨1 10 4 0 13], ⟨0 -15 -3 5 -17]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~22/15 = 673.241
- POTE: ~2 = 1200.000, ~22/15 = 673.340
Optimal ET sequence: 16, 25e, 41, 98c
Badness (Smith): 0.045623
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 144/143, 275/273, 625/616
Mapping: [⟨1 10 4 0 13 11], ⟨0 -15 -3 5 -17 -13]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~22/15 = 673.294
- POTE: ~2 = 1200.000, ~22/15 = 673.359
Optimal ET sequence: 16, 25e, 41, 98c
Badness (Smith): 0.033081
Quadrimage
Subgroup: 2.3.5.7
Comma list: 2401/2400, 3125/3072
Mapping: [⟨1 5 3 4], ⟨0 -20 -4 -7]]
- mapping generators: ~2, ~28/25
- CTE: ~2 = 1200.000, ~28/25 = 204.860
- error map: ⟨0.000 +0.853 -5.752 -2.843]
- POTE: ~2 = 1200.000, ~28/25 = 204.987
- error map: ⟨0.000 -1.691 -6.261 -3.733]
Optimal ET sequence: 6, 29b, 35, 41, 158cd, 199ccd, 240ccd, 281ccd
Badness (Smith): 0.127422
11-limit
Subgroup: 2.3.5.7.11
Comma list: 245/242, 385/384, 625/616
Mapping: [⟨1 5 3 4 5], ⟨0 -20 -4 -7 -9]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~28/25 = 204.881
- POTE: ~2 = 1200.000, ~28/25 = 204.956
Optimal ET sequence: 6, 35, 41
Badness (Smith): 0.061572
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 144/143, 245/242, 625/616
Mapping: [⟨1 5 3 4 5 9], ⟨0 -20 -4 -7 -9 -31]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~28/25 = 204.956
- POTE: ~2 = 1200.000, ~28/25 = 205.028
Optimal ET sequence: 6f, 35f, 41, 117c
Badness (Smith): 0.044047
Quinmage
Subgroup: 2.3.5.7
Comma list: 3125/3072, 16875/16807
Mapping: [⟨1 -10 0 -6], ⟨0 25 5 19]]
- mapping generators: ~2, ~48/35
- CTE: ~2 = 1200.000, ~48/35 = 556.123
- error map: ⟨0.000 +1.132 -5.696 -2.480]
- CWE: ~2 = 1200.000, ~48/35 = 556.050
- error map: ⟨0.000 -0.695 -6.062 -3.868]
Optimal ET sequence: 13b, 28b, 41, 177bcd, 218bccdd, 259bccdd, 300cccdd
Badness (Smith): 0.194548
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 625/616, 2401/2376
Mapping: [⟨1 -10 0 -6 3], ⟨0 25 5 19 1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~11/8 = 556.122
- CWE: ~2 = 1200.000, ~11/8 = 556.095
Optimal ET sequence: 13b, 28b, 41
Badness (Smith): 0.101724
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 196/195, 364/363, 385/384, 625/616
Mapping: [⟨1 -10 0 -6 3 0], ⟨0 25 5 19 1 8]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~11/8 = 556.106
- CWE: ~2 = 1200.000, ~11/8 = 556.117
Optimal ET sequence: 13b, 28b, 41
Badness (Smith): 0.067742
Warlock
Subgroup: 2.3.5.7
Comma list: 3125/3072, 16807/16384
Mapping: [⟨5 0 10 14], ⟨0 5 1 0]]
- mapping generators: ~8/7, ~5/4
- CTE: ~8/7 = 240.000, ~5/4 = 380.499 (~256/245 = 99.501)
- error map: ⟨0.000 +0.542 -5.814 -8.826]
- CWE: ~8/7 = 240.000, ~5/4 = 379.997 (~256/245 = 100.003)
- error map: ⟨0.000 -1.972 -6.317 -8.826]
Optimal ET sequence: 25, 35, 60
Badness (Smith): 0.287190