Semaphoresmic clan

From Xenharmonic Wiki
Revision as of 05:50, 25 August 2024 by Lériendil (talk | contribs) (Lériendil moved page Slendro clan to Semaphore clan: The current name of 49/48 as the "slendro diesis" is needlessly overloaded with that of the "slendric" temperament (which belongs to the gamelismic family instead of the slendric).)
Jump to navigation Jump to search

The slendro clan tempers out the slendro diesis, 49/48, a triprime comma with factors of 2, 3 and 7.

Semaphore

Subgroup: 2.3.7

Comma list: 49/48

Subgroup-val mapping[1 0 2], 0 2 1]]

sval mapping generators: ~2, ~7/4

Gencom mapping[1 2 0 3], 0 -2 0 -1]]

gencom: [2 7/6; 49/48]

Optimal tunings:

  • CTE: ~2 = 1\1, ~7/4 = 952.2948
  • POTE: ~2 = 1\1, ~7/4 = 949.615

Optimal ET sequence5, 14, 19, 24, 67dd, 91dd, 115ddd

Scales: semaphore5, semaphore9, semaphore14

Overview to extensions

The second comma of the comma list defines which 7-limit family member we are looking at.

Godzilla adds 81/80. Immunity adds 2240/2187. Superpelog adds 135/128. Beep adds 21/20. Baba adds 16/15. These all use the same nominal generator as semaphore, though some of them are of very low accuracy.

Decimal adds 25/24, splitting the octave in two. Negri adds 225/224, splitting the hemifourth in two. Triforce adds 128/125, splitting the octave in three. Keemun adds 126/125, splitting the hemitwelfth in three. Nautilus adds 250/243, splitting the hemifourth in three. Nuke is like nautilus, but adds 3584/3375 instead. Hemidim adds 648/625 with a 1/4-octave period. Blacksmith adds 28/27, splitting the octave in five. Spell adds 3125/3072, splitting the hemitwelfth in five. Hemiripple adds 6561/6250, splitting the hemifourth in five. Finally, mabila adds 28672/28125 and splits an interval of two octaves plus a hemifourth in five.

Discussed elsewhere are

Considered below are godzilla, superpelog, negri, nuke, mabila, and hemiripple.

Godzilla

Deutsch

Godzilla tempers out 81/80, equating 9/8 and 10/9, so it finds the prime 5 at a stack of four fifths, as does any temperament in the meantone family. 19edo is close to being the optimal generator tuning; hence it can be more or less equated with taking 4\19 as a generator. Mos scales are of 5, 9, or 14 notes.

Subgroup: 2.3.5.7

Comma list: 49/48, 81/80

Mapping[1 0 -4 2], 0 2 8 1]]

mapping generators: ~2, ~7/4

Wedgie⟨⟨ 2 8 1 8 -4 -20 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~7/4 = 948.7959
  • POTE: ~2 = 1\1, ~7/4 = 947.365

Tuning ranges:

Optimal ET sequence5, 14c, 19

Badness: 0.026747

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 49/48, 81/80

Mapping: [1 0 -4 2 -6], 0 2 8 1 12]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~7/4 = 947.4563
  • POTE: ~2 = 1\1, ~7/4 = 945.973

Tuning ranges:

  • 11-odd-limit diamond monotone: ~7/4 = [942.857, 947.368] (11\14 to 15\19)
  • 11-odd-limit diamond tradeoff: ~7/4 = [933.129, 968.826]

Optimal ET sequence14c, 19, 33cd

Badness: 0.028947

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 49/48, 78/77, 81/80

Mapping: [1 0 -4 2 -6 -5], 0 2 8 1 12 11]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~7/4 = 947.8877
  • POTE: ~2 = 1\1, ~7/4 = 946.397

Tuning ranges:

  • 13- and 15-odd-limit diamond monotone: ~7/4 = 947.368 (15\19)
  • 13- and 15-odd-limit diamond tradeoff: ~7/4 = [910.890, 968.826]

Optimal ET sequence14cf, 19, 33cdff

Badness: 0.022503

Semafour

Subgroup: 2.3.5.7.11

Comma list: 33/32, 49/48, 55/54

Mapping: [1 0 -4 2 5], 0 2 8 1 -2]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~7/4 = 948.2089
  • POTE: ~2 = 1\1, ~7/4 = 945.958

Optimal ET sequence14c, 19e, 33cdee, 52cdeee

Badness: 0.028510

Varan

Subgroup: 2.3.5.7.11

Comma list: 49/48, 77/75, 81/80

Mapping: [1 0 -4 2 -10], 0 2 8 1 17]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~7/4 = 949.6160
  • POTE: ~2 = 1\1, ~7/4 = 948.921

Optimal ET sequence19e, 24, 43de

Badness: 0.039647

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 66/65, 77/75, 81/80

Mapping: [1 0 -4 2 -10 -5], 0 2 8 1 17 11]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~7/4 = 949.5255
  • POTE: ~2 = 1\1, ~7/4 = 948.835

Optimal ET sequence19e, 24, 43de

Badness: 0.025676

Baragon

Subgroup: 2.3.5.7.11

Comma list: 49/48, 56/55, 81/80

Mapping: [1 0 -4 2 9], 0 2 8 1 -7]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~7/4 = 949.0311
  • POTE: ~2 = 1\1, ~7/4 = 948.827

Optimal ET sequence5, 19, 24

Badness: 0.035673

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 56/55, 81/80, 91/90

Mapping: [1 0 -4 2 9 -5], 0 2 8 1 -7 11]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~7/4 = 949.0670
  • POTE: ~2 = 1\1, ~7/4 = 948.802

Optimal ET sequence5, 19, 24

Badness: 0.026703

Helayo

For the 5-limit version of this temperament see High badness temperaments #Hogzilla.

Subgroup: 2.3.5.7

Comma list: 49/48, 3645/3584

Mapping[1 0 11 2], 0 2 -11 1]]

Wedgie⟨⟨ 2 -6 1 -14 -4 19 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~7/4 = 947.0969

Optimal ET sequence5c, 14, 19

Badness: 0.0791

Music

Superpelog

Subgroup: 2.3.5.7

Comma list: 49/48, 135/128

Mapping[1 0 7 2], 0 2 -6 1]]

Wedgie⟨⟨ 2 -6 1 -14 -4 19 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~7/4 = 939.0297
  • POTE: ~2 = 1\1, ~7/4 = 940.048

Optimal ET sequence9, 14c, 23d, 37bcd, 60bbccdd

Badness: 0.058216

11-limit

Subgroup: 2.3.5.7.11

Comma list: 33/32, 45/44, 49/48

Mapping: [1 0 7 2 5], 0 2 -6 1 -2]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~7/4 = 938.4673
  • POTE: ~2 = 1\1, ~7/4 = 940.041

Optimal ET sequence9, 14c, 23de, 37bcde

Badness: 0.028535

Music
Mindaugas Rex Lithuaniae by Chris Vaisvil (blog) (superpelog[9] in 23edo tuning)

Baba

Subgroup: 2.3.5.7

Comma list: 16/15, 49/45

Mapping[1 0 4 2], 0 2 -2 1]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~7/4 = 973.296

Wedgie⟨⟨ 2 -2 1 -8 -4 8 ]]

Optimal ET sequence5, 11b, 16bc

Badness: 0.044321

11-limit

Subgroup: 2.3.5.7.11

Comma list: 16/15, 22/21, 49/45

Mapping: [1 0 4 2 1], 0 2 -2 1 3]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~7/4 = 978.164

Optimal ET sequence5, 11b, 16bc, 27bbcc

Badness: 0.036538

Negri

Negri tempers out the negri comma in the 5-limit, 49/48 and 225/224 in the 7-limit. It can be extended naturally to the 2.3.5.7.13 subgroup by adding 91/90 to the comma list; this will be discussed below under the title of negra.

Subgroup: 2.3.5

Comma list: 16875/16384

Mapping[1 2 2], 0 -4 3]]

mapping generators: ~2, ~16/15

Wedgie⟨⟨ 4 -3 -14 ]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~16/15 = 125.7549

Optimal ET sequence9, 10, 19, 67c, 86c, 105c

Badness: 0.086856

7-limit

Subgroup: 2.3.5.7

Comma list: 49/48, 225/224

Mapping[1 2 2 3], 0 -4 3 -2]]

Wedgie⟨⟨ 4 -3 2 -14 -8 13 ]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~15/14 = 125.608

Optimal ET sequence9, 10, 19, 48d, 67cdd, 86cdd

Badness: 0.026483

2.3.5.7.13 subgroup (negra)

Subgroup: 2.3.5.7.13

Comma list: 49/48, 65/64, 91/90

Sval mapping: [1 2 2 3 4], 0 -4 3 -2 -3]]

Gencom mapping: [1 2 2 3 0 4], 0 -4 3 -2 0 -3]]

gencom: [2 14/13; 49/48 65/64 91/90]

Optimal tunings:

  • POTE: ~2 = 1\1, ~14/13 = 125.567

Optimal ET sequence9, 10, 19, 48df, 67cddf, 86cddff

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 49/48, 56/55

Mapping: [1 2 2 3 4], 0 -4 3 -2 -5]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~15/14 = 126.474

Optimal ET sequence9, 10, 19

Badness: 0.026190

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 49/48, 56/55, 78/77

Mapping: [1 2 2 3 4 4], 0 -4 3 -2 -5 -3]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~14/13 = 126.431

Optimal ET sequence9, 10, 19

Badness: 0.017833

Negril

Subgroup: 2.3.5.7.11

Comma list: 49/48, 100/99, 225/224

Mapping: [1 2 2 3 2], 0 -4 3 -2 14]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~15/14 = 124.767

Optimal ET sequence19, 29, 48d, 77cdd

Badness: 0.038679

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 65/64, 91/90, 875/858

Mapping: [1 2 2 3 2 4], 0 -4 3 -2 14 -3]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~14/13 = 124.716

Optimal ET sequence19, 29, 48df, 77cddf

Badness: 0.024383

Negric

Subgroup: 2.3.5.7.11

Comma list: 33/32, 49/48, 77/75

Mapping: [1 2 2 3 3], 0 -4 3 -2 4]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~15/14 = 127.039

Optimal ET sequence9, 19e

Badness: 0.030617

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 33/32, 49/48, 65/64, 91/90

Mapping: [1 2 2 3 3 4], 0 -4 3 -2 4 -3]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~14/13 = 127.039

Optimal ET sequence9, 19e

Badness: 0.020205

Negroni

Subgroup: 2.3.5.7.11

Comma list: 49/48, 55/54, 225/224

Mapping: [1 2 2 3 5], 0 -4 3 -2 -15]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~15/14 = 124.539

Optimal ET sequence10, 19e, 29, 77cddee

Badness: 0.035296

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 55/54, 65/64, 91/90

Mapping: [1 2 2 3 5 4], 0 -4 3 -2 -15 -3]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~14/13 = 124.545

Optimal ET sequence10, 19e, 29, 77cddeef

Badness: 0.021559

Wilsec

Subgroup: 2.3.5.7.11

Comma list: 49/48, 121/120, 225/224

Mapping: [1 6 -1 5 4], 0 -8 6 -4 -1]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~11/8 = 537.186

Optimal ET sequence9, 20, 29, 38d, 67cdde

Badness: 0.041886

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 65/64, 91/90, 121/120

Mapping: [1 6 -1 5 4 7], 0 -8 6 -4 -1 -6]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~11/8 = 537.208

Optimal ET sequence9, 20, 29, 38df, 67cddef

Badness: 0.025192

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 49/48, 65/64, 91/90, 121/120, 154/153

Mapping: [1 6 -1 5 4 7 -2], 0 -8 6 -4 -1 -6 11]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~11/8 = 537.230

Optimal ET sequence9, 20g, 29g, 38df, 67cddefg

Badness: 0.021778

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 49/48, 65/64, 77/76, 91/90, 121/120, 154/153

Mapping: [1 6 -1 5 4 7 -2 7], 0 -8 6 -4 -1 -6 11 -5]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~11/8 = 537.214

Optimal ET sequence9, 20g, 29g, 38df, 67cddefgh

Badness: 0.016828

Nuke

Subgroup: 2.3.5.7

Comma list: 49/48, 3584/3375

Mapping[1 2 2 3], 0 -6 5 -3]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~16/15 = 80.9538

Optimal ET sequence14, 15, 44cd

Badness: 0.129339

11-limit

Subgroup: 2.3.5.7.11

Comma list: 49/48, 77/75, 512/495

Mapping: [1 2 2 3 3], 0 -6 5 -3 7]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~16/15 = 80.8171

Optimal ET sequence14e, 15

Badness: 0.069398

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 66/65, 77/75, 448/429

Mapping: [1 2 2 3 3 4], 0 -6 5 -3 7 -4]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~16/15 = 81.0243

Optimal ET sequence14e, 15, 44cdeff

Badness: 0.048553

Mabila

Subgroup: 2.3.5.7

Comma list: 49/48, 28672/28125

Mapping: [1 6 1 5], 0 -10 3 -5]]

Wedgie⟨⟨ 10 -3 5 -28 -20 20 ]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~75/56 = 529.667

Optimal ET sequence9, 25, 34

Badness: 0.133638

11-limit

Subgroup: 2.3.5.7.11

Comma list: 49/48, 56/55, 1350/1331

Mapping: [1 6 1 5 7], 0 -10 3 -5 -8]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~15/11 = 529.729

Optimal ET sequence9, 25e, 34

Badness: 0.061501

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 56/55, 91/90, 847/845

Mapping: [1 6 1 5 7 9], 0 -10 3 -5 -8 -12]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~15/11 = 529.763

Optimal ET sequence9, 25e, 34

Badness: 0.037270

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 49/48, 56/55, 91/90, 154/153, 375/374

Mapping: [1 6 1 5 7 9 1], 0 -10 3 -5 -8 -12 7]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~15/11 = 529.695

Optimal ET sequence9, 25e, 34

Badness: 0.031888

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 49/48, 56/55, 76/75, 91/90, 154/153, 190/187

Mapping: [1 6 1 5 7 9 1 6], 0 -10 3 -5 -8 -12 7 -4]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~15/11 = 529.736

Optimal ET sequence9, 25e, 34

Badness: 0.026981

Hemiripple

Subgroup: 2.3.5.7

Comma list: 49/48, 6561/6250

Mapping[1 2 3 3], 0 -10 -16 -5]]

Wedgie⟨⟨ 10 16 5 2 -20 -33 ]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~36/35 = 50.826

Optimal ET sequence23d, 24, 47d, 71bdd

Badness: 0.175113

11-limit

Subgroup: 2.3.5.7.11

Comma list: 49/48, 121/120, 567/550

Mapping: [1 2 3 3 4], 0 -10 -16 -5 -13]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~36/35 = 50.826

Optimal ET sequence23de, 24, 47de, 71bdde

Badness: 0.066834

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 66/65, 121/120, 351/350

Mapping: [1 2 3 3 4 4], 0 -10 -16 -5 -13 -7]]

Optimal tunings:

  • POTE: ~2 = 1\1, ~36/35 = 50.635

Optimal ET sequence23de, 24, 47de, 71bdde

Badness: 0.046588