Semaphoresmic clan: Difference between revisions
Template for mappings |
+godzilla +superpelog |
||
Line 32: | Line 32: | ||
* ''[[Baba]]'' → [[Father family #Baba|Father family]] | * ''[[Baba]]'' → [[Father family #Baba|Father family]] | ||
* ''[[Beep]]'' → [[Bug family #Beep|Bug family]] | * ''[[Beep]]'' → [[Bug family #Beep|Bug family]] | ||
* ''[[Immunity]]'' → [[Immunity family #Septimal immunity|Immunity family]] | * ''[[Immunity]]'' → [[Immunity family #Septimal immunity|Immunity family]] | ||
* ''[[Decimal]]'' → [[Dicot family #Decimal|Dicot family]] | * ''[[Decimal]]'' → [[Dicot family #Decimal|Dicot family]] | ||
* ''[[Triforce]]'' → [[Augmented family #Triforce|Augmented family]] | * ''[[Triforce]]'' → [[Augmented family #Triforce|Augmented family]] | ||
Line 42: | Line 40: | ||
* ''[[Spell]]'' → [[Hemimean clan #Spell|Hemimean clan]] | * ''[[Spell]]'' → [[Hemimean clan #Spell|Hemimean clan]] | ||
Considered below are negri, nuke, mabila, and hemiripple. | Considered below are godzilla, superpelog, negri, nuke, mabila, and hemiripple. | ||
== Godzilla == | |||
<span style="display: block; text-align: right;">[[:de:Semiphor, Semaphor, Godzilla|Deutsch]]</span> | |||
{{Main| Semaphore and godzilla }} | |||
Godzilla tempers out [[81/80]], equating 9/8 and 10/9, so it finds the prime 5 at a stack of four fifths, as does any temperament in the [[meantone family]]. [[19edo]] is close to being the optimal generator tuning; hence it can be more or less equated with taking 4\19 as a generator. [[Mos scale]]s are of 5, 9, or 14 notes. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 49/48, 81/80 | |||
{{Mapping|legend=1|| 1 0 -4 2 | 0 2 8 1 }} | |||
: mapping generators: ~2, ~7/4 | |||
{{Multival|legend=1| 2 8 1 8 -4 -20 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 252.635 | |||
[[Tuning ranges]]: | |||
* 7- and 9-odd-limit [[diamond monotone]]: ~7/6 = [240.000, 257.143] (1\5 to 3\14) | |||
* 7- and 9-odd-limit [[diamond tradeoff]]: ~7/6 = [231.174, 266.871] | |||
* 7- and 9-odd-limit diamond monotone and tradeoff: ~7/6 = [240.000, 257.143] | |||
{{Optimal ET sequence|legend=1| 5, 14c, 19 }} | |||
[[Badness]]: 0.026747 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 45/44, 49/48, 81/80 | |||
Mapping: {{mapping| 1 0 -4 2 -6 | 0 2 8 1 12 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 254.027 | |||
Tuning ranges: | |||
* 11-odd-limit diamond monotone: ~7/6 = [252.632, 257.143] (4\19 to 3\14) | |||
* 11-odd-limit diamond tradeoff: ~7/6 = [231.174, 266.871] | |||
* 11-odd-limit diamond monotone and tradeoff: ~7/6 = [252.632, 257.143] | |||
{{Optimal ET sequence|legend=1| 14c, 19, 33cd, 52cd }} | |||
Badness: 0.028947 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 45/44, 49/48, 78/77, 81/80 | |||
Mapping: {{mapping| 1 0 -4 2 -6 -5 | 0 2 8 1 12 11 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 253.603 | |||
Tuning ranges: | |||
* 13- and 15-odd-limit diamond monotone: ~7/6 = 252.632 (4\19) | |||
* 13- and 15-odd-limit diamond tradeoff: ~7/6 = [231.174, 289.210] | |||
* 13- and 15-odd-limit diamond monotone and tradeoff: ~7/6 = 252.632 | |||
{{Optimal ET sequence|legend=1| 14cf, 19, 33cdff, 52cdff }} | |||
Badness: 0.022503 | |||
=== Semafour === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 33/32, 49/48, 55/54 | |||
Mapping: {{mapping| 1 0 -4 2 5 | 0 2 8 1 -2 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 254.042 | |||
{{Optimal ET sequence|legend=1| 14c, 19e, 33cdee }} | |||
Badness: 0.028510 | |||
=== Varan === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 49/48, 77/75, 81/80 | |||
Mapping: {{mapping| 1 0 -4 2 -10 | 0 2 8 1 17 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 251.079 | |||
{{Optimal ET sequence|legend=1| 19e, 24, 43de }} | |||
Badness: 0.039647 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 49/48, 66/65, 77/75, 81/80 | |||
Mapping: {{mapping| 1 0 -4 2 -10 -5 | 0 2 8 1 17 11 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 251.165 | |||
{{Optimal ET sequence|legend=1| 19e, 24, 43de }} | |||
Badness: 0.025676 | |||
=== Baragon === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 49/48, 56/55, 81/80 | |||
Mapping: {{mapping| 1 0 -4 2 9 | 0 2 8 1 -7 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 251.173 | |||
{{Optimal ET sequence|legend=1| 5, 14ce, 19, 24, 43d }} | |||
Badness: 0.035673 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 49/48, 56/55, 81/80, 91/90 | |||
Mapping: {{mapping| 1 0 -4 2 9 -5 | 0 2 8 1 -7 11 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 251.198 | |||
{{Optimal ET sequence|legend=1| 5, 14cef, 19, 24, 43d }} | |||
Badness: 0.026703 | |||
== Superpelog == | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 49/48, 135/128 | |||
{{Mapping|legend=1| 1 0 7 2 | 0 2 -6 1 }} | |||
{{Multival|legend=1| 2 -6 1 -14 -4 19 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 259.952 | |||
{{Optimal ET sequence|legend=1| 9, 14c, 23d, 37bcd, 60bbccdd }} | |||
[[Badness]]: 0.058216 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 33/32, 45/44, 49/48 | |||
Mapping: {{mapping| 1 0 7 2 5 | 0 2 -6 1 -2 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 259.959 | |||
{{Optimal ET sequence|legend=1| 9, 14c, 23de, 37bcde }} | |||
Badness: 0.028535 | |||
; Music | |||
: ''[http://micro.soonlabel.com/MOS/20120418-9mos-mindaugas.mp3 Mindaugas Rex Lithuaniae]'' by [http://chrisvaisvil.com/?p=2267 Chris Vaisvil] (in 5\23 tuning) | |||
== Negri == | == Negri == |
Revision as of 11:33, 29 May 2023
The slendro clan tempers out the slendro diesis, 49/48, a triprime comma with factors of 2, 3 and 7.
Semaphore
Subgroup: 2.3.7
Comma list: 49/48
Subgroup-val mapping: [⟨1 0 2], ⟨0 2 1]]
- sval mapping generators: ~2, ~7/4
Gencom mapping: [⟨1 2 0 3], ⟨0 -2 0 -1]]
- gencom: [2 7/6; 49/48]
Optimal tuning (POTE): ~2 = 1\1, ~7/4 = 949.615
Optimal ET sequence: 5, 14, 19, 24, 67dd, 91dd
Scales: semaphore5, semaphore9, semaphore14
Overview to extensions
The second comma of the comma list defines which 7-limit family member we are looking at.
Godzilla adds 81/80. Immunity adds 2240/2187. Superpelog adds 135/128. Beep adds 21/20. Baba adds 16/15. These all use the same nominal generator as semaphore, though some of them are of very low accuracy.
Decimal adds 25/24, splitting the octave in two. Negri adds 225/224, splitting the hemifourth in two. Triforce adds 128/125, splitting the octave in three. Keemun adds 126/125, splitting the hemitwelfth in three. Nautilus adds 250/243, splitting the hemifourth in three. Nuke is like nautilus, but adds 3584/3375 instead. Blacksmith adds 28/27, splitting the octave in five. Spell adds 3125/3072, splitting the hemitwelfth in five. Hemiripple adds 6561/6250, splitting the hemifourth in five. Finally, mabila adds 28672/28125 and splits an interval of two octaves plus a hemifourth in five.
Discussed elsewhere are
- Baba → Father family
- Beep → Bug family
- Immunity → Immunity family
- Decimal → Dicot family
- Triforce → Augmented family
- Keemun → Kleismic family
- Nautilus → Porcupine family
- Blacksmith → Limmic temperaments
- Spell → Hemimean clan
Considered below are godzilla, superpelog, negri, nuke, mabila, and hemiripple.
Godzilla
Godzilla tempers out 81/80, equating 9/8 and 10/9, so it finds the prime 5 at a stack of four fifths, as does any temperament in the meantone family. 19edo is close to being the optimal generator tuning; hence it can be more or less equated with taking 4\19 as a generator. Mos scales are of 5, 9, or 14 notes.
Subgroup: 2.3.5.7
Comma list: 49/48, 81/80
Mapping: [⟨], ⟨1 0 -4 2], ⟨0 2 8 1]]
- mapping generators: ~2, ~7/4
Wedgie: ⟨⟨ 2 8 1 8 -4 -20 ]]
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 252.635
- 7- and 9-odd-limit diamond monotone: ~7/6 = [240.000, 257.143] (1\5 to 3\14)
- 7- and 9-odd-limit diamond tradeoff: ~7/6 = [231.174, 266.871]
- 7- and 9-odd-limit diamond monotone and tradeoff: ~7/6 = [240.000, 257.143]
Optimal ET sequence: 5, 14c, 19
Badness: 0.026747
11-limit
Subgroup: 2.3.5.7.11
Comma list: 45/44, 49/48, 81/80
Mapping: [⟨1 0 -4 2 -6], ⟨0 2 8 1 12]]
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 254.027
Tuning ranges:
- 11-odd-limit diamond monotone: ~7/6 = [252.632, 257.143] (4\19 to 3\14)
- 11-odd-limit diamond tradeoff: ~7/6 = [231.174, 266.871]
- 11-odd-limit diamond monotone and tradeoff: ~7/6 = [252.632, 257.143]
Optimal ET sequence: 14c, 19, 33cd, 52cd
Badness: 0.028947
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 49/48, 78/77, 81/80
Mapping: [⟨1 0 -4 2 -6 -5], ⟨0 2 8 1 12 11]]
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 253.603
Tuning ranges:
- 13- and 15-odd-limit diamond monotone: ~7/6 = 252.632 (4\19)
- 13- and 15-odd-limit diamond tradeoff: ~7/6 = [231.174, 289.210]
- 13- and 15-odd-limit diamond monotone and tradeoff: ~7/6 = 252.632
Optimal ET sequence: 14cf, 19, 33cdff, 52cdff
Badness: 0.022503
Semafour
Subgroup: 2.3.5.7.11
Comma list: 33/32, 49/48, 55/54
Mapping: [⟨1 0 -4 2 5], ⟨0 2 8 1 -2]]
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 254.042
Optimal ET sequence: 14c, 19e, 33cdee
Badness: 0.028510
Varan
Subgroup: 2.3.5.7.11
Comma list: 49/48, 77/75, 81/80
Mapping: [⟨1 0 -4 2 -10], ⟨0 2 8 1 17]]
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 251.079
Optimal ET sequence: 19e, 24, 43de
Badness: 0.039647
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 66/65, 77/75, 81/80
Mapping: [⟨1 0 -4 2 -10 -5], ⟨0 2 8 1 17 11]]
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 251.165
Optimal ET sequence: 19e, 24, 43de
Badness: 0.025676
Baragon
Subgroup: 2.3.5.7.11
Comma list: 49/48, 56/55, 81/80
Mapping: [⟨1 0 -4 2 9], ⟨0 2 8 1 -7]]
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 251.173
Optimal ET sequence: 5, 14ce, 19, 24, 43d
Badness: 0.035673
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 56/55, 81/80, 91/90
Mapping: [⟨1 0 -4 2 9 -5], ⟨0 2 8 1 -7 11]]
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 251.198
Optimal ET sequence: 5, 14cef, 19, 24, 43d
Badness: 0.026703
Superpelog
Subgroup: 2.3.5.7
Comma list: 49/48, 135/128
Mapping: [⟨1 0 7 2], ⟨0 2 -6 1]]
Wedgie: ⟨⟨ 2 -6 1 -14 -4 19 ]]
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 259.952
Optimal ET sequence: 9, 14c, 23d, 37bcd, 60bbccdd
Badness: 0.058216
11-limit
Subgroup: 2.3.5.7.11
Comma list: 33/32, 45/44, 49/48
Mapping: [⟨1 0 7 2 5], ⟨0 2 -6 1 -2]]
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 259.959
Optimal ET sequence: 9, 14c, 23de, 37bcde
Badness: 0.028535
- Music
- Mindaugas Rex Lithuaniae by Chris Vaisvil (in 5\23 tuning)
Negri
Negri tempers out the negri comma in the 5-limit, 49/48 and 225/224 in the 7-limit. It can be extended naturally to the 2.3.5.7.13 subgroup by adding 91/90 to the comma list; this will be discussed below under the title of negra.
Subgroup: 2.3.5
Comma list: 16875/16384
Mapping: [⟨1 2 2], ⟨0 -4 3]]
- mapping generators: ~2, ~16/15
Wedgie: ⟨⟨ 4 -3 -14 ]]
Optimal tuning (POTE): ~2 = 1\1, ~16/15 = 125.7549
Optimal ET sequence: 9, 10, 19, 67c, 86c, 105c
Badness: 0.086856
7-limit
Subgroup: 2.3.5.7
Comma list: 49/48, 225/224
Mapping: [⟨1 2 2 3], ⟨0 -4 3 -2]]
Wedgie: ⟨⟨ 4 -3 2 -14 -8 13 ]]
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 125.608
Optimal ET sequence: 9, 10, 19, 48d, 67cdd, 86cdd
Badness: 0.026483
2.3.5.7.13 subgroup (negra)
Subgroup: 2.3.5.7.13
Comma list: 49/48, 65/64, 91/90
Sval mapping: [⟨1 2 2 3 4], ⟨0 -4 3 -2 -3]]
Gencom mapping: [⟨1 2 2 3 0 4], ⟨0 -4 3 -2 0 -3]]
- gencom: [2 14/13; 49/48 65/64 91/90]
Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 125.567
Optimal ET sequence: 9, 10, 19, 48df, 67cddf, 86cddff
11-limit
Subgroup: 2.3.5.7.11
Comma list: 45/44, 49/48, 56/55
Mapping: [⟨1 2 2 3 4], ⟨0 -4 3 -2 -5]]
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 126.474
Optimal ET sequence: 9, 10, 19
Badness: 0.026190
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 49/48, 56/55, 78/77
Mapping: [⟨1 2 2 3 4 4], ⟨0 -4 3 -2 -5 -3]]
Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 126.431
Optimal ET sequence: 9, 10, 19
Badness: 0.017833
Negril
Subgroup: 2.3.5.7.11
Comma list: 49/48, 100/99, 225/224
Mapping: [⟨1 2 2 3 2], ⟨0 -4 3 -2 14]]
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 124.767
Optimal ET sequence: 19, 29, 48d, 77cdd
Badness: 0.038679
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 65/64, 91/90, 875/858
Mapping: [⟨1 2 2 3 2 4], ⟨0 -4 3 -2 14 -3]]
Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 124.716
Optimal ET sequence: 19, 29, 48df, 77cddf
Badness: 0.024383
Negric
Subgroup: 2.3.5.7.11
Comma list: 33/32, 49/48, 77/75
Mapping: [⟨1 2 2 3 3], ⟨0 -4 3 -2 4]]
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 127.039
Badness: 0.030617
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 33/32, 49/48, 65/64, 91/90
Mapping: [⟨1 2 2 3 3 4], ⟨0 -4 3 -2 4 -3]]
Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 127.039
Badness: 0.020205
Negroni
Subgroup: 2.3.5.7.11
Comma list: 49/48, 55/54, 225/224
Mapping: [⟨1 2 2 3 5], ⟨0 -4 3 -2 -15]]
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 124.539
Optimal ET sequence: 10, 19e, 29, 77cddee
Badness: 0.035296
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 55/54, 65/64, 91/90
Mapping: [⟨1 2 2 3 5 4], ⟨0 -4 3 -2 -15 -3]]
Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 124.545
Optimal ET sequence: 10, 19e, 29, 77cddeef
Badness: 0.021559
Wilsec
Subgroup: 2.3.5.7.11
Comma list: 49/48, 121/120, 225/224
Mapping: [⟨1 6 -1 5 4], ⟨0 -8 6 -4 -1]]
Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 537.186
Optimal ET sequence: 9, 20, 29, 38d, 67cdde
Badness: 0.041886
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 65/64, 91/90, 121/120
Mapping: [⟨1 6 -1 5 4 7], ⟨0 -8 6 -4 -1 -6]]
Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 537.208
Optimal ET sequence: 9, 20, 29, 38df, 67cddef
Badness: 0.025192
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 49/48, 65/64, 91/90, 121/120, 154/153
Mapping: [⟨1 6 -1 5 4 7 -2], ⟨0 -8 6 -4 -1 -6 11]]
Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 537.230
Optimal ET sequence: 9, 20g, 29g, 38df, 67cddefg
Badness: 0.021778
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 49/48, 65/64, 77/76, 91/90, 121/120, 154/153
Mapping: [⟨1 6 -1 5 4 7 -2 7], ⟨0 -8 6 -4 -1 -6 11 -5]]
Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 537.214
Optimal ET sequence: 9, 20g, 29g, 38df, 67cddefgh
Badness: 0.016828
Nuke
Subgroup: 2.3.5.7
Comma list: 49/48, 3584/3375
Mapping: [⟨1 2 2 3], ⟨0 -6 5 -3]]
Optimal tuning (POTE): ~2 = 1\1, ~16/15 = 80.9538
Optimal ET sequence: 14, 15, 44cd
Badness: 0.129339
11-limit
Subgroup: 2.3.5.7.11
Comma list: 49/48, 77/75, 512/495
Mapping: [⟨1 2 2 3 3], ⟨0 -6 5 -3 7]]
Optimal tuning (POTE): ~2 = 1\1, ~16/15 = 80.8171
Badness: 0.069398
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 66/65, 77/75, 448/429
Mapping: [⟨1 2 2 3 3 4], ⟨0 -6 5 -3 7 -4]]
Optimal tuning (POTE): ~2 = 1\1, ~16/15 = 81.0243
Optimal ET sequence: 14e, 15, 44cdeff
Badness: 0.048553
Mabila
Subgroup: 2.3.5.7
Comma list: 49/48, 28672/28125
Mapping: [⟨1 6 1 5], ⟨0 -10 3 -5]]
Wedgie: ⟨⟨ 10 -3 5 -28 -20 20 ]]
Optimal tuning (POTE): ~2 = 1\1, ~75/56 = 529.667
Optimal ET sequence: 9, 25, 34
Badness: 0.133638
11-limit
Subgroup: 2.3.5.7.11
Comma list: 49/48, 56/55, 1350/1331
Mapping: [⟨1 6 1 5 7], ⟨0 -10 3 -5 -8]]
Optimal tuning (POTE): ~2 = 1\1, ~15/11 = 529.729
Optimal ET sequence: 9, 25e, 34
Badness: 0.061501
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 56/55, 91/90, 847/845
Mapping: [⟨1 6 1 5 7 9], ⟨0 -10 3 -5 -8 -12]]
Optimal tuning (POTE): ~2 = 1\1, ~15/11 = 529.763
Optimal ET sequence: 9, 25e, 34
Badness: 0.037270
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 49/48, 56/55, 91/90, 154/153, 375/374
Mapping: [⟨1 6 1 5 7 9 1], ⟨0 -10 3 -5 -8 -12 7]]
Optimal tuning (POTE): ~2 = 1\1, ~15/11 = 529.695
Optimal ET sequence: 9, 25e, 34
Badness: 0.031888
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 49/48, 56/55, 76/75, 91/90, 154/153, 190/187
Mapping: [⟨1 6 1 5 7 9 1 6], ⟨0 -10 3 -5 -8 -12 7 -4]]
Optimal tuning (POTE): ~2 = 1\1, ~15/11 = 529.736
Optimal ET sequence: 9, 25e, 34
Badness: 0.026981
Hemiripple
Subgroup: 2.3.5.7
Comma list: 49/48, 6561/6250
Mapping: [⟨1 2 3 3], ⟨0 -10 -16 -5]]
Wedgie: ⟨⟨ 10 16 5 2 -20 -33 ]]
Optimal tuning (POTE): ~2 = 1\1, ~36/35 = 50.826
Optimal ET sequence: 23d, 24, 47d, 71bdd
Badness: 0.175113
11-limit
Subgroup: 2.3.5.7.11
Comma list: 49/48, 121/120, 567/550
Mapping: [⟨1 2 3 3 4], ⟨0 -10 -16 -5 -13]]
Optimal tuning (POTE): ~2 = 1\1, ~36/35 = 50.826
Optimal ET sequence: 23de, 24, 47de, 71bdde
Badness: 0.066834
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 66/65, 121/120, 351/350
Mapping: [⟨1 2 3 3 4 4], ⟨0 -10 -16 -5 -13 -7]]
Optimal tuning (POTE): ~2 = 1\1, ~36/35 = 50.635
Optimal ET sequence: 23de, 24, 47de, 71bdde
Badness: 0.046588