Landscape microtemperaments: Difference between revisions
Update keys |
|||
Line 1: | Line 1: | ||
'''Landscape microtemperaments''' are rank-2 | '''Landscape microtemperaments''' are [[Rank-2 temperament|rank-2]] [[temperament]]s [[tempering out]] the [[landscape comma]] ({{monzo| -4 6 -6 3 }} = 250047/250000). | ||
Landscape rank-2 temperaments | Landscape rank-2 temperaments discussed elsewhere are: | ||
* [[Augene]] | * [[Augene]] (+64/63 or 126/125) → [[Augmented family #Augene|Augmented family]] | ||
* ''[[Waage]]'' | * ''[[Waage]]'' (+225/224) → [[Compton family #Compton|Compton family]] | ||
* ''[[Tritikleismic]]'' | * ''[[Tritikleismic]]'' (+1029/1024) → [[Kleismic family #Tritikleismic|Kleismic family]] | ||
* ''[[Trisensory]]' | * ''[[Trisensory]]' (+1728/1715) → [[Sensipent family #Trisensory|Sensipent family]] | ||
* [[Ennealimmal]] | * [[Ennealimmal]] (+2401/2400 or 4375/4374) → [[Ragismic microtemperaments #Ennealimmal|Ragismic microtemperaments]] | ||
* ''[[Misty]]'' | * ''[[Misty]]'' (+3136/3125 or 5120/5103) → [[Misty family]] | ||
* ''[[Nessafof]]'' | * ''[[Nessafof]]'' (+6144/6125) → [[Porwell temperaments #Nessafof|Porwell temperaments]] | ||
* ''[[Chromat]]'' | * ''[[Chromat]]'' (10976/10935) → [[Hemimage temperaments #Chromat|Hemimage temperaments]] | ||
* ''[[Term]]'' | * ''[[Term]]'' (+32805/32768) → [[Schismatic family #Term|Schismatic family]] | ||
* ''[[Caleb]]'' | * ''[[Caleb]]'' (+33075/32768) → [[Mirwomo temperaments #Caleb|Mirwomo temperaments]] | ||
* [[Mutt temperament|Mutt]] | * [[Mutt temperament|Mutt]] (+65625/65536) → [[Horwell temperaments #Mutt|Horwell temperaments]] | ||
* ''[[Stearnscape]]'' | * ''[[Stearnscape]]'' (+118098/117649) → [[Stearnsmic clan #Stearnscape|Stearnsmic clan]] | ||
* ''[[Tritricot]]'' | * ''[[Tritricot]]'' (+11785390260224/11767897353375) → [[Tricot family #Tritricot|Tricot family]] | ||
Considered below are sextile, septichrome, pnict, domain, avicenna, terture, akjayland and terture. | |||
== Sextile == | == Sextile == | ||
Line 23: | Line 23: | ||
[[Comma list]]: 250047/250000, 33554432/33480783 | [[Comma list]]: 250047/250000, 33554432/33480783 | ||
{{Mapping|legend=1| 6 0 71 150 | 0 1 -6 -14 }} | |||
: mapping generators: ~4096/3645, ~3 | |||
{{Multival|legend=1| 6 -36 -84 -71 -150 -94 }} | {{Multival|legend=1| 6 -36 -84 -71 -150 -94 }} | ||
Line 40: | Line 40: | ||
Comma list: 5632/5625, 9801/9800, 151263/151250 | Comma list: 5632/5625, 9801/9800, 151263/151250 | ||
Mapping: | Mapping: {{mapping| 6 0 71 150 230 | 0 1 -6 -14 -22 }} | ||
Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2225 | Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2225 | ||
Line 53: | Line 53: | ||
Comma list: 1716/1715, 2080/2079, 5632/5625, 10648/10647 | Comma list: 1716/1715, 2080/2079, 5632/5625, 10648/10647 | ||
Mapping: | Mapping: {{mapping| 6 0 71 150 230 279 | 0 1 -6 -14 -22 -27 }} | ||
Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2141 | Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2141 | ||
Line 66: | Line 66: | ||
Comma list: 936/935, 1701/1700, 1716/1715, 5632/5625, 7744/7735 | Comma list: 936/935, 1701/1700, 1716/1715, 5632/5625, 7744/7735 | ||
Mapping: | Mapping: {{mapping| 6 0 71 150 230 279 -4 | 0 1 -6 -14 -22 -27 3 }} | ||
Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2117 | Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2117 | ||
Line 79: | Line 79: | ||
Comma list: 936/935, 1216/1215, 1701/1700, 1716/1715, 2376/2375, 4200/4199 | Comma list: 936/935, 1216/1215, 1701/1700, 1716/1715, 2376/2375, 4200/4199 | ||
Mapping: | Mapping: {{mapping| 6 0 71 150 230 279 -4 35 | 0 1 -6 -14 -22 -27 3 -1 }} | ||
Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2118 | Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2118 | ||
Line 92: | Line 92: | ||
Comma list: 1001/1000, 4096/4095, 4459/4455, 20449/20412 | Comma list: 1001/1000, 4096/4095, 4459/4455, 20449/20412 | ||
Mapping: | Mapping: {{mapping| 6 0 71 150 230 -149 | 0 1 -6 -14 -22 18 }} | ||
Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2296 | Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2296 | ||
Line 105: | Line 105: | ||
Comma list: 715/714, 1001/1000, 1701/1700, 4096/4095, 4459/4455 | Comma list: 715/714, 1001/1000, 1701/1700, 4096/4095, 4459/4455 | ||
Mapping: | Mapping: {{mapping| 6 0 71 150 230 -149 -4 | 0 1 -6 -14 -22 18 3 }} | ||
Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2264 | Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2264 | ||
Line 118: | Line 118: | ||
Comma list: 715/714, 1001/1000, 1216/1215, 1701/1700, 1729/1728, 2912/2907 | Comma list: 715/714, 1001/1000, 1216/1215, 1701/1700, 1729/1728, 2912/2907 | ||
Mapping: | Mapping: {{mapping| 6 0 71 150 230 -149 -4 35 | 0 1 -6 -14 -22 18 3 -1 }} | ||
Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2266 | Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2266 | ||
Line 131: | Line 131: | ||
[[Comma list]]: 250047/250000, 2460375/2458624 | [[Comma list]]: 250047/250000, 2460375/2458624 | ||
{{Mapping|legend=1| 3 3 1 0 | 0 5 17 24 }} | |||
{{Multival|legend=1| 15 51 72 46 72 24 }} | {{Multival|legend=1| 15 51 72 46 72 24 }} | ||
Line 142: | Line 142: | ||
== Pnict == | == Pnict == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 250047/250000, 2100875/2097152 | [[Comma list]]: 250047/250000, 2100875/2097152 | ||
{{Mapping|legend=1| 3 10 11 6 | 0 -13 -10 6 }} | |||
{{Multival|legend=1| 39 30 -18 -43 -138 -126 }} | {{Multival|legend=1| 39 30 -18 -43 -138 -126 }} | ||
Line 157: | Line 157: | ||
== Domain == | == Domain == | ||
{{ | {{See also| Minortonic family }} | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 163: | Line 163: | ||
[[Comma list]]: 250047/250000, 645700815/645657712 | [[Comma list]]: 250047/250000, 645700815/645657712 | ||
{{Mapping|legend=1| 3 -3 -9 -8 | 0 17 35 36 }} | |||
{{Multival|legend=1| 51 105 108 48 28 -44 }} | {{Multival|legend=1| 51 105 108 48 28 -44 }} | ||
Line 178: | Line 178: | ||
[[Comma list]]: 250047/250000, 29360128/29296875 | [[Comma list]]: 250047/250000, 29360128/29296875 | ||
{{Mapping|legend=1| 3 2 8 16 | 0 8 -3 -22 }} | |||
{{Multival|legend=1| 24 -9 -66 -70 -172 -128 }} | {{Multival|legend=1| 24 -9 -66 -70 -172 -128 }} | ||
Line 193: | Line 193: | ||
Comma list: 3025/3024, 5632/5625, 102487/102400 | Comma list: 3025/3024, 5632/5625, 102487/102400 | ||
Mapping: | Mapping: {{mapping| 3 2 8 16 9 | 0 8 -3 -22 4 }} | ||
Optimal tuning (POTE): ~63/50 = 1\3, ~693/640 = 137.771 | Optimal tuning (POTE): ~63/50 = 1\3, ~693/640 = 137.771 | ||
Line 206: | Line 206: | ||
Comma list: 676/675, 1001/1000, 3025/3024, 4096/4095 | Comma list: 676/675, 1001/1000, 3025/3024, 4096/4095 | ||
Mapping: | Mapping: {{mapping| 3 2 8 16 9 8 | 0 8 -3 -22 4 9 }} | ||
Optimal tuning (POTE): ~63/50 = 1\3, ~13/12 = 137.777 | Optimal tuning (POTE): ~63/50 = 1\3, ~13/12 = 137.777 | ||
Line 219: | Line 219: | ||
Comma list: 676/675, 715/714, 1001/1000, 3025/3024, 4096/4095 | Comma list: 676/675, 715/714, 1001/1000, 3025/3024, 4096/4095 | ||
Mapping: | Mapping: {{mapping| 3 2 8 16 9 8 4 | 0 8 -3 -22 4 9 24 }} | ||
Optimal tuning (POTE): ~63/50 = 1\3, ~13/12 = 137.777 | Optimal tuning (POTE): ~63/50 = 1\3, ~13/12 = 137.777 | ||
Line 232: | Line 232: | ||
Comma list: 676/675, 715/714, 1001/1000, 1216/1215, 3025/3024, 4096/4095 | Comma list: 676/675, 715/714, 1001/1000, 1216/1215, 3025/3024, 4096/4095 | ||
Mapping: | Mapping: {{mapping| 3 2 8 16 9 8 4 0 | 0 8 -3 -22 4 9 24 37 }} | ||
Optimal tuning (POTE): ~63/50 = 1\3, ~13/12 = 137.777 | Optimal tuning (POTE): ~63/50 = 1\3, ~13/12 = 137.777 | ||
Line 247: | Line 247: | ||
[[Comma list]]: 250047/250000, 359661568/358722675 | [[Comma list]]: 250047/250000, 359661568/358722675 | ||
{{Mapping|legend=1| 3 4 3 2 | 0 4 21 34 }} | |||
[[Optimal tuning]] ([[POTE]]): ~63/50 = 1\3, ~392/375 = 75.555 | [[Optimal tuning]] ([[POTE]]): ~63/50 = 1\3, ~392/375 = 75.555 | ||
Line 260: | Line 260: | ||
Comma list: 3025/3024, 19712/19683, 102487/102400 | Comma list: 3025/3024, 19712/19683, 102487/102400 | ||
Mapping: | Mapping: {{mapping| 3 4 3 2 10 | 0 4 21 34 2 }} | ||
Optimal tuning (POTE): ~63/50 = 1\3, ~392/375 = 75.550 | Optimal tuning (POTE): ~63/50 = 1\3, ~392/375 = 75.550 | ||
Line 273: | Line 273: | ||
Comma list: 676/675, 1001/1000, 3025/3024, 10985/10976 | Comma list: 676/675, 1001/1000, 3025/3024, 10985/10976 | ||
Mapping: | Mapping: {{mapping| 3 4 3 2 10 6 | 0 4 21 34 2 27 }} | ||
Optimal tuning (POTE): ~63/50 = 1\3, ~117/112 = 75.553 | Optimal tuning (POTE): ~63/50 = 1\3, ~117/112 = 75.553 | ||
Line 286: | Line 286: | ||
Comma list: 676/675, 715/714, 936/935, 1001/1000, 4928/4913 | Comma list: 676/675, 715/714, 936/935, 1001/1000, 4928/4913 | ||
Mapping: | Mapping: {{mapping| 3 4 3 2 10 6 10 | 0 4 21 34 2 27 12 }} | ||
Optimal tuning (POTE): ~63/50 = 1\3, ~117/112 = 75.560 | Optimal tuning (POTE): ~63/50 = 1\3, ~117/112 = 75.560 | ||
Line 299: | Line 299: | ||
Comma list: 676/675, 715/714, 936/935, 1001/1000, 1216/1215, 1617/1615 | Comma list: 676/675, 715/714, 936/935, 1001/1000, 1216/1215, 1617/1615 | ||
Mapping: | Mapping: {{mapping| 3 4 3 2 10 6 10 5 | 0 4 21 34 2 27 12 41 }} | ||
Optimal tuning (POTE): ~63/50 = 1\3, ~95/91 = 75.560 | Optimal tuning (POTE): ~63/50 = 1\3, ~95/91 = 75.560 | ||
Line 312: | Line 312: | ||
Comma list: 460/459, 529/528, 676/675, 715/714, 936/935, 1001/1000, 1216/1215 | Comma list: 460/459, 529/528, 676/675, 715/714, 936/935, 1001/1000, 1216/1215 | ||
Mapping: | Mapping: {{mapping| 3 4 3 2 10 6 10 5 13 | 0 4 21 34 2 27 12 41 3 }} | ||
Optimal tuning (POTE): ~63/50 = 1\3, ~24/23 = 75.548 | Optimal tuning (POTE): ~63/50 = 1\3, ~24/23 = 75.548 | ||
Line 323: | Line 323: | ||
{{See also| 21st-octave temperaments }} | {{See also| 21st-octave temperaments }} | ||
Akjayland tempers out the [[akjaysma]] in addition to landscape comma, and thereby features a period of 1\21. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 329: | Line 329: | ||
[[Comma list]]: 250047/250000, {{monzo| 43 -1 -13 -4 }} | [[Comma list]]: 250047/250000, {{monzo| 43 -1 -13 -4 }} | ||
{{Mapping|legend=1| 21 1 38 102 | 0 3 1 -4 }} | |||
: mapping generators: ~1323/1280, ~131072/91875 | |||
[[Optimal tuning]] ([[CTE]]): ~1323/1280 = 1\21, ~131072/91875 = 614.9354 | [[Optimal tuning]] ([[CTE]]): ~1323/1280 = 1\21, ~131072/91875 = 614.9354 | ||
Line 346: | Line 346: | ||
Comma list: 3025/3024, 102487/102400, {{monzo| 39 -4 -11 -5 2 }} | Comma list: 3025/3024, 102487/102400, {{monzo| 39 -4 -11 -5 2 }} | ||
Mapping: | Mapping: {{mapping| 21 4 39 98 58 | 0 6 2 -8 3 3 }} | ||
Mapping generators: ~1323/1280, ~6615/5632 | Mapping generators: ~1323/1280, ~6615/5632 | ||
Line 361: | Line 361: | ||
Comma list: 3025/3024, 4096/4095, 14641/14625, 85750/85683 | Comma list: 3025/3024, 4096/4095, 14641/14625, 85750/85683 | ||
Mapping: | Mapping: {{mapping| 21 4 39 98 58 107 | 0 6 2 -8 3 -6 }} | ||
Optimal tuning (CTE): ~336/325 = 1\21, ~168/143 = 278.9058 | Optimal tuning (CTE): ~336/325 = 1\21, ~168/143 = 278.9058 | ||
Line 374: | Line 374: | ||
Comma list: 2601/2600, 3025/3024, 4096/4095, 8624/8619, 14641/14625 | Comma list: 2601/2600, 3025/3024, 4096/4095, 8624/8619, 14641/14625 | ||
Mapping: | Mapping: {{mapping| 21 4 39 98 58 107 120 | 0 6 2 -8 3 -6 -7 }} | ||
Optimal tuning (CTE): ~336/325 = 1\21, ~168/143 = 278.9036 | Optimal tuning (CTE): ~336/325 = 1\21, ~168/143 = 278.9036 | ||
Line 387: | Line 387: | ||
Comma list: 2376/2375, 2601/2600, 2926/2925, 3025/3024, 3213/3211, 4096/4095 | Comma list: 2376/2375, 2601/2600, 2926/2925, 3025/3024, 3213/3211, 4096/4095 | ||
Mapping: | Mapping: {{mapping| 21 4 39 98 58 107 120 16 | 0 6 2 -8 3 -6 -7 15 }} | ||
Optimal tuning (CTE): ~336/325 = 1\21, ~168/143 = 278.9036 | Optimal tuning (CTE): ~336/325 = 1\21, ~168/143 = 278.9036 | ||
Line 400: | Line 400: | ||
Comma list: 1496/1495, 2376/2375, 2601/2600, 2646/2645, 2926/2925, 3025/3024, 3213/3211 | Comma list: 1496/1495, 2376/2375, 2601/2600, 2646/2645, 2926/2925, 3025/3024, 3213/3211 | ||
Mapping: | Mapping: {{mapping| 21 4 39 98 58 107 120 16 95 | 0 -6 -2 8 -3 6 7 -15 0 }} | ||
Optimal tuning (CTE): ~336/325 = 1\21, ~168/143 = 278.8971 | Optimal tuning (CTE): ~336/325 = 1\21, ~168/143 = 278.8971 | ||
Line 410: | Line 410: | ||
== Magnesium == | == Magnesium == | ||
: ''For the 5-limit version, see [[12th-octave temperaments#Magnesium (5-limit)]]. | : ''For the 5-limit version, see [[12th-octave temperaments#Magnesium (5-limit)]]. | ||
Magnesium is named after element 12 for being period 12, however, it's not an extension of the [[atomic]] - the associated comma is {{monzo|-157 -24 84}} in the 5-limit and the 7 generators together with [[12edo]] major second reach the just perfect fifth, [[3/2]]. | Magnesium is named after element 12 for being period 12, however, it's not an extension of the [[atomic]] - the associated comma is {{monzo|-157 -24 84}} in the 5-limit and the 7 generators together with [[12edo]] major second reach the just perfect fifth, [[3/2]]. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Comma list: 250047/250000, 9234096523681640625/9223372036854775808 | [[Comma list]]: 250047/250000, 9234096523681640625/9223372036854775808 | ||
{{Mapping|legend=1| 12 2 23 58 | 0 7 2 -10 }} | |||
: mapping generators: ~138915/131072, 3145728/2734375 | |||
Optimal tuning (CTE): 3145728/2734375 = 243.130 | Optimal tuning (CTE): ~138915/131072 = 1\12, ~3145728/2734375 = 243.130 | ||
{{Optimal ET sequence|legend=1|84, 528, 612, 696, 1308, 1920, 2532}}, ... | {{Optimal ET sequence|legend=1| 84, 528, 612, 696, 1308, 1920, 2532 }}, ... | ||
== Chromium == | == Chromium == | ||
Line 431: | Line 432: | ||
[[Comma list]]: 250047/250000, 49589822592/49433168575 | [[Comma list]]: 250047/250000, 49589822592/49433168575 | ||
{{Mapping|legend=1| 24 1 -6 18 | 0 3 5 4 }} | |||
: mapping generators: ~250/243, ~10/7 | |||
[[Optimal tuning]] ([[CTE]]): ~250/243 = 1\24, ~10/7 = 617.2710 | [[Optimal tuning]] ([[CTE]]): ~250/243 = 1\24, ~10/7 = 617.2710 | ||
Line 446: | Line 447: | ||
Comma list: 9801/9800, 46656/46585, 250047/250000 | Comma list: 9801/9800, 46656/46585, 250047/250000 | ||
Mapping: | Mapping: {{mapping| 24 1 -6 18 46 | 0 3 5 4 3 }} | ||
Optimal tuning (CTE): ~250/243 = 1\24, ~10/7 = 617.2597 | Optimal tuning (CTE): ~250/243 = 1\24, ~10/7 = 617.2597 | ||
Line 459: | Line 460: | ||
Comma list: 1716/1715, 2080/2079, 34398/34375, 39366/39325 | Comma list: 1716/1715, 2080/2079, 34398/34375, 39366/39325 | ||
Mapping: | Mapping: {{mapping| 24 1 -6 18 46 -47 -13 | 0 3 5 4 3 11 }} | ||
Optimal tuning (CTE): ~250/243 = 1\24, ~10/7 = 617.2869 | Optimal tuning (CTE): ~250/243 = 1\24, ~10/7 = 617.2869 | ||
Line 472: | Line 473: | ||
Comma list: 936/935, 1701/1700, 1716/1715, 2025/2023, 11016/11011 | Comma list: 936/935, 1701/1700, 1716/1715, 2025/2023, 11016/11011 | ||
Mapping: | Mapping: {{mapping| 24 1 -6 18 46 -47 -13 | 0 3 5 4 3 11 9 }} | ||
Optimal tuning (CTE): ~35/34 = 1\24, ~10/7 = 617.2732 | Optimal tuning (CTE): ~35/34 = 1\24, ~10/7 = 617.2732 | ||
Line 483: | Line 484: | ||
Zinc is described as the 270 & 1920 temperament, and named after the 30th element due to featuring a period of 1/30 octave. | Zinc is described as the 270 & 1920 temperament, and named after the 30th element due to featuring a period of 1/30 octave. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Comma list: 250047/250000, {{monzo|-45 -24 14 18}} | [[Comma list]]: 250047/250000, {{monzo| -45 -24 14 18 }} | ||
{{Mapping|legend=1| 30 2 15 66 | 0 5 6 2 }} | |||
Optimal tuning (CTE): ~53747712/52521875 = 1\30, ~216/175 = 364.389 | [[Optimal tuning]] ([[CTE]]): ~53747712/52521875 = 1\30, ~216/175 = 364.389 | ||
{{Optimal ET sequence|legend=1|270, 1110, 1380, 1650, 1920}}, ... | {{Optimal ET sequence|legend=1|270, 1110, 1380, 1650, 1920}}, ... | ||
Line 498: | Line 499: | ||
Comma list: 9801/9800, 250047/250000, 97869261875/97844723712 | Comma list: 9801/9800, 250047/250000, 97869261875/97844723712 | ||
Mapping: | Mapping: {{mapping| 30 2 15 66 122 | 0 5 6 2 -2 }} | ||
Optimal tuning (CTE): ~18865/18432 = 1\30, ~216/175 = 364.389 | Optimal tuning (CTE): ~18865/18432 = 1\30, ~216/175 = 364.389 | ||
Line 509: | Line 510: | ||
Comma list: 9801/9800, 123201/123200, 250047/250000, 1990656/1990625 | Comma list: 9801/9800, 123201/123200, 250047/250000, 1990656/1990625 | ||
Mapping: | Mapping: {{mapping| 30 2 15 66 122 193 | 0 5 6 2 -2 -9 }} | ||
Optimal tuning (CTE): ~351/343 = 1\30, ~216/175 = 364.389 | Optimal tuning (CTE): ~351/343 = 1\30, ~216/175 = 364.389 | ||
{{Optimal ET sequence|legend=1|270, 1380, 1650, 1920}}, ... | {{Optimal ET sequence|legend=1|270, 1380, 1650, 1920}}, ... | ||
[[Category:Temperament collections]] | [[Category:Temperament collections]] | ||
[[Category:Landscape microtemperaments| ]] <!-- main article --> | [[Category:Landscape microtemperaments| ]] <!-- main article --> | ||
[[Category:Landscape| ]] <!-- key article --> | |||
[[Category:Rank 2]] | |||
[[Category:Microtemperaments]] | [[Category:Microtemperaments]] | ||
Revision as of 07:20, 16 September 2023
Landscape microtemperaments are rank-2 temperaments tempering out the landscape comma ([-4 6 -6 3⟩ = 250047/250000).
Landscape rank-2 temperaments discussed elsewhere are:
- Augene (+64/63 or 126/125) → Augmented family
- Waage (+225/224) → Compton family
- Tritikleismic (+1029/1024) → Kleismic family
- Trisensory' (+1728/1715) → Sensipent family
- Ennealimmal (+2401/2400 or 4375/4374) → Ragismic microtemperaments
- Misty (+3136/3125 or 5120/5103) → Misty family
- Nessafof (+6144/6125) → Porwell temperaments
- Chromat (10976/10935) → Hemimage temperaments
- Term (+32805/32768) → Schismatic family
- Caleb (+33075/32768) → Mirwomo temperaments
- Mutt (+65625/65536) → Horwell temperaments
- Stearnscape (+118098/117649) → Stearnsmic clan
- Tritricot (+11785390260224/11767897353375) → Tricot family
Considered below are sextile, septichrome, pnict, domain, avicenna, terture, akjayland and terture.
Sextile
Subgroup: 2.3.5.7
Comma list: 250047/250000, 33554432/33480783
Mapping: [⟨6 0 71 150], ⟨0 1 -6 -14]]
- mapping generators: ~4096/3645, ~3
Wedgie: ⟨⟨ 6 -36 -84 -71 -150 -94 ]]
Optimal tuning (CTE): ~4096/3645 = 1\6, ~3/2 = 702.2347
Optimal ET sequence: 12, 234d, 246d, 258, 270, 1362c, 1632c, 1902c, 2172c, 2442bc, 2712bc
Badness: 0.070097
11-limit
Subgroup: 2.3.5.7.11
Comma list: 5632/5625, 9801/9800, 151263/151250
Mapping: [⟨6 0 71 150 230], ⟨0 1 -6 -14 -22]]
Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2225
Optimal ET sequence: 12, 246dee, 258e, 270, 822, 1092, 1362c
Badness: 0.029677
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1716/1715, 2080/2079, 5632/5625, 10648/10647
Mapping: [⟨6 0 71 150 230 279], ⟨0 1 -6 -14 -22 -27]]
Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2141
Optimal ET sequence: 12f, 258ef, 270, 552, 822, 1092, 1914cde
Badness: 0.0191
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 936/935, 1701/1700, 1716/1715, 5632/5625, 7744/7735
Mapping: [⟨6 0 71 150 230 279 -4], ⟨0 1 -6 -14 -22 -27 3]]
Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2117
Optimal ET sequence: 12f, 270, 552g
Badness: 0.0209
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 936/935, 1216/1215, 1701/1700, 1716/1715, 2376/2375, 4200/4199
Mapping: [⟨6 0 71 150 230 279 -4 35], ⟨0 1 -6 -14 -22 -27 3 -1]]
Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2118
Optimal ET sequence: 12f, 270, 552g, 822gg
Badness: 0.0156
Sextilia
Subgroup: 2.3.5.7.11.13
Comma list: 1001/1000, 4096/4095, 4459/4455, 20449/20412
Mapping: [⟨6 0 71 150 230 -149], ⟨0 1 -6 -14 -22 18]]
Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2296
Optimal ET sequence: 12, 258e, 270
Badness: 0.0391
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 715/714, 1001/1000, 1701/1700, 4096/4095, 4459/4455
Mapping: [⟨6 0 71 150 230 -149 -4], ⟨0 1 -6 -14 -22 18 3]]
Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2264
Optimal ET sequence: 12, 258e, 270
Badness: 0.0384
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 715/714, 1001/1000, 1216/1215, 1701/1700, 1729/1728, 2912/2907
Mapping: [⟨6 0 71 150 230 -149 -4 35], ⟨0 1 -6 -14 -22 18 3 -1]]
Optimal tuning (CTE): ~55/49 = 1\6, ~3/2 = 702.2266
Optimal ET sequence: 12, 258e, 270
Badness: 0.0252
Septichrome
Subgroup: 2.3.5.7
Comma list: 250047/250000, 2460375/2458624
Mapping: [⟨3 3 1 0], ⟨0 5 17 24]]
Wedgie: ⟨⟨ 15 51 72 46 72 24 ]]
Optimal tuning (POTE): ~63/50 = 1\3, ~243/224 = 140.367
Optimal ET sequence: 60, 111, 171, 795, 966, 1137, 1308, 5403b, 6711b, 8019bc
Badness: 0.016814
Pnict
Subgroup: 2.3.5.7
Comma list: 250047/250000, 2100875/2097152
Mapping: [⟨3 10 11 6], ⟨0 -13 -10 6]]
Wedgie: ⟨⟨ 39 30 -18 -43 -138 -126 ]]
Optimal tuning (POTE): ~63/50 = 1\3, ~192/175 = 161.399
Optimal ET sequence: 15, 141, 156, 171, 2409cd, 2580cd, …, 4461bccddd, 4632bccddd
Badness: 0.045660
Domain
Subgroup: 2.3.5.7
Comma list: 250047/250000, 645700815/645657712
Mapping: [⟨3 -3 -9 -8], ⟨0 17 35 36]]
Wedgie: ⟨⟨ 51 105 108 48 28 -44 ]]
Optimal tuning (POTE): ~63/50 = 1\3, ~10/9 = 182.467
Optimal ET sequence: 171, 1164, 1335, 1506, 1677, 1848, 2019, 2190, 11943, 13962, 15981, 18000, 20019, 22038
Badness: 0.013979
Avicenna
Subgroup: 2.3.5.7
Comma list: 250047/250000, 29360128/29296875
Mapping: [⟨3 2 8 16], ⟨0 8 -3 -22]]
Wedgie: ⟨⟨ 24 -9 -66 -70 -172 -128 ]]
Optimal tuning (POTE): ~63/50 = 1\3, ~1024/945 = 137.768
Optimal ET sequence: 87, 183, 270, 723, 993, 1263, 2796cd, 4059bccd
Badness: 0.062187
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 5632/5625, 102487/102400
Mapping: [⟨3 2 8 16 9], ⟨0 8 -3 -22 4]]
Optimal tuning (POTE): ~63/50 = 1\3, ~693/640 = 137.771
Optimal ET sequence: 87, 183, 270, 1263, 1533, 1803c, 2073c
Badness: 0.023085
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 3025/3024, 4096/4095
Mapping: [⟨3 2 8 16 9 8], ⟨0 8 -3 -22 4 9]]
Optimal tuning (POTE): ~63/50 = 1\3, ~13/12 = 137.777
Optimal ET sequence: 87, 183, 270
Badness: 0.015557
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 676/675, 715/714, 1001/1000, 3025/3024, 4096/4095
Mapping: [⟨3 2 8 16 9 8 4], ⟨0 8 -3 -22 4 9 24]]
Optimal tuning (POTE): ~63/50 = 1\3, ~13/12 = 137.777
Optimal ET sequence: 87, 183, 270
Badness: 0.015557
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 676/675, 715/714, 1001/1000, 1216/1215, 3025/3024, 4096/4095
Mapping: [⟨3 2 8 16 9 8 4 0], ⟨0 8 -3 -22 4 9 24 37]]
Optimal tuning (POTE): ~63/50 = 1\3, ~13/12 = 137.777
Optimal ET sequence: 87, 183, 270
Badness: 0.015557
Terture
Subgroup: 2.3.5.7
Comma list: 250047/250000, 359661568/358722675
Mapping: [⟨3 4 3 2], ⟨0 4 21 34]]
Optimal tuning (POTE): ~63/50 = 1\3, ~392/375 = 75.555
Optimal ET sequence: 111, 159, 270
Badness: 0.087156
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 19712/19683, 102487/102400
Mapping: [⟨3 4 3 2 10], ⟨0 4 21 34 2]]
Optimal tuning (POTE): ~63/50 = 1\3, ~392/375 = 75.550
Optimal ET sequence: 111, 159, 270, 1239, 1509, 1779, 2049, 2319
Badness: 0.029326
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 3025/3024, 10985/10976
Mapping: [⟨3 4 3 2 10 6], ⟨0 4 21 34 2 27]]
Optimal tuning (POTE): ~63/50 = 1\3, ~117/112 = 75.553
Optimal ET sequence: 111, 159, 270
Badness: 0.018647
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 676/675, 715/714, 936/935, 1001/1000, 4928/4913
Mapping: [⟨3 4 3 2 10 6 10], ⟨0 4 21 34 2 27 12]]
Optimal tuning (POTE): ~63/50 = 1\3, ~117/112 = 75.560
Optimal ET sequence: 111, 159, 270
Badness: 0.018705
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 676/675, 715/714, 936/935, 1001/1000, 1216/1215, 1617/1615
Mapping: [⟨3 4 3 2 10 6 10 5], ⟨0 4 21 34 2 27 12 41]]
Optimal tuning (POTE): ~63/50 = 1\3, ~95/91 = 75.560
Optimal ET sequence: 111, 159, 270
Badness: 0.013902
23-limit
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 460/459, 529/528, 676/675, 715/714, 936/935, 1001/1000, 1216/1215
Mapping: [⟨3 4 3 2 10 6 10 5 13], ⟨0 4 21 34 2 27 12 41 3]]
Optimal tuning (POTE): ~63/50 = 1\3, ~24/23 = 75.548
Optimal ET sequence: 111, 159, 270
Badness: 0.014915
Akjayland
Akjayland tempers out the akjaysma in addition to landscape comma, and thereby features a period of 1\21.
Subgroup: 2.3.5.7
Comma list: 250047/250000, [43 -1 -13 -4⟩
Mapping: [⟨21 1 38 102], ⟨0 3 1 -4]]
- mapping generators: ~1323/1280, ~131072/91875
Optimal tuning (CTE): ~1323/1280 = 1\21, ~131072/91875 = 614.9354
Optimal ET sequence: 84, 273, 357, 441, 966, 1407, 1848, 7833, 9681, 11529, 13377c
Badness: 0.0309
Vasca
Vasca can be described as the 357 & 525 temperament, extended as high as the 23-limit. It tempers out the [95 0 0 0 0 0 0 0 -21⟩, and sets a stack of twenty-one 23/16's equal with eleven octaves. The name derives from elements vanadium (23) and scandium (21), since this uses the 23rd harmonic, which itself is extremely well represented in 21edo.
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 102487/102400, [39 -4 -11 -5 2⟩
Mapping: [⟨21 4 39 98 58], ⟨0 6 2 -8 3 3]]
Mapping generators: ~1323/1280, ~6615/5632
Optimal tuning (CTE): ~1323/1280 = 1\21, ~6615/5632 = 278.8998
Optimal ET sequence: 168, 357, 525, 882, 1407, 2289e
Badness: 0.0949
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 3025/3024, 4096/4095, 14641/14625, 85750/85683
Mapping: [⟨21 4 39 98 58 107], ⟨0 6 2 -8 3 -6]]
Optimal tuning (CTE): ~336/325 = 1\21, ~168/143 = 278.9058
Optimal ET sequence: 168, 357, 525, 882
Badness: 0.0551
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 2601/2600, 3025/3024, 4096/4095, 8624/8619, 14641/14625
Mapping: [⟨21 4 39 98 58 107 120], ⟨0 6 2 -8 3 -6 -7]]
Optimal tuning (CTE): ~336/325 = 1\21, ~168/143 = 278.9036
Optimal ET sequence: 168, 357, 525, 882
Badness: 0.0319
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 2376/2375, 2601/2600, 2926/2925, 3025/3024, 3213/3211, 4096/4095
Mapping: [⟨21 4 39 98 58 107 120 16], ⟨0 6 2 -8 3 -6 -7 15]]
Optimal tuning (CTE): ~336/325 = 1\21, ~168/143 = 278.9036
Optimal ET sequence: 168h, 357, 525, 882, 1407
Badness: 0.0270
23-limit
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 1496/1495, 2376/2375, 2601/2600, 2646/2645, 2926/2925, 3025/3024, 3213/3211
Mapping: [⟨21 4 39 98 58 107 120 16 95], ⟨0 -6 -2 8 -3 6 7 -15 0]]
Optimal tuning (CTE): ~336/325 = 1\21, ~168/143 = 278.8971
Optimal ET sequence: 168h, 357, 525, 882, 1407
Badness: 0.0199
Magnesium
- For the 5-limit version, see 12th-octave temperaments#Magnesium (5-limit).
Magnesium is named after element 12 for being period 12, however, it's not an extension of the atomic - the associated comma is [-157 -24 84⟩ in the 5-limit and the 7 generators together with 12edo major second reach the just perfect fifth, 3/2.
Subgroup: 2.3.5.7
Comma list: 250047/250000, 9234096523681640625/9223372036854775808
Mapping: [⟨12 2 23 58], ⟨0 7 2 -10]]
- mapping generators: ~138915/131072, 3145728/2734375
Optimal tuning (CTE): ~138915/131072 = 1\12, ~3145728/2734375 = 243.130
Optimal ET sequence: 84, 528, 612, 696, 1308, 1920, 2532, ...
Chromium
Chromium is described as the 72 & 624 temperament, and named after the 24th element for being period 24.
Subgroup: 2.3.5.7
Comma list: 250047/250000, 49589822592/49433168575
Mapping: [⟨24 1 -6 18], ⟨0 3 5 4]]
- mapping generators: ~250/243, ~10/7
Optimal tuning (CTE): ~250/243 = 1\24, ~10/7 = 617.2710
Optimal ET sequence: 72, …, 480, 552, 624, 1320, 1944d, 3264d
Badness: 0.139
11-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 46656/46585, 250047/250000
Mapping: [⟨24 1 -6 18 46], ⟨0 3 5 4 3]]
Optimal tuning (CTE): ~250/243 = 1\24, ~10/7 = 617.2597
Optimal ET sequence: 72, …, 480, 552, 624
Badness: 0.0398
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1716/1715, 2080/2079, 34398/34375, 39366/39325
Mapping: [⟨24 1 -6 18 46 -47 -13], ⟨0 3 5 4 3 11]]
Optimal tuning (CTE): ~250/243 = 1\24, ~10/7 = 617.2869
Optimal ET sequence: 72, …, 480f, 552, 624, 1176de, 1800cdee
Badness: 0.0293
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 936/935, 1701/1700, 1716/1715, 2025/2023, 11016/11011
Mapping: [⟨24 1 -6 18 46 -47 -13], ⟨0 3 5 4 3 11 9]]
Optimal tuning (CTE): ~35/34 = 1\24, ~10/7 = 617.2732
Optimal ET sequence: 72, …, 480fgg, 552g, 624
Badness: 0.0209
Zinc
Zinc is described as the 270 & 1920 temperament, and named after the 30th element due to featuring a period of 1/30 octave.
Subgroup: 2.3.5.7
Comma list: 250047/250000, [-45 -24 14 18⟩
Mapping: [⟨30 2 15 66], ⟨0 5 6 2]]
Optimal tuning (CTE): ~53747712/52521875 = 1\30, ~216/175 = 364.389
Optimal ET sequence: 270, 1110, 1380, 1650, 1920, ...
11-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 250047/250000, 97869261875/97844723712
Mapping: [⟨30 2 15 66 122], ⟨0 5 6 2 -2]]
Optimal tuning (CTE): ~18865/18432 = 1\30, ~216/175 = 364.389
Optimal ET sequence: 270, 840, 1110, 1380, 1650, 1920, ...
13-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 123201/123200, 250047/250000, 1990656/1990625
Mapping: [⟨30 2 15 66 122 193], ⟨0 5 6 2 -2 -9]]
Optimal tuning (CTE): ~351/343 = 1\30, ~216/175 = 364.389
Optimal ET sequence: 270, 1380, 1650, 1920, ...