Proposed names for rank-2 temperaments: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 248294797 - Original comment: **
m Update
 
(46 intermediate revisions by 17 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
Here is a list of some names that have been proposed for rank-2 [[regular temperament|temperaments]]. The name or names of the temperament is followed by the generator mapping, which represents the number of periods and [[generator]]s of the temperament for each of the [[prime interval]]s (2 3 5 etc.)
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-08-24 20:22:13 UTC</tt>.<br>
: The original revision id was <tt>248294797</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Here is a list of some names that have been proposed for rank 2 [[temperaments]]. The name or names of the temperament is followed by the generator mapping, which represents the number of periods and [[generator]]s of the temperament for each of the [[prime interval]]s (2, 3, 5 etc.)


=One period per octave=
{{Todo|inline=1| update }}
father [&lt;1, 2, 2], &lt;0, -1, 1]&gt;
 
* mother [&lt;1, 2, 2, 2], &lt;0, -1, 1, 2]&gt;
== One period per octave ==
* father [&lt;1, 2, 2, 4], &lt;0, -1, 1, -3]&gt;
* [[father]] [{{val| 1 0 4 }}, {{val| 0 1 -1}}];
mavila [&lt;1, 2, 1], &lt;0, -1, 3]&gt;
** mother [{{val| 1 0 4 6 }}, {{val| 0 1 -1 -2}}];
* pelogic [&lt;1, 2, 1, 1], &lt;0, -1, 3, 4]&gt;
** father [{{val| 1 0 4 -2 }}, {{val| 0 1 -1 3}}];
* armodue [&lt;1, 2, 1, 5], &lt;0, -1, 3, -5]&gt;
* [[mavila]] [{{val| 1 0 7 }}, {{val| 0 1 -3}}];
* mavila [&lt;1, 2, 1, -2], &lt;0, -1, 3, 11]&gt;
** [[pelogic]] [{{val| 1 0 7 9 }}, {{val| 0 1 -3 -4}}];
* hornbostel [&lt;1, 2, 1, 8], &lt;0, -1, 3, -12]&gt;
** [[armodue (temperament)|armodue]] [{{val| 1 0 7 -5 }}, {{val| 0 1 -3 5}}];
[[Meantone family|meantone]] [&lt;1, 2, 4], &lt;0, -1, -4]&gt;
** mavila [{{val| 1 0 7 20 }}, {{val| 0 1 -3 -11}}];
* dominant [&lt;1, 2, 4, 2], &lt;0, -1, -4, 2]&gt;
** hornbostel [{{val| 1 0 7 -16 }}, {{val| 0 1 -3 12}}];
** arnold [&lt;1, 2, 4, 2, 3], &lt;0, -1, -4, 2, 1]&gt;
* [[meantone]] [{{val| 1 0 -4 }}, {{val| 0 1 4}}];
** dominant [&lt;1, 2, 4, 2, 1], &lt;0, -1, -4, 2, 6]&gt;
** [[dominant (temperament)|
* sharptone [&lt;1, 2, 4, 4], &lt;0, -1, -4, -3]&

Latest revision as of 14:20, 6 September 2025

Here is a list of some names that have been proposed for rank-2 temperaments. The name or names of the temperament is followed by the generator mapping, which represents the number of periods and generators of the temperament for each of the prime intervals (2 3 5 etc.)

Todo: update

One period per octave

  • father [1 0 4], 0 1 -1]];
    • mother [1 0 4 6], 0 1 -1 -2]];
    • father [1 0 4 -2], 0 1 -1 3]];
  • mavila [1 0 7], 0 1 -3]];
    • pelogic [1 0 7 9], 0 1 -3 -4]];
    • armodue [1 0 7 -5], 0 1 -3 5]];
    • mavila [1 0 7 20], 0 1 -3 -11]];
    • hornbostel [1 0 7 -16], 0 1 -3 12]];
  • meantone [1 0 -4], 0 1 4]];
    • dominant [1 0 -4 6], 0 1 4 -2]];
      • arnold [1 0 -4 6 5], 0 1 4 -2 -1]];
      • dominant [1 0 -4 6 13], 0 1 4 -2 -6]];
      • domineering [1 0 -4 6 -6], 0 1 4 -2 6]];
        • dominatrix [1 0 -4 6 -6 -1], 0 1 4 -2 6 3]];
    • sharptone [1 0 -4 -2], 0 1 4 3]];
      • meanertone [1 0 -4 -2 5], 0 1 4 3 -1]];
    • flattone [1 0 -4 17], 0 1 4 -9]];
      • flattone [1 0 -4 17 -6], 0 1 4 -9 6]];
    • meantone [1 0 -4 -13], 0 1 4 10]];
      • meanenneadecal [1 0 -4 -13 -6], 0 1 4 10 6]];
      • meanpop [1 0 -4 -13 24], 0 1 4 10 -13]];
      • meantone [1 0 -4 -13 -25], 0 1 4 10 18]];
  • avila [1 0 -7], 0 1 6]];
  • helmholtz [1 0 15], 0 1 -8]];
    • schism [1 0 15 6], 0 1 -8 -2]];
    • garibaldi [1 0 15 25], 0 1 -8 -14]];
      • cassandra [1 0 15 25 -33], 0 1 -8 -14 23]];
        • cassandra [1 0 15 25 -33 -28], 0 1 -8 -14 23 20]];
      • andromeda [1 0 15 25 32], 0 1 -8 -14 -18]];
        • andromeda [1 0 15 25 32 37], 0 1 -8 -14 -18 -21]];
    • grackle [1 0 15 44], 0 1 -8 -26]];
    • pontiac, infraschismic [1 0 15 -59], 0 1 -8 39]];
  • superpyth [1 0 -12], 0 1 9]];
    • superpyth [1 0 -12 6], 0 1 9 -2]];
      • superpyth [1 0 -12 6 -22], 0 1 9 -2 16]];
      • suprapyth [1 0 -12 6 13], 0 1 9 -2 -6]];
  • quasisuper [1 0 23 6], 0 1 -13 -2]];
  • leapday [1 0 -31 -21 -14 -9], 0 1 21 15 11 8]];
  • kwai [1 0 -50 -40], 0 1 33 27]];
    • kwai [1 0 -50 -40 32], 0 1 33 27 -18]];
  • undecental [1 0 61 71], 0 1 -37 -43]];
  • counterschismic [1 0 -69], 0 1 45]];
  • dicot [1 1 2], 0 2 1]];
    • dicot [1 1 2 2], 0 2 1 3]];
    • sharp [1 1 2 1], 0 2 1 6]];
  • mohajira, semififths [1 1 0 6], 0 2 8 -11]];
    • mohajira [1 1 0 6 2], 0 2 8 -11 5]];
    • neutrominant [1 1 0 4 2], 0 2 8 -4 5]];
      • neutrominant [1 1 0 4 2 4], 0 2 8 -4 5 -1]];
  • beatles [1 1 5 4], 0 2 -9 -4]];
  • karadeniz [1 1 7 11 2], 0 2 -16 -28 5]];
  • hemififths [1 1 -5 -1], 0 2 25 13]];
  • bug [1 0 0], 0 2 3]];
    • beep [1 0 0 2], 0 2 3 1]];
      • pentoid [1 0 0 2 5], 0 2 3 1 -2]];
  • superpelog [1 0 7 2], 0 2 -6 1]];
  • godzilla [1 0 -4 2], 0 2 8 1]];
  • monzismic [1 0 -27], 0 2 37]];
  • gidorah [1 1 2 3], 0 3 2 -1]];
  • enipucrop [1 2 2], 0 3 -2]];
  • penta [1 1 2 2], 0 3 2 4]];
  • laconic [1 1 1], 0 3 7]];
    • gorgo [1 1 1 3], 0 3 7 -1]];
      • gorgo [1 1 1 3 1], 0 3 7 -1 13]];
        • gorgo [1 1 1 3 1 2], 0 3 7 -1 13 9]];
      • spartan [1 1 1 3 5], 0 3 7 -1 -8]];
  • pycnic [1 0 6 -3], 0 3 -7 11]];
  • mothra, cynder [1 1 0 3], 0 3 12 -1]];
    • mothra, cynder [1 1 0 3 5], 0 3 12 -1 -8]];
  • rodan [1 1 -1 3], 0 3 17 -1]];
    • rodan [1 1 -1 3 6], 0 3 17 -1 -13]];
      • rodan [1 1 -1 3 6 8], 0 3 17 -1 -13 -22]];
      • aerodactyl [1 1 -1 3 6 -1], 0 3 17 -1 -13 24]];
  • guiron [1 1 7 3], 0 3 -24 -1]];
  • porcupine [1 2 3], 0 3 5]];
    • hystrix [1 2 3 3], 0 3 5 1]];
    • porcupine [1 2 3 2], 0 3 5 -6]];
      • porcupine [1 2 3 2 4], 0 3 5 -6 4]];
    • opossum, pentadecimal [1 2 3 4], 0 3 5 9]];
      • opossum [1 2 3 4 4], 0 3 5 9 4]];
      • coendou [1 2 3 1 4 3], 0 3 5 -13 4 -5]];
      • porcupinefish [1 2 3 2 4 6], 0 3 5 -6 4 17]];
  • ammonite [1 5 8 10], 0 9 15 19]];
  • triton [1 0 6 7], 0 3 -7 -8]];
  • liese, gawel [1 0 -4 -3], 0 3 12 11]];
  • alphatricot [1 0 -13], 0 3 29]];
  • tetracot [1 1 1], 0 4 9]];
    • monkey [1 1 1 5], 0 4 9 -15]];
    • bunya [1 1 1 -1], 0 4 9 26]];
  • vulture [1 0 -6], 0 4 21]];
    • buzzard [1 0 -6 4], 0 4 21 -3]];
      • buzzard [1 0 -6 4 -12 -7], 0 4 21 -3 39 27]];
  • sesquiquartififths [1 1 7 5], 0 4 -32 -15]];
  • semihemififths [1 1 -5 -1 8], 0 4 50 26 -31]];
  • sidi [1 3 3 6], 0 4 2 9]];
  • negri [1 2 2], 0 4 -3]];
    • negri [1 2 2 3], 0 4 -3 2]];
      • negri [1 2 2 3 4], 0 4 -3 2 5]];
        • negri [1 2 2 3 4 4], 0 4 -3 2 5 3]];
      • negril [1 2 2 3 2], 0 4 -3 2 -14]];
        • negril [1 2 2 3 2 4], 0 4 -3 2 -14 3]];
  • sentinel [1 3 -3 6], 0 4 -15 9]];
  • squares [1 3 8 6], 0 4 16 9]];
  • magic [1 0 2], 0 5 1]];
    • muggles [1 0 2 5], 0 5 1 -7]];
    • magic [1 0 2 -1], 0 5 1 12]];
      • magic [1 0 2 -1 6], 0 5 1 12 -8]];
  • passion [1 2 2], 0 5 -4]];
    • passion [1 2 2 2], 0 5 -4 -10]];
  • ripple [1 2 3], 0 5 8]];
    • ripple [1 2 3 3], 0 5 8 2]];
  • tritonic [1 4 -3 -3], 0 5 -11 -12]];
    • tritonic [1 4 -3 -3 2], 0 5 -11 -12 -3]];
  • amity [1 3 6], 0 5 13]];
    • amity [1 3 6 -2], 0 5 13 -17]];
      • hitchcock, amity [1 3 6 -2 6], 0 5 13 -17 9]];
        • hitchcock [1 3 6 -2 6 2], 0 5 13 -17 9 -6]];
  • gravity [1 5 12], 0 6 17]];
    • marvo [1 5 12 29], 0 6 17 46]];
  • hanson [1 0 1], 0 6 5]];
    • keemun [1 0 1 2], 0 6 5 3]];
      • keemun [1 0 1 2 4], 0 6 5 3 -2]];
    • catakleismic [1 0 1 -3], 0 6 5 22]];
      • catakleismic [1 0 1 -3 9], 0 6 5 22 -21]];
        • catakleismic [1 0 1 -3 9 0], 0 6 5 22 -21 14]];
    • countercata [1 0 1 11], 0 6 5 -31]];
  • ampersand [1 1 3], 0 6 -7]];
    • miracle [1 1 3 3], 0 6 -7 -2]];
      • miracle [1 1 3 3 2], 0 6 -7 -2 15]];
  • nautilus [1 2 3 3], 0 6 10 3]];
  • orson [1 0 3], 0 7 -3]];
    • orwell [1 0 3 1], 0 7 -3 8]];
      • orwell [1 0 3 1 3], 0 7 -3 8 2]];
        • orwell [1 0 3 1 3 8], 0 7 -3 8 2 -19]];
        • blair [1 0 3 1 3 3], 0 7 -3 8 2 3]];
        • winston [1 0 3 1 3 1], 0 7 -3 8 2 12]];
  • sensi [1 6 8], 0 7 9]];
    • sensi [1 6 8 11], 0 7 9 13]];
      • sensor [1 6 8 11 -6], 0 7 9 13 -15]];
        • sensor [1 6 8 11 -6 10], 0 7 9 13 -15 10]];
      • sensis [1 6 8 11 6], 0 7 9 13 4]];
        • sensis [1 6 8 11 6 10], 0 7 9 13 4 10]];
      • sensus [1 6 8 11 23], 0 7 9 13 31]];
        • sensus [1 6 8 11 23 10], 0 7 9 13 31 10]];
  • roman [1 4 3 -1 0 3], 0 7 2 -11 -10 -2]];
  • octacot [1 1 1 2], 0 8 18 11]];
  • würschmidt [1 7 3], 0 8 1]];
  • valentine [1 1 2], 0 9 5]];
    • valentine [1 1 2 3], 0 9 5 -3]];
      • valentine [1 1 2 3 3], 0 9 5 -3 7]];
        • valentino [1 1 2 3 3 5], 0 9 5 -3 7 -20]];
        • dwynwen [1 1 2 3 3 2], 0 9 5 -3 7 26]];
        • lupercalia [1 1 2 3 3 3], 0 9 5 -3 7 11]];
  • escapade [1 2 2], 0 9 -7]];
    • escapade [1 2 2 3], 0 9 -7 4]];
    • escaped [1 2 2 4], 0 9 -7 26]];
  • superkleismic [1 4 5 2], 0 9 10 -3]];
    • superkleismic [1 4 5 2 4], 0 9 10 -3 2]];
  • mabila [1 6 1], 0 10 -3]];
  • myna [1 9 9 8], 0 10 9 7]];
    • myna [1 9 9 8 22], 0 10 9 7 25]];
      • myna [1 9 9 8 22 0], 0 10 9 7 25 -5]];
  • sycamore [1 1 2], 0 11 6]];
    • sycamore [1 1 2 2], 0 11 6 15]];
  • septimin [1 4 1 5], 0 11 -6 10]];
  • nusecond [1 3 4 5], 0 11 13 17]];
  • quartonic [1 2 3 3], 0 11 18 5]];
  • hemikleismic [1 0 1 4], 0 12 10 -9]];
  • clyde [1 6 6 12], 0 12 10 25]];
  • bohpier [1 0 0 0], 0 13 19 23]];
  • doublethink [1 0 3 1 3 2], 0 14 -6 16 4 15]];
  • gammic [1 1 2], 0 20 11]];
    • gammic [1 1 2 0], 0 20 11 96]];
  • neptune [1 21 13 13], 0 40 22 21]];
  • pluto [1 5 15 15 2], 0 7 26 25 -3]];
  • twothirdtonic [1 3 2 4 4], 0 13 -3 11 5]];
    • twothirdtonic [1 3 2 4 4 5], 0 13 -3 11 5 12]];
  • slender [1 2 2 3], 0 13 -10 6]];
    • slender [1 2 2 3 4], 0 13 -10 6 17]];
  • parakleismic [1 5 6], 0 13 14]];
    • parakleismic [1 5 6 12], 0 13 14 35]];
  • fortune [1 13 -36], 0 14 -47]];
  • hemithirds, luna [1 4 2], 0 15 -2]];
    • hemithirds [1 4 2 2], 0 15 -2 -5]];
      • hemithirds [1 4 2 2 7], 0 15 -2 -5 22]];
  • hemiwürschmidt [1 15 4 7], 0 16 2 5]];
    • hemiwürschmidt [1 15 4 7 37], 0 16 2 5 40]];
  • semisept [1 12 6 12], 0 17 6 15]];
  • vavoom [1 0 4], 0 17 -18]];
  • minortone [1 16 32], 0 17 35]];
    • mitonic [1 16 32 -15], 0 17 35 -21]];
  • casablanca [1 12 10 5], 0 19 14 4]];
    • casablanca [1 12 10 5 4], 0 19 14 4 1]];
  • tertiaseptal [1 3 2 3], 0 22 -5 3]];
  • grendel, voodoo [1 9 2 7], 0 23 -1 13]];
  • gamera [1 6 10 3], 0 23 40 1]];
  • astro [1 5 1], 0 31 -12]];
  • semihemiwürschmidt [1 15 4 7 24], 0 32 4 10 49]];
  • whoosh [1 17 14], 0 33 25]];
  • yarman [1 2 3 4 4], 0 33 54 95 43]];
  • senior [1 11 19], 0 35 62]];
  • raider [1 28 73], 0 37 99]];
  • supermajor [1 15 19 30], 0 37 46 75]];
  • quasiorwell [1 31 0 9], 0 38 -3 8]];
  • semigamera [1 6 10 3 12], 0 46 80 2 89]];
  • gross [1 45 -18], 0 47 -22]];
  • pirate [1 43 15], 0 49 15]];
  • egads [1 15 16], 0 51 52]];

Two periods per octave

  • srutal [2 0 11], 0 1 -2]];
    • pajara [2 0 11 12], 0 1 -2 -2]];
      • pajaric [2 0 11 12 7], 0 1 -2 -2 0]];
      • pajarous [2 0 11 12 -9], 0 1 -2 -2 5]];
      • pajara [2 0 11 12 26], 0 1 -2 -2 -6]];
    • diaschismic [2 0 11 31], 0 1 -2 -8]];
      • diaschismic [2 0 11 31 45 55], 0 1 -2 -8 -12 -15]];
    • keen [2 0 11 -23], 0 1 -2 9]];
  • supersharp [2 0 -5], 0 1 3]];
  • bipelog [2 0 14 15], 0 1 -3 -3]];
  • injera [2 0 -8 -7], 0 1 4 4]];
    • injera [2 0 -8 -7 -12], 0 1 4 4 6]];
  • bischismic [2 0 30 69], 0 1 -8 -20]];
  • shrutar [2 1 9 -2], 0 2 -4 7]];
    • shrutar [2 1 9 -2 8], 0 2 -4 7 -1]];
      • srutar [2 1 9 -2 8 15], 0 2 -4 7 -1 -7]];
      • shrutar [2 1 9 -2 8 -10], 0 2 -4 7 -1 16]];
  • echidna [2 1 9 2], 0 3 -6 5]];
    • echidna [2 1 9 2 12], 0 3 -6 5 -7]];
  • decimal [2 0 3 4], 0 2 1 1]];
  • semihemi [2 0 -35 -15 -47], 0 2 25 13 34]];
  • lemba [2 2 5 6], 0 3 -1 -1]];
  • hedgehog [2 1 1 2], 0 3 5 5]];
  • doublewide [2 1 3], 0 4 3]];
    • doublewide [2 1 3 4], 0 4 3 3]];
      • doublewide [2 1 3 4 8], 0 4 3 3 -2]];
  • sesquiquartififths [1 1 7 5], 0 4 -32 -15]];
  • hemiamity [2 1 -1 13 13], 0 5 13 -17 -14]];
  • wizard [2 1 5 2], 0 6 -1 10]];
    • wizard [2 1 5 2 8], 0 6 -1 10 -3]];
  • unidec [2 5 8 5], 0 6 11 -2]];
    • unidec [2 5 8 5 6], 0 6 11 -2 -3]];
      • hendec [2 5 8 5 6 8], 0 6 11 -2 -3 2]];
  • harry [2 4 7 7], 0 6 17 10]];
  • vishnu [2 4 5], 0 7 3]];
    • vishnu [2 4 5 10], 0 7 3 37]];
  • kwazy [2 1 6], 0 8 -5]];
  • abigail [2 7 13 -1 1 -2], 0 11 24 -19 -17 -27]];
  • semiparakleismic [2 10 12 24 19], 0 13 14 35 23]];
  • hemigamera [2 12 20 6 5], 0 23 40 1 -5]];

Three periods per octave

  • augmented [3 0 7], 0 1 0]];
    • augene, tripletone [3 0 7 18], 0 1 0 -2]];
      • augene, tripletone [3 0 7 18 20], 0 1 0 -2 -2]];
    • august [3 0 7 -1], 0 1 0 2]];
  • misty [3 0 26], 0 1 -4]];
    • misty [3 0 26 56], 0 1 -4 -10]];
  • term [3 0 45 94], 0 1 -8 -18]];
  • semiaug [3 1 7 -1], 0 2 0 5]];
  • tritikleismic [3 0 3 10], 0 6 5 -2]];
  • mutt [3 5 7 8], 0 7 1 -12]];
  • ternary [3 5 7 0], 0 0 0 1]];

Four or more periods per octave

  • diminished [4 0 3], 0 1 1]];
    • diminished [4 0 3 5], 0 1 1 1]];
      • diminished [4 0 3 5 14], 0 1 1 1 0]];
      • demolished [4 0 3 5 -5], 0 1 1 1 3]];
  • blackwood [5 8 0], 0 0 1]];
    • blackwood [5 8 0 14], 0 0 1 0]];
  • hexe [6 0 14 17], 0 1 0 0]];
  • jamesbond [7 11 16 0], 0 0 0 1]];
    • jamesbond [7 11 16 0 24], 0 0 0 1 0]];
  • whitewood [7 11 0], 0 0 1]];
  • octoid [8 1 3 3 16], 0 3 4 5 3]];
  • ennealimmal [9 1 1], 0 2 3]];
    • ennealimmal [9 1 1 12], 0 2 3 2]];
      • ennealimmal [9 1 1 12 -75], 0 2 3 2 16]];
  • decoid [10 0 47 36], 0 2 -3 -1]];
    • decoid [10 0 47 36 98], 0 2 -3 -1 -8]];
      • decoid [10 0 47 36 98 37], 0 2 -3 -1 -8 0]];
  • hendecatonic [11 0 43 -4], 0 1 -1 2]];
  • catler [12 19 28 0], 0 0 0 1]];
  • compton [12 19 0], 0 0 1]];
    • compton, waage [12 19 0 -22], 0 0 1 2]];
      • compton, duodecimal [12 19 0 -22 -42], 0 0 1 2 3]];
  • duodecim [12 19 28 34 0], 0 0 0 0 1]];
  • atomic [12 0 161], 0 1 -7]];
  • hemiennealimmal [18 0 -1 22 48], 0 2 3 2 1]];
  • enneadecal [19 0 14], 0 1 1]];
    • enneadecal [19 0 14 -37], 0 1 1 3]];
  • undevigintone [19 30 44 53 0], 0 0 0 0 1]];
  • icosidillic [22 0 86 -8 111], 0 1 -1 2 -1]];
  • vigintiduo [22 35 51 62 0], 0 0 0 0 1]];
  • mystery [29 46 0 14 33 40], 0 0 1 1 1 1]];
  • hemienneadecal [38 0 28 -74 11], 0 1 1 3 2]];

See also