Proposed names for rank-2 temperaments
Jump to navigation
Jump to search
Here is a list of some names that have been proposed for rank 2 temperaments. The name or names of the temperament is followed by the generator mapping, which represents the number of periods and generators of the temperament for each of the prime intervals (2 3 5 etc.)
One period per octave
- father [⟨1 0 4], ⟨0 1 -1]];
- mother [⟨1 0 4 6], ⟨0 1 -1 -2]];
- father [⟨1 0 4 -2], ⟨0 1 -1 3]];
- mavila [⟨1 0 7], ⟨0 1 -3]];
- meantone [⟨1 0 -4], ⟨0 1 4]];
- dominant [⟨1 0 -4 6], ⟨0 1 4 -2]];
- arnold [⟨1 0 -4 6 5], ⟨0 1 4 -2 -1]];
- dominant [⟨1 0 -4 6 13], ⟨0 1 4 -2 -6]];
- domineering [⟨1 0 -4 6 -6], ⟨0 1 4 -2 6]];
- dominatrix [⟨1 0 -4 6 -6 -1], ⟨0 1 4 -2 6 3]];
- sharptone [⟨1 0 -4 -2], ⟨0 1 4 3]];
- meanertone [⟨1 0 -4 -2 5], ⟨0 1 4 3 -1]];
- flattone [⟨1 0 -4 17], ⟨0 1 4 -9]];
- flattone [⟨1 0 -4 17 -6], ⟨0 1 4 -9 6]];
- meantone [⟨1 0 -4 -13], ⟨0 1 4 10]];
- meanenneadecal [⟨1 0 -4 -13 -6], ⟨0 1 4 10 6]];
- meanpop [⟨1 0 -4 -13 24], ⟨0 1 4 10 -13]];
- meantone [⟨1 0 -4 -13 -25], ⟨0 1 4 10 18]];
- dominant [⟨1 0 -4 6], ⟨0 1 4 -2]];
- avila [⟨1 0 -7], ⟨0 1 6]];
- helmholtz [⟨1 0 15], ⟨0 1 -8]];
- schism [⟨1 0 15 6], ⟨0 1 -8 -2]];
- garibaldi [⟨1 0 15 25], ⟨0 1 -8 -14]];
- cassandra [⟨1 0 15 25 -33], ⟨0 1 -8 -14 23]];
- cassandra [⟨1 0 15 25 -33 -28], ⟨0 1 -8 -14 23 20]];
- andromeda [⟨1 0 15 25 32], ⟨0 1 -8 -14 -18]];
- andromeda [⟨1 0 15 25 32 37], ⟨0 1 -8 -14 -18 -21]];
- cassandra [⟨1 0 15 25 -33], ⟨0 1 -8 -14 23]];
- grackle [⟨1 0 15 44], ⟨0 1 -8 -26]];
- pontiac, infraschismic [⟨1 0 15 -59], ⟨0 1 -8 39]];
- superpyth [⟨1 0 -12], ⟨0 1 9]];
- superpyth [⟨1 0 -12 6], ⟨0 1 9 -2]];
- superpyth [⟨1 0 -12 6 -22], ⟨0 1 9 -2 16]];
- suprapyth [⟨1 0 -12 6 13], ⟨0 1 9 -2 -6]];
- superpyth [⟨1 0 -12 6], ⟨0 1 9 -2]];
- quasisuper [⟨1 0 23 6], ⟨0 1 -13 -2]];
- leapday [⟨1 0 -31 -21 -14 -9], ⟨0 1 21 15 11 8]];
- kwai [⟨1 0 -50 -40], ⟨0 1 33 27]];
- kwai [⟨1 0 -50 -40 32], ⟨0 1 33 27 -18]];
- undecental [⟨1 0 61 71], ⟨0 1 -37 -43]];
- counterschismic [⟨1 0 -69], ⟨0 1 45]];
- dicot [⟨1 1 2], ⟨0 2 1]];
- dicot [⟨1 1 2 2], ⟨0 2 1 3]];
- sharp [⟨1 1 2 1], ⟨0 2 1 6]];
- mohajira, semififths [⟨1 1 0 6], ⟨0 2 8 -11]];
- mohajira [⟨1 1 0 6 2], ⟨0 2 8 -11 5]];
- neutrominant [⟨1 1 0 4 2], ⟨0 2 8 -4 5]];
- neutrominant [⟨1 1 0 4 2 4], ⟨0 2 8 -4 5 -1]];
- beatles [⟨1 1 5 4], ⟨0 2 -9 -4]];
- karadeniz [⟨1 1 7 11 2], ⟨0 2 -16 -28 5]];
- hemififths [⟨1 1 -5 -1], ⟨0 2 25 13]];
- bug [⟨1 0 0], ⟨0 2 3]];
- beep [⟨1 0 0 2], ⟨0 2 3 1]];
- pentoid [⟨1 0 0 2 5], ⟨0 2 3 1 -2]];
- beep [⟨1 0 0 2], ⟨0 2 3 1]];
- superpelog [⟨1 0 7 2], ⟨0 2 -6 1]];
- godzilla [⟨1 0 -4 2], ⟨0 2 8 1]];
- monzismic [⟨1 0 -27], ⟨0 2 37]];
- gidorah [⟨1 1 2 3], ⟨0 3 2 -1]];
- enipucrop [⟨1 2 2], ⟨0 3 -2]];
- penta [⟨1 1 2 2], ⟨0 3 2 4]];
- laconic [⟨1 1 1], ⟨0 3 7]];
- gorgo [⟨1 1 1 3], ⟨0 3 7 -1]];
- gorgo [⟨1 1 1 3 1], ⟨0 3 7 -1 13]];
- gorgo [⟨1 1 1 3 1 2], ⟨0 3 7 -1 13 9]];
- spartan [⟨1 1 1 3 5], ⟨0 3 7 -1 -8]];
- gorgo [⟨1 1 1 3 1], ⟨0 3 7 -1 13]];
- gorgo [⟨1 1 1 3], ⟨0 3 7 -1]];
- pycnic [⟨1 0 6 -3], ⟨0 3 -7 11]];
- mothra, cynder [⟨1 1 0 3], ⟨0 3 12 -1]];
- mothra, cynder [⟨1 1 0 3 5], ⟨0 3 12 -1 -8]];
- rodan [⟨1 1 -1 3], ⟨0 3 17 -1]];
- rodan [⟨1 1 -1 3 6], ⟨0 3 17 -1 -13]];
- rodan [⟨1 1 -1 3 6 8], ⟨0 3 17 -1 -13 -22]];
- aerodactyl [⟨1 1 -1 3 6 -1], ⟨0 3 17 -1 -13 24]];
- rodan [⟨1 1 -1 3 6], ⟨0 3 17 -1 -13]];
- guiron [⟨1 1 7 3], ⟨0 3 -24 -1]];
- porcupine [⟨1 2 3], ⟨0 3 5]];
- ammonite [⟨1 5 8 10], ⟨0 9 15 19]];
- triton [⟨1 0 6 7], ⟨0 3 -7 -8]];
- liese, gawel [⟨1 0 -4 -3], ⟨0 3 12 11]];
- tricot [⟨1 0 -13], ⟨0 3 29]];
- tetracot [⟨1 1 1], ⟨0 4 9]];
- vulture [⟨1 0 -6], ⟨0 4 21]];
- buzzard [⟨1 0 -6 4], ⟨0 4 21 -3]];
- buzzard [⟨1 0 -6 4 -12 -7], ⟨0 4 21 -3 39 27]];
- buzzard [⟨1 0 -6 4], ⟨0 4 21 -3]];
- sesquiquartififths [⟨1 1 7 5], ⟨0 4 -32 -15]];
- semihemififths [⟨1 1 -5 -1 8], ⟨0 4 50 26 -31]];
- sidi [⟨1 3 3 6], ⟨0 4 2 9]];
- negri [⟨1 2 2], ⟨0 4 -3]];
- negri [⟨1 2 2 3], ⟨0 4 -3 2]];
- negri [⟨1 2 2 3 4], ⟨0 4 -3 2 5]];
- negri [⟨1 2 2 3 4 4], ⟨0 4 -3 2 5 3]];
- negril [⟨1 2 2 3 2], ⟨0 4 -3 2 -14]];
- negril [⟨1 2 2 3 2 4], ⟨0 4 -3 2 -14 3]];
- negri [⟨1 2 2 3 4], ⟨0 4 -3 2 5]];
- negri [⟨1 2 2 3], ⟨0 4 -3 2]];
- sentinel [⟨1 3 -3 6], ⟨0 4 -15 9]];
- squares [⟨1 3 8 6], ⟨0 4 16 9]];
- magic [⟨1 0 2], ⟨0 5 1]];
- muggles [⟨1 0 2 5], ⟨0 5 1 -7]];
- magic [⟨1 0 2 -1], ⟨0 5 1 12]];
- magic [⟨1 0 2 -1 6], ⟨0 5 1 12 -8]];
- passion [⟨1 2 2], ⟨0 5 -4]];
- passion [⟨1 2 2 2], ⟨0 5 -4 -10]];
- ripple [⟨1 2 3], ⟨0 5 8]];
- ripple [⟨1 2 3 3], ⟨0 5 8 2]];
- tritonic [⟨1 4 -3 -3], ⟨0 5 -11 -12]];
- tritonic [⟨1 4 -3 -3 2], ⟨0 5 -11 -12 -3]];
- amity [⟨1 3 6], ⟨0 5 13]];
- amity [⟨1 3 6 -2], ⟨0 5 13 -17]];
- hitchcock, amity [⟨1 3 6 -2 6], ⟨0 5 13 -17 9]];
- hitchcock [⟨1 3 6 -2 6 2], ⟨0 5 13 -17 9 -6]];
- hitchcock, amity [⟨1 3 6 -2 6], ⟨0 5 13 -17 9]];
- amity [⟨1 3 6 -2], ⟨0 5 13 -17]];
- gravity [⟨1 5 12], ⟨0 6 17]];
- marvo [⟨1 5 12 29], ⟨0 6 17 46]];
- hanson [⟨1 0 1], ⟨0 6 5]];
- keemun [⟨1 0 1 2], ⟨0 6 5 3]];
- keemun [⟨1 0 1 2 4], ⟨0 6 5 3 -2]];
- catakleismic [⟨1 0 1 -3], ⟨0 6 5 22]];
- catakleismic [⟨1 0 1 -3 9], ⟨0 6 5 22 -21]];
- catakleismic [⟨1 0 1 -3 9 0], ⟨0 6 5 22 -21 14]];
- catakleismic [⟨1 0 1 -3 9], ⟨0 6 5 22 -21]];
- countercata [⟨1 0 1 11], ⟨0 6 5 -31]];
- keemun [⟨1 0 1 2], ⟨0 6 5 3]];
- ampersand [⟨1 1 3], ⟨0 6 -7]];
- miracle [⟨1 1 3 3], ⟨0 6 -7 -2]];
- miracle [⟨1 1 3 3 2], ⟨0 6 -7 -2 15]];
- miracle [⟨1 1 3 3], ⟨0 6 -7 -2]];
- nautilus [⟨1 2 3 3], ⟨0 6 10 3]];
- orson [⟨1 0 3], ⟨0 7 -3]];
- orwell [⟨1 0 3 1], ⟨0 7 -3 8]];
- orwell [⟨1 0 3 1 3], ⟨0 7 -3 8 2]];
- orwell [⟨1 0 3 1 3 8], ⟨0 7 -3 8 2 -19]];
- blair [⟨1 0 3 1 3 3], ⟨0 7 -3 8 2 3]];
- winston [⟨1 0 3 1 3 1], ⟨0 7 -3 8 2 12]];
- orwell [⟨1 0 3 1 3], ⟨0 7 -3 8 2]];
- orwell [⟨1 0 3 1], ⟨0 7 -3 8]];
- sensi [⟨1 6 8], ⟨0 7 9]];
- roman [⟨1 4 3 -1 0 3], ⟨0 7 2 -11 -10 -2]];
- octacot [⟨1 1 1 2], ⟨0 8 18 11]];
- würschmidt [⟨1 7 3], ⟨0 8 1]];
- worschmidt [⟨1 7 3 -6], ⟨0 8 1 -13]];
- wurschmidt [⟨1 7 3 15], ⟨0 8 1 18]];
- whirrschmidt [⟨1 7 3 38], ⟨0 8 1 52]];
- valentine [⟨1 1 2], ⟨0 9 5]];
- valentine [⟨1 1 2 3], ⟨0 9 5 -3]];
- valentine [⟨1 1 2 3 3], ⟨0 9 5 -3 7]];
- valentino [⟨1 1 2 3 3 5], ⟨0 9 5 -3 7 -20]];
- dwynwen [⟨1 1 2 3 3 2], ⟨0 9 5 -3 7 26]];
- lupercalia [⟨1 1 2 3 3 3], ⟨0 9 5 -3 7 11]];
- valentine [⟨1 1 2 3 3], ⟨0 9 5 -3 7]];
- valentine [⟨1 1 2 3], ⟨0 9 5 -3]];
- escapade [⟨1 2 2], ⟨0 9 -7]];
- escapade [⟨1 2 2 3], ⟨0 9 -7 4]];
- escaped [⟨1 2 2 4], ⟨0 9 -7 26]];
- superkleismic [⟨1 4 5 2], ⟨0 9 10 -3]];
- superkleismic [⟨1 4 5 2 4], ⟨0 9 10 -3 2]];
- mabila [⟨1 6 1], ⟨0 10 -3]];
- myna [⟨1 9 9 8], ⟨0 10 9 7]];
- myna [⟨1 9 9 8 22], ⟨0 10 9 7 25]];
- myna [⟨1 9 9 8 22 0], ⟨0 10 9 7 25 -5]];
- myna [⟨1 9 9 8 22], ⟨0 10 9 7 25]];
- sycamore [⟨1 1 2], ⟨0 11 6]];
- sycamore [⟨1 1 2 2], ⟨0 11 6 15]];
- septimin [⟨1 4 1 5], ⟨0 11 -6 10]];
- nusecond [⟨1 3 4 5], ⟨0 11 13 17]];
- quartonic [⟨1 2 3 3], ⟨0 11 18 5]];
- hemikleismic [⟨1 0 1 4], ⟨0 12 10 -9]];
- clyde [⟨1 6 6 12], ⟨0 12 10 25]];
- bohpier [⟨1 0 0 0], ⟨0 13 19 23]];
- doublethink [⟨1 0 3 1 3 2], ⟨0 14 -6 16 4 15]];
- gammic [⟨1 1 2], ⟨0 20 11]];
- gammic [⟨1 1 2 0], ⟨0 20 11 96]];
- neptune [⟨1 21 13 13], ⟨0 40 22 21]];
- pluto [⟨1 5 15 15 2], ⟨0 7 26 25 -3]];
- twothirdtonic [⟨1 3 2 4 4], ⟨0 13 -3 11 5]];
- twothirdtonic [⟨1 3 2 4 4 5], ⟨0 13 -3 11 5 12]];
- slender [⟨1 2 2 3], ⟨0 13 -10 6]];
- slender [⟨1 2 2 3 4], ⟨0 13 -10 6 17]];
- parakleismic [⟨1 5 6], ⟨0 13 14]];
- parakleismic [⟨1 5 6 12], ⟨0 13 14 35]];
- fortune [⟨1 13 -36], ⟨0 14 -47]];
- hemithirds, luna [⟨1 4 2], ⟨0 15 -2]];
- hemithirds [⟨1 4 2 2], ⟨0 15 -2 -5]];
- hemithirds [⟨1 4 2 2 7], ⟨0 15 -2 -5 22]];
- hemithirds [⟨1 4 2 2], ⟨0 15 -2 -5]];
- hemiwürschmidt [⟨1 15 4 7], ⟨0 16 2 5]];
- hemiwürschmidt [⟨1 15 4 7 37], ⟨0 16 2 5 40]];
- semisept [⟨1 12 6 12], ⟨0 17 6 15]];
- vavoom [⟨1 0 4], ⟨0 17 -18]];
- minortone [⟨1 16 32], ⟨0 17 35]];
- mitonic [⟨1 16 32 -15], ⟨0 17 35 -21]];
- casablanca [⟨1 12 10 5], ⟨0 19 14 4]];
- casablanca [⟨1 12 10 5 4], ⟨0 19 14 4 1]];
- tertiaseptal [⟨1 3 2 3], ⟨0 22 -5 3]];
- grendel, voodoo [⟨1 9 2 7], ⟨0 23 -1 13]];
- gamera [⟨1 6 10 3], ⟨0 23 40 1]];
- astro [⟨1 5 1], ⟨0 31 -12]];
- semihemiwürschmidt [⟨1 15 4 7 24], ⟨0 32 4 10 49]];
- whoosh [⟨1 17 14], ⟨0 33 25]];
- yarman [⟨1 2 3 4 4], ⟨0 33 54 95 43]];
- senior [⟨1 11 19], ⟨0 35 62]];
- raider [⟨1 28 73], ⟨0 37 99]];
- supermajor [⟨1 15 19 30], ⟨0 37 46 75]];
- quasiorwell [⟨1 31 0 9], ⟨0 38 -3 8]];
- semigamera [⟨1 6 10 3 12], ⟨0 46 80 2 89]];
- gross [⟨1 45 -18], ⟨0 47 -22]];
- pirate [⟨1 43 15], ⟨0 49 15]];
- egads [⟨1 15 16], ⟨0 51 52]];
Two periods per octave
- srutal [⟨2 0 11], ⟨0 1 -2]];
- pajara [⟨2 0 11 12], ⟨0 1 -2 -2]];
- pajaric [⟨2 0 11 12 7], ⟨0 1 -2 -2 0]];
- pajarous [⟨2 0 11 12 -9], ⟨0 1 -2 -2 5]];
- pajara [⟨2 0 11 12 26], ⟨0 1 -2 -2 -6]];
- diaschismic [⟨2 0 11 31], ⟨0 1 -2 -8]];
- diaschismic [⟨2 0 11 31 45 55], ⟨0 1 -2 -8 -12 -15]];
- keen [⟨2 0 11 -23], ⟨0 1 -2 9]];
- pajara [⟨2 0 11 12], ⟨0 1 -2 -2]];
- supersharp [⟨2 0 -5], ⟨0 1 3]];
- octokaidecal [⟨2 0 -5 -4], ⟨0 1 3 3]];
- bipelog [⟨2 0 14 15], ⟨0 1 -3 -3]];
- injera [⟨2 0 -8 -7], ⟨0 1 4 4]];
- injera [⟨2 0 -8 -7 -12], ⟨0 1 4 4 6]];
- bischismic [⟨2 0 30 69], ⟨0 1 -8 -20]];
- shrutar [⟨2 1 9 -2], ⟨0 2 -4 7]];
- shrutar [⟨2 1 9 -2 8], ⟨0 2 -4 7 -1]];
- srutar [⟨2 1 9 -2 8 15], ⟨0 2 -4 7 -1 -7]];
- shrutar [⟨2 1 9 -2 8 -10], ⟨0 2 -4 7 -1 16]];
- shrutar [⟨2 1 9 -2 8], ⟨0 2 -4 7 -1]];
- echidna [⟨2 1 9 2], ⟨0 3 -6 5]];
- echidna [⟨2 1 9 2 12], ⟨0 3 -6 5 -7]];
- decimal [⟨2 0 3 4], ⟨0 2 1 1]];
- semihemi [⟨2 0 -35 -15 -47], ⟨0 2 25 13 34]];
- lemba [⟨2 2 5 6], ⟨0 3 -1 -1]];
- hedgehog [⟨2 1 1 2], ⟨0 3 5 5]];
- doublewide [⟨2 1 3], ⟨0 4 3]];
- doublewide [⟨2 1 3 4], ⟨0 4 3 3]];
- doublewide [⟨2 1 3 4 8], ⟨0 4 3 3 -2]];
- doublewide [⟨2 1 3 4], ⟨0 4 3 3]];
- sesquiquartififths [⟨1 1 7 5], ⟨0 4 -32 -15]];
- hemiamity [⟨2 1 -1 13 13], ⟨0 5 13 -17 -14]];
- wizard [⟨2 1 5 2], ⟨0 6 -1 10]];
- wizard [⟨2 1 5 2 8], ⟨0 6 -1 10 -3]];
- unidec [⟨2 5 8 5], ⟨0 6 11 -2]];
- unidec [⟨2 5 8 5 6], ⟨0 6 11 -2 -3]];
- hendec [⟨2 5 8 5 6 8], ⟨0 6 11 -2 -3 2]];
- unidec [⟨2 5 8 5 6], ⟨0 6 11 -2 -3]];
- harry [⟨2 4 7 7], ⟨0 6 17 10]];
- vishnu [⟨2 4 5], ⟨0 7 3]];
- vishnu [⟨2 4 5 10], ⟨0 7 3 37]];
- kwazy [⟨2 1 6], ⟨0 8 -5]];
- bisupermajor [⟨2 1 6 1 8], ⟨0 8 -5 17 -4]];
- abigail [⟨2 7 13 -1 1 -2], ⟨0 11 24 -19 -17 -27]];
- semiparakleismic [⟨2 10 12 24 19], ⟨0 13 14 35 23]];
- hemigamera [⟨2 12 20 6 5], ⟨0 23 40 1 -5]];
Three periods per octave
- augmented [⟨3 0 7], ⟨0 1 0]];
- misty [⟨3 0 26], ⟨0 1 -4]];
- misty [⟨3 0 26 56], ⟨0 1 -4 -10]];
- term [⟨3 0 45 94], ⟨0 1 -8 -18]];
- semiaug [⟨3 1 7 -1], ⟨0 2 0 5]];
- tritikleismic [⟨3 0 3 10], ⟨0 6 5 -2]];
- mutt [⟨3 5 7 8], ⟨0 7 1 -12]];
- ternary [⟨3 5 7 0], ⟨0 0 0 1]];
Four or more periods per octave
- diminished [⟨4 0 3], ⟨0 1 1]];
- diminished [⟨4 0 3 5], ⟨0 1 1 1]];
- diminished [⟨4 0 3 5 14], ⟨0 1 1 1 0]];
- demolished [⟨4 0 3 5 -5], ⟨0 1 1 1 3]];
- diminished [⟨4 0 3 5], ⟨0 1 1 1]];
- blackwood [⟨5 8 0], ⟨0 0 1]];
- blacksmith [⟨5 8 0 14], ⟨0 0 1 0]];
- hexe [⟨6 0 14 17], ⟨0 1 0 0]];
- jamesbond [⟨7 11 16 0], ⟨0 0 0 1]];
- jamesbond [⟨7 11 16 0 24], ⟨0 0 0 1 0]];
- whitewood [⟨7 11 0], ⟨0 0 1]];
- octoid [⟨8 1 3 3 16], ⟨0 3 4 5 3]];
- ennealimmal [⟨9 1 1], ⟨0 2 3]];
- ennealimmal [⟨9 1 1 12], ⟨0 2 3 2]];
- ennealimmal [⟨9 1 1 12 -75], ⟨0 2 3 2 16]];
- ennealimmal [⟨9 1 1 12], ⟨0 2 3 2]];
- decoid [⟨10 0 47 36], ⟨0 2 -3 -1]];
- decoid [⟨10 0 47 36 98], ⟨0 2 -3 -1 -8]];
- decoid [⟨10 0 47 36 98 37], ⟨0 2 -3 -1 -8 0]];
- decoid [⟨10 0 47 36 98], ⟨0 2 -3 -1 -8]];
- hendecatonic [⟨11 0 43 -4], ⟨0 1 -1 2]];
- catler [⟨12 19 28 0], ⟨0 0 0 1]];
- compton [⟨12 19 0], ⟨0 0 1]];
- compton, waage [⟨12 19 0 -22], ⟨0 0 1 2]];
- compton, duodecimal [⟨12 19 0 -22 -42], ⟨0 0 1 2 3]];
- compton, waage [⟨12 19 0 -22], ⟨0 0 1 2]];
- duodecim [⟨12 19 28 34 0], ⟨0 0 0 0 1]];
- atomic [⟨12 0 161], ⟨0 1 -7]];
- hemiennealimmal [⟨18 0 -1 22 48], ⟨0 2 3 2 1]];
- enneadecal [⟨19 0 14], ⟨0 1 1]];
- enneadecal [⟨19 0 14 -37], ⟨0 1 1 3]];
- undevigintone [⟨19 30 44 53 0], ⟨0 0 0 0 1]];
- icosidillic [⟨22 0 86 -8 111], ⟨0 1 -1 2 -1]];
- vigintiduo [⟨22 35 51 62 0], ⟨0 0 0 0 1]];
- mystery [⟨29 46 0 14 33 40], ⟨0 0 1 1 1 1]];
- hemienneadecal [⟨38 0 28 -74 11], ⟨0 1 1 3 2]];