# Semaphoresmic clan

(Redirected from Superpelog)

The semaphore clan tempers out the slendro diesis, or semaphoresma, 49/48, a triprime comma with factors of 2, 3 and 7.

## Semaphore

Subgroup: 2.3.7

Comma list: 49/48

Sval mapping[1 0 2], 0 2 1]]

sval mapping generators: ~2, ~7/4

Gencom mapping[1 2 0 3], 0 -2 0 -1]]

gencom: [2 7/6; 49/48]
• CTE: ~2 = 1\1, ~7/4 = 952.2948
• POTE: ~2 = 1\1, ~7/4 = 949.615

Scales: semaphore5, semaphore9, semaphore14

### Overview to extensions

The second comma of the comma list defines which 7-limit family member we are looking at.

Godzilla adds 81/80. Immunity adds 2240/2187. Superpelog adds 135/128. Beep adds 21/20. Baba adds 16/15. These all use the same nominal generator as semaphore, though some of them are of very low accuracy.

Discussed elsewhere are

Considered below are godzilla, superpelog, negri, nuke, mabila, and hemiripple.

## Godzilla

Godzilla tempers out 81/80, equating 9/8 and 10/9, so it finds the prime 5 at a stack of four fifths, as does any temperament in the meantone family. 19edo is close to being the optimal generator tuning; hence it can be more or less equated with taking 4\19 as a generator. Mos scales are of 5, 9, or 14 notes.

Subgroup: 2.3.5.7

Comma list: 49/48, 81/80

Mapping[1 0 -4 2], 0 2 8 1]]

mapping generators: ~2, ~7/4

Wedgie⟨⟨2 8 1 8 -4 -20]]

• CTE: ~2 = 1\1, ~7/4 = 948.7959
• POTE: ~2 = 1\1, ~7/4 = 947.365

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 49/48, 81/80

Mapping: [1 0 -4 2 -6], 0 2 8 1 12]]

Optimal tunings:

• CTE: ~2 = 1\1, ~7/4 = 947.4563
• POTE: ~2 = 1\1, ~7/4 = 945.973

Tuning ranges:

• 11-odd-limit diamond monotone: ~7/4 = [942.857, 947.368] (11\14 to 15\19)
• 11-odd-limit diamond tradeoff: ~7/4 = [933.129, 968.826]

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 49/48, 78/77, 81/80

Mapping: [1 0 -4 2 -6 -5], 0 2 8 1 12 11]]

Optimal tunings:

• CTE: ~2 = 1\1, ~7/4 = 947.8877
• POTE: ~2 = 1\1, ~7/4 = 946.397

Tuning ranges:

• 13- and 15-odd-limit diamond monotone: ~7/4 = 947.368 (15\19)
• 13- and 15-odd-limit diamond tradeoff: ~7/4 = [910.890, 968.826]

### Semafour

Subgroup: 2.3.5.7.11

Comma list: 33/32, 49/48, 55/54

Mapping: [1 0 -4 2 5], 0 2 8 1 -2]]

Optimal tunings:

• CTE: ~2 = 1\1, ~7/4 = 948.2089
• POTE: ~2 = 1\1, ~7/4 = 945.958

### Varan

Subgroup: 2.3.5.7.11

Comma list: 49/48, 77/75, 81/80

Mapping: [1 0 -4 2 -10], 0 2 8 1 17]]

Optimal tunings:

• CTE: ~2 = 1\1, ~7/4 = 949.6160
• POTE: ~2 = 1\1, ~7/4 = 948.921

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 66/65, 77/75, 81/80

Mapping: [1 0 -4 2 -10 -5], 0 2 8 1 17 11]]

Optimal tunings:

• CTE: ~2 = 1\1, ~7/4 = 949.5255
• POTE: ~2 = 1\1, ~7/4 = 948.835

### Baragon

Subgroup: 2.3.5.7.11

Comma list: 49/48, 56/55, 81/80

Mapping: [1 0 -4 2 9], 0 2 8 1 -7]]

Optimal tunings:

• CTE: ~2 = 1\1, ~7/4 = 949.0311
• POTE: ~2 = 1\1, ~7/4 = 948.827

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 56/55, 81/80, 91/90

Mapping: [1 0 -4 2 9 -5], 0 2 8 1 -7 11]]

Optimal tunings:

• CTE: ~2 = 1\1, ~7/4 = 949.0670
• POTE: ~2 = 1\1, ~7/4 = 948.802

## Helayo

For the 5-limit version of this temperament see High badness temperaments #Hogzilla.

Subgroup: 2.3.5.7

Comma list: 49/48, 3645/3584

Mapping[1 0 11 2], 0 2 -11 1]]

Wedgie⟨⟨2 -6 1 -14 -4 19]]

• CTE: ~2 = 1\1, ~7/4 = 947.0969

Music

## Superpelog

Subgroup: 2.3.5.7

Comma list: 49/48, 135/128

Mapping[1 0 7 2], 0 2 -6 1]]

Wedgie⟨⟨2 -6 1 -14 -4 19]]

• CTE: ~2 = 1\1, ~7/4 = 939.0297
• POTE: ~2 = 1\1, ~7/4 = 940.048

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 33/32, 45/44, 49/48

Mapping: [1 0 7 2 5], 0 2 -6 1 -2]]

Optimal tunings:

• CTE: ~2 = 1\1, ~7/4 = 938.4673
• POTE: ~2 = 1\1, ~7/4 = 940.041

Music
Mindaugas Rex Lithuaniae by Chris Vaisvil (blog) (superpelog[9] in 23edo tuning)

## Baba

Subgroup: 2.3.5.7

Comma list: 16/15, 49/45

Mapping[1 0 4 2], 0 2 -2 1]]

• POTE: ~2 = 1\1, ~7/4 = 973.296

Wedgie⟨⟨2 -2 1 -8 -4 8]]

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 16/15, 22/21, 49/45

Mapping: [1 0 4 2 1], 0 2 -2 1 3]]

Optimal tunings:

• POTE: ~2 = 1\1, ~7/4 = 978.164

## Negri

Negri tempers out the negri comma in the 5-limit, 49/48 and 225/224 in the 7-limit. It can be extended naturally to the 2.3.5.7.13 subgroup by adding 91/90 to the comma list; this will be discussed below under the title of negra.

Subgroup: 2.3.5

Comma list: 16875/16384

Mapping[1 2 2], 0 -4 3]]

mapping generators: ~2, ~16/15

Wedgie⟨⟨4 -3 -14]]

• POTE: ~2 = 1\1, ~16/15 = 125.7549

### 7-limit

Subgroup: 2.3.5.7

Comma list: 49/48, 225/224

Mapping[1 2 2 3], 0 -4 3 -2]]

Wedgie⟨⟨4 -3 2 -14 -8 13]]

• POTE: ~2 = 1\1, ~15/14 = 125.608

#### 2.3.5.7.13 subgroup (negra)

Subgroup: 2.3.5.7.13

Comma list: 49/48, 65/64, 91/90

Sval mapping: [1 2 2 3 4], 0 -4 3 -2 -3]]

Gencom mapping: [1 2 2 3 0 4], 0 -4 3 -2 0 -3]]

gencom: [2 14/13; 49/48 65/64 91/90]

Optimal tunings:

• POTE: ~2 = 1\1, ~14/13 = 125.567

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 49/48, 56/55

Mapping: [1 2 2 3 4], 0 -4 3 -2 -5]]

Wedgie⟨⟨4 -3 2 5 -14 -8 -6 13 22 7]]

Optimal tunings:

• POTE: ~2 = 1\1, ~15/14 = 126.474

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 49/48, 56/55, 78/77

Mapping: [1 2 2 3 4 4], 0 -4 3 -2 -5 -3]]

Optimal tunings:

• POTE: ~2 = 1\1, ~14/13 = 126.431

### Negril

Subgroup: 2.3.5.7.11

Comma list: 49/48, 100/99, 225/224

Mapping: [1 2 2 3 2], 0 -4 3 -2 14]]

Wedgie⟨⟨4 -3 2 -14 -14 -8 -36 13 -22 -46]]

Optimal tunings:

• POTE: ~2 = 1\1, ~15/14 = 124.767

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 65/64, 91/90, 875/858

Mapping: [1 2 2 3 2 4], 0 -4 3 -2 14 -3]]

Optimal tunings:

• POTE: ~2 = 1\1, ~14/13 = 124.716

### Negric

Subgroup: 2.3.5.7.11

Comma list: 33/32, 49/48, 77/75

Mapping: [1 2 2 3 3], 0 -4 3 -2 4]]

Wedgie⟨⟨4 -3 2 -4 -14 -8 -20 13 1 -18]]

Optimal tunings:

• POTE: ~2 = 1\1, ~15/14 = 127.039

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 33/32, 49/48, 65/64, 91/90

Mapping: [1 2 2 3 3 4], 0 -4 3 -2 4 -3]]

Optimal tunings:

• POTE: ~2 = 1\1, ~14/13 = 127.039

### Negroni

Subgroup: 2.3.5.7.11

Comma list: 49/48, 55/54, 225/224

Mapping: [1 2 2 3 5], 0 -4 3 -2 -15]]

Optimal tunings:

• POTE: ~2 = 1\1, ~15/14 = 124.539

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 55/54, 65/64, 91/90

Mapping: [1 2 2 3 5 4], 0 -4 3 -2 -15 -3]]

Optimal tunings:

• POTE: ~2 = 1\1, ~14/13 = 124.545

### Wilsec

Subgroup: 2.3.5.7.11

Comma list: 49/48, 121/120, 225/224

Mapping: [1 6 -1 5 4], 0 -8 6 -4 -1]]

Optimal tunings:

• POTE: ~2 = 1\1, ~11/8 = 537.186

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 65/64, 91/90, 121/120

Mapping: [1 6 -1 5 4 7], 0 -8 6 -4 -1 -6]]

Optimal tunings:

• POTE: ~2 = 1\1, ~11/8 = 537.208

#### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 49/48, 65/64, 91/90, 121/120, 154/153

Mapping: [1 6 -1 5 4 7 -2], 0 -8 6 -4 -1 -6 11]]

Optimal tunings:

• POTE: ~2 = 1\1, ~11/8 = 537.230

#### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 49/48, 65/64, 77/76, 91/90, 121/120, 154/153

Mapping: [1 6 -1 5 4 7 -2 7], 0 -8 6 -4 -1 -6 11 -5]]

Optimal tunings:

• POTE: ~2 = 1\1, ~11/8 = 537.214

## Nuke

Subgroup: 2.3.5.7

Comma list: 49/48, 3584/3375

Mapping[1 2 2 3], 0 -6 5 -3]]

• POTE: ~2 = 1\1, ~16/15 = 80.9538

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 49/48, 77/75, 512/495

Mapping: [1 2 2 3 3], 0 -6 5 -3 7]]

Optimal tunings:

• POTE: ~2 = 1\1, ~16/15 = 80.8171

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 66/65, 77/75, 448/429

Mapping: [1 2 2 3 3 4], 0 -6 5 -3 7 -4]]

Optimal tunings:

• POTE: ~2 = 1\1, ~16/15 = 81.0243

## Semabila

Subgroup: 2.3.5.7

Comma list: 49/48, 28672/28125

Mapping: [1 6 1 5], 0 -10 3 -5]]

Wedgie⟨⟨10 -3 5 -28 -20 20]]

• POTE: ~2 = 1\1, ~75/56 = 529.667

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 49/48, 56/55, 1350/1331

Mapping: [1 6 1 5 7], 0 -10 3 -5 -8]]

Optimal tunings:

• POTE: ~2 = 1\1, ~15/11 = 529.729

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 56/55, 91/90, 847/845

Mapping: [1 6 1 5 7 9], 0 -10 3 -5 -8 -12]]

Optimal tunings:

• POTE: ~2 = 1\1, ~15/11 = 529.763

### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 49/48, 56/55, 91/90, 154/153, 375/374

Mapping: [1 6 1 5 7 9 1], 0 -10 3 -5 -8 -12 7]]

Optimal tunings:

• POTE: ~2 = 1\1, ~15/11 = 529.695

### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 49/48, 56/55, 76/75, 91/90, 154/153, 190/187

Mapping: [1 6 1 5 7 9 1 6], 0 -10 3 -5 -8 -12 7 -4]]

Optimal tunings:

• POTE: ~2 = 1\1, ~15/11 = 529.736

## Hemiripple

Subgroup: 2.3.5.7

Comma list: 49/48, 6561/6250

Mapping[1 2 3 3], 0 -10 -16 -5]]

Wedgie⟨⟨10 16 5 2 -20 -33]]

• POTE: ~2 = 1\1, ~36/35 = 50.826

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 49/48, 121/120, 567/550

Mapping: [1 2 3 3 4], 0 -10 -16 -5 -13]]

Optimal tunings:

• POTE: ~2 = 1\1, ~36/35 = 50.826

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 66/65, 121/120, 351/350

Mapping: [1 2 3 3 4 4], 0 -10 -16 -5 -13 -7]]

Optimal tunings:

• POTE: ~2 = 1\1, ~36/35 = 50.635