Hendecatonic MOS: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>Andrew_Heathwaite
**Imported revision 413603138 - Original comment: **
BudjarnLambeth (talk | contribs)
m Categorised this uncategorised page
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
[[File:hendecatonic_MOS_scales_PING.png|alt=hendecatonic_MOS_scales_PING.png|hendecatonic_MOS_scales_PING.png]]
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
 
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2013-03-10 13:55:34 UTC</tt>.<br>
: The original revision id was <tt>413603138</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[image:hendecatonic_MOS_scales_PING.png]]
Hendecatonic (11-tone) [[MOSScales|MOS Scales]] come in many varieties and are effective as chromatic scales out of which albitonic (diatonic-like) subsets can be taken. As 11 is a prime number, each Hendecatonic MOS Scale has the octave as a period, rather than some division of the octave like 600¢. It is a simple matter to retune a Halberstadt keyboard to a Hendecatonic MOS Scale, with the 2/1 occurring after 11 keys, or by skipping a key so the 2/1 occurs after 12 keys. The diagram above shows the 10 generator ranges ("Regions") where Hendecatonic MOS Scales occur.
Hendecatonic (11-tone) [[MOSScales|MOS Scales]] come in many varieties and are effective as chromatic scales out of which albitonic (diatonic-like) subsets can be taken. As 11 is a prime number, each Hendecatonic MOS Scale has the octave as a period, rather than some division of the octave like 600¢. It is a simple matter to retune a Halberstadt keyboard to a Hendecatonic MOS Scale, with the 2/1 occurring after 11 keys, or by skipping a key so the 2/1 occurs after 12 keys. The diagram above shows the 10 generator ranges ("Regions") where Hendecatonic MOS Scales occur.


See: [[chromatic pairs]], [[tridecatonic MOS]]
See: [[Chromatic_pairs|chromatic pairs]], [[Tridecatonic_MOS|tridecatonic MOS]]
=The 10 Generator Ranges=  
 
=The 10 Generator Ranges=
 
==[[1L_10s|1L 10s]] aka 1+10==
 
Range: 0¢ to 109.091¢ (1\[[11edo|11edo]])
 
Albitonic MOS subsets: [[1L_6s|1L 6s]], [[1L_7s|1L 7s]], [[1L_8s|1L 8s]] etc.
 
[[Valentine|Valentine]][11] in [[46edo|46edo]] (g=3\46 ~ 78.261¢): 3 3 3 3 3 3 3 3 3 16 3
 
[[Nautilus|Nautilus]][11] in [[29edo|29edo]] (g=2\29 ~ 82.759¢): 2 2 2 9 2 2 2 2 2 2
 
[[Octacot|Octacot]][11] in [[41edo|41edo]] (g=3\41 ~ 88.805¢): 3 3 3 3 3 3 3 3 3 3 11
 
[[Passion|Passion]][11] in [[37edo|37edo]] (g=3\37 ~ 97.297¢): 3 3 3 3 3 3 3 3 3 3 7
 
[[Ripple|Ripple]][11] in [[23edo|23edo]] (g=2\23 ~ 104.348¢): 2 2 2 2 2 2 2 2 2 2 3
 
==[[10L_1s|10L 1s]] aka 10+1==
 
Range: 109.091¢ (1\11edo) to 120¢ (1\[[10edo|10edo]])
 
Albitonic MOS subsets: [[1L_6s|1L 6s]], [[1L_7s|1L 7s]], [[1L_8s|1L 8s]] etc.
 
[[Miracle|Miracle]][11] in [[72edo|72edo]] (g=7\72 ~ 116.667¢): 7 7 7 7 7 7 7 2 7 7 7
 
==[[6L_5s|6L 5s]] aka 6+5==
 
Range: 200¢ (1\[[6edo|6edo]]) to 218.182¢ (2\11edo)


==[[1L 10s]] aka 1+10==
Albitonic MOS subsets: [[5L_1s|5L 1s]]


Range: 0¢ to 109.091¢ (1\[[11edo]])
[[baldy11|Baldy]][11] in [[47edo|47edo]] (g=8\47 ~ 204.255¢): 7 1 7 1 7 1 7 7 1 7 1
Albitonic MOS subsets: [[1L 6s]], [[1L 7s]], [[1L 8s]] etc.


[[Valentine]][11] in [[46edo]] (g=3\46 ~ 78.261¢): 3 3 3 3 3 3 3 3 3 16 3
[[machine11|Machine]][11] in [[28edo|28edo]] (g=5\28 ~ 214.286¢): 3 2 3 2 3 2 3 3 2 3 2
[[Nautilus]][11] in [[29edo]] (g=2\29 ~ 82.759¢): 2 2 2 9 2 2 2 2 2 2
[[Octacot]][11] in [[41edo]] (g=3\41 ~ 88.805¢): 3 3 3 3 3 3 3 3 3 3 11
[[Passion]][11] in [[37edo]] (g=3\37 ~ 97.297¢): 3 3 3 3 3 3 3 3 3 3 7
[[Ripple]][11] in [[23edo]] (g=2\23 ~ 104.348¢): 2 2 2 2 2 2 2 2 2 2 3


==[[10L 1s]] aka 10+1==  
==[[5L_6s|5L 6s]] aka 5+6==


Range: 109.091¢ (1\11edo) to 120¢ (1\[[10edo]])
Range: 218.182¢ (2\11edo) to 240¢ (1\[[5edo|5edo]])
Albitonic MOS subsets: [[1L 6s]], [[1L 7s]], [[1L 8s]] etc.


[[Miracle]][11] in [[72edo]] (g=7\72 ~ 116.667¢): 7 7 7 7 7 7 7 2 7 7 7
Albitonic MOS subsets: [[5L_1s|5L 1s]]


==[[6L 5s]] aka 6+5==
[[Gorgo|Gorgo]][11]/[[shoe11|Shoe]][11] in [[37edo|37edo]] (g=7\37 ~ 227.027¢): 5 2 5 2 5 2 5 2 2 5 2


Range: 200¢ (1\[[6edo]]) to 218.182¢ (2\11edo)
[[Cynder|Cynder]][11]/[[Mothra|Mothra]][11]/[[Slendric|Slendric]][11] in [[31edo|31edo]] (g=6\31 ~ 232.258¢): 1 5 1 5 1 5 1 5 1 1 5
Albitonic MOS subsets: [[5L 1s]]


[[baldy11|Baldy]][11] in [[47edo]] (g=8\47 ~ 204.255¢): 7 1 7 1 7 1 7 7 1 7 1
[[Rodan|Rodan]][11] in [[41edo|41edo]] (g=8\41 ~ 234.146¢): 1 7 1 7 1 7 1 7 1 1 7
[[machine11|Machine]][11] in [[28edo]] (g=5\28 ~ 214.286¢): 3 2 3 2 3 2 3 3 2 3 2


==[[5L 6s]] aka 5+6==  
==[[4L_7s|4L 7s]] aka 4+7==


Range: 218.182¢ (2\11edo) to 240¢ (1\[[5edo]])
Range: 300¢ (1\[[4edo|4edo]]) to 327.273¢ (3\11edo)
Albitonic MOS subsets: [[5L 1s]]


[[Gorgo]][11]/[[shoe11|Shoe]][11] in [[37edo]] (g=7\37 ~ 227.027¢): 5 2 5 2 5 2 5 2 2 5 2
Albitonic MOS subsets: [[4L_3s|4L 3s]]
[[Cynder]][11]/[[Mothra]][11]/[[Slendric]][11] in [[31edo]] (g=6\31 ~ 232.258¢): 1 5 1 5 1 5 1 5 1 1 5
[[Rodan]][11] in [[41edo]] (g=8\41 ~ 234.146¢): 1 7 1 7 1 7 1 7 1 1 7


==[[4L 7s]] aka 4+7==
[[Myna|Myna]][11] in [[89edo|89edo]]: 3 3 17 3 3 17 3 3 17 3 17


Range: 300¢ (1\[[4edo]]) to 327.273¢ (3\11edo)
[[Keemun|Keemun]][11]/[[Hanson|Hanson]][11]/[[catakleismic|Catakleismic]][11] in [[72edo|72edo]] (g=19\72 ~ 316.667¢): 4 4 11 4 4 11 4 11 4 4 11
Albitonic MOS subsets: [[4L 3s]]


[[Myna]][11] in [[89edo]]: 3 3 17 3 3 17 3 3 17 3 17
[[Orgone|Orgone]][11] in [[26edo|26edo]]: 2 3 2 3 2 2 3 2 2 3 2
[[Keemun]][11]/[[Hanson]][11]/[[Catakleismic]][11] in [[72edo]] (g=19\72 ~ 316.667¢): 4 4 11 4 4 11 4 11 4 4 11
[[Orgone]][11] in [[26edo]]: 2 3 2 3 2 2 3 2 2 3 2


==[[7L 4s]] aka 7+4==  
==[[7L_4s|7L 4s]] aka 7+4==


Range: 327.273¢ (3\11edo) to 342.857¢ (2\7edo)
Range: 327.273¢ (3\11edo) to 342.857¢ (2\7edo)
Albitonic MOS subsets: [[4L 3s]]


[[Amity]][11]/[[Hitchcock]][11] in [[46edo]] (g=13\46 ~ 339.130¢): 1 6 6 1 6 1 6 6 1 6 6
Albitonic MOS subsets: [[4L_3s|4L 3s]]
 
[[Amity|Amity]][11]/[[Hitchcock|Hitchcock]][11] in [[46edo|46edo]] (g=13\46 ~ 339.130¢): 1 6 6 1 6 1 6 6 1 6 6
 
==[[3L_8s|3L 8s]] aka 3+8==
 
Range: 400¢ (1\[[3edo|3edo]]) to 436.364¢ (4\11edo)
 
Albitonic MOS subsets: [[3L_5s|3L 5s]]
 
[[Bossier|Bossier]][11] in [[37edo|37edo]] (g=13\37 ~ 431.622¢): 2 2 2 7 2 2 7 2 2 2 7
 
[[Squares|Squares]][11] in [[48edo|48edo]] (g=17\48 = 425¢): 8 3 3 8 3 3 3 8 3 3 3
 
==[[8L_3s|8L 3s]] aka 8+3==
 
Range: 436.364¢ (4\11edo) to 450¢ (3\[[8edo|8edo]])
 
Albitonic MOS subsets: [[3L_5s|3L 5s]]
 
[[Sensi|Sensi]][11] in [[46edo|46edo]] (g=17\46 ~ 443.478¢): 5 5 5 2 5 5 5 2 5 5 2


==[[3L 8s]] aka 3+8==  
==[[9L_2s|9L 2s]] aka 9+2==


Range: 400¢ (1\[[3edo]]) to 436.364¢ (4\11edo)
Range: 533.333¢ (4\[[9edo|9edo]] to 545.455¢ (5\11edo)
Albitonic MOS subsets: [[3L 5s]]


[[Bossier]][11] in [[37edo]] (g=13\37 ~ 431.622¢): 2 2 2 7 2 2 7 2 2 2 7
Albitonic MOS subsets: [[2L_5s|2L 5s]], [[2L_7s|2L 7s]]
[[Squares]][11] in [[48edo]] (g=17\48 = 425¢): 8 3 3 8 3 3 3 8 3 3 3


==[[8L 3s]] aka 8+3==
[[Avila|Avila]][11] in [[29edo|29edo]] (g=13\29 ~ 537.931¢): 1 3 3 3 3 3 1 3 3 3 3


Range: 436.364¢ (4\11edo) to 450¢ (3\[[8edo]])
[[casablanca|Casablanca]][11] in [[73edo|73edo]] (g=33\73 ~ 542.466¢): 5 7 7 7 7 7 5 7 7 7 7
Albitonic MOS subsets: [[3L 5s]]


[[Sensi]][11] in [[46edo]] (g=17\46 ~ 443.478¢): 5 5 5 2 5 5 5 2 5 5 2
==[[2L_9s|2L 9s]] aka 2+9==


==[[9L 2s]] aka 9+2==
Range: 545.455¢ (5\11edo) to 600¢ (1\[[2edo|2edo]])


Range: 533.333¢ (4\[[9edo]] to 545.455¢ (5\11edo)
Albitonic MOS subsets: [[2L_5s|2L 5s]], [[2L_7s|2L 7s]]
Albitonic MOS subsets: [[2L 5s]], [[2L 7s]]


[[Avila]][11] in [[29edo]] (g=13\29 ~ 537.931¢): 1 3 3 3 3 3 1 3 3 3 3
[[Heinz|Heinz]][11] in [[46edo|46edo]] (g=21\46 ~ 547.826¢): 4 4 4 5 4 4 4 4 4 5 4
[[Casablanca]][11] in [[73edo]] (g=33\73 ~ 542.466¢): 5 7 7 7 7 7 5 7 7 7 7


==[[2L 9s]] aka 2+9==  
[[Liese|Liese]][11] in [[74edo|74edo]] (g=35\74 ~ 567.568¢): 4 4 4 19 4 4 4 4 19 4 4


Range: 545.455¢ (5\11edo) to 600¢ (1\[[2edo]])
[[Triton|Triton]][11] in [[19edo|19edo]] (g=9\19 ~ 568.421¢): 1 1 1 1 5 1 1 1 1 1 5
Albitonic MOS subsets: [[2L 5s]], [[2L 7s]]


[[Heinz]][11] in [[46edo]] (g=21\46 ~ 547.826¢): 4 4 4 5 4 4 4 4 4 5 4
[[Tritonic|Tritonic]][11] in [[60edo|60edo]] (g=29\60 = 580¢): 2 2 2 21 2 2 2 2 2 21 2
[[Liese]][11] in [[74edo]] (g=35\74 ~ 567.568¢): 4 4 4 19 4 4 4 4 19 4 4
[[Category:Lists of scales]]
[[Triton]][11] in [[19edo]] (g=9\19 ~ 568.421¢): 1 1 1 1 5 1 1 1 1 1 5
[[Category:MOS scales]]
[[Tritonic]][11] in [[60edo]] (g=29\60 = 580¢): 2 2 2 21 2 2 2 2 2 21 2</pre></div>
[[Category:11-tone scales]]
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Hendecatonic MOS&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextLocalImageRule:22:&amp;lt;img src=&amp;quot;/file/view/hendecatonic_MOS_scales_PING.png/278861814/hendecatonic_MOS_scales_PING.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/hendecatonic_MOS_scales_PING.png/278861814/hendecatonic_MOS_scales_PING.png" alt="hendecatonic_MOS_scales_PING.png" title="hendecatonic_MOS_scales_PING.png" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:22 --&gt;&lt;br /&gt;
Hendecatonic (11-tone) &lt;a class="wiki_link" href="/MOSScales"&gt;MOS Scales&lt;/a&gt; come in many varieties and are effective as chromatic scales out of which albitonic (diatonic-like) subsets can be taken. As 11 is a prime number, each Hendecatonic MOS Scale has the octave as a period, rather than some division of the octave like 600¢. It is a simple matter to retune a Halberstadt keyboard to a Hendecatonic MOS Scale, with the 2/1 occurring after 11 keys, or by skipping a key so the 2/1 occurs after 12 keys. The diagram above shows the 10 generator ranges (&amp;quot;Regions&amp;quot;) where Hendecatonic MOS Scales occur.&lt;br /&gt;
&lt;br /&gt;
See: &lt;a class="wiki_link" href="/chromatic%20pairs"&gt;chromatic pairs&lt;/a&gt;, &lt;a class="wiki_link" href="/tridecatonic%20MOS"&gt;tridecatonic MOS&lt;/a&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="The 10 Generator Ranges"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;The 10 Generator Ranges&lt;/h1&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="The 10 Generator Ranges-1L 10s aka 1+10"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;&lt;a class="wiki_link" href="/1L%2010s"&gt;1L 10s&lt;/a&gt; aka 1+10&lt;/h2&gt;
&lt;br /&gt;
Range: 0¢ to 109.091¢ (1\&lt;a class="wiki_link" href="/11edo"&gt;11edo&lt;/a&gt;)&lt;br /&gt;
Albitonic MOS subsets: &lt;a class="wiki_link" href="/1L%206s"&gt;1L 6s&lt;/a&gt;, &lt;a class="wiki_link" href="/1L%207s"&gt;1L 7s&lt;/a&gt;, &lt;a class="wiki_link" href="/1L%208s"&gt;1L 8s&lt;/a&gt; etc.&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Valentine"&gt;Valentine&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/46edo"&gt;46edo&lt;/a&gt; (g=3\46 ~ 78.261¢): 3 3 3 3 3 3 3 3 3 16 3&lt;br /&gt;
&lt;a class="wiki_link" href="/Nautilus"&gt;Nautilus&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/29edo"&gt;29edo&lt;/a&gt; (g=2\29 ~ 82.759¢): 2 2 2 9 2 2 2 2 2 2&lt;br /&gt;
&lt;a class="wiki_link" href="/Octacot"&gt;Octacot&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/41edo"&gt;41edo&lt;/a&gt; (g=3\41 ~ 88.805¢): 3 3 3 3 3 3 3 3 3 3 11&lt;br /&gt;
&lt;a class="wiki_link" href="/Passion"&gt;Passion&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/37edo"&gt;37edo&lt;/a&gt; (g=3\37 ~ 97.297¢): 3 3 3 3 3 3 3 3 3 3 7&lt;br /&gt;
&lt;a class="wiki_link" href="/Ripple"&gt;Ripple&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/23edo"&gt;23edo&lt;/a&gt; (g=2\23 ~ 104.348¢): 2 2 2 2 2 2 2 2 2 2 3&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="The 10 Generator Ranges-10L 1s aka 10+1"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;&lt;a class="wiki_link" href="/10L%201s"&gt;10L 1s&lt;/a&gt; aka 10+1&lt;/h2&gt;
&lt;br /&gt;
Range: 109.091¢ (1\11edo) to 120¢ (1\&lt;a class="wiki_link" href="/10edo"&gt;10edo&lt;/a&gt;)&lt;br /&gt;
Albitonic MOS subsets: &lt;a class="wiki_link" href="/1L%206s"&gt;1L 6s&lt;/a&gt;, &lt;a class="wiki_link" href="/1L%207s"&gt;1L 7s&lt;/a&gt;, &lt;a class="wiki_link" href="/1L%208s"&gt;1L 8s&lt;/a&gt; etc.&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Miracle"&gt;Miracle&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/72edo"&gt;72edo&lt;/a&gt; (g=7\72 ~ 116.667¢): 7 7 7 7 7 7 7 2 7 7 7&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="The 10 Generator Ranges-6L 5s aka 6+5"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;&lt;a class="wiki_link" href="/6L%205s"&gt;6L 5s&lt;/a&gt; aka 6+5&lt;/h2&gt;
&lt;br /&gt;
Range: 200¢ (1\&lt;a class="wiki_link" href="/6edo"&gt;6edo&lt;/a&gt;) to 218.182¢ (2\11edo)&lt;br /&gt;
Albitonic MOS subsets: &lt;a class="wiki_link" href="/5L%201s"&gt;5L 1s&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/baldy11"&gt;Baldy&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/47edo"&gt;47edo&lt;/a&gt; (g=8\47 ~ 204.255¢): 7 1 7 1 7 1 7 7 1 7 1&lt;br /&gt;
&lt;a class="wiki_link" href="/machine11"&gt;Machine&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/28edo"&gt;28edo&lt;/a&gt; (g=5\28 ~ 214.286¢): 3 2 3 2 3 2 3 3 2 3 2&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="The 10 Generator Ranges-5L 6s aka 5+6"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;&lt;a class="wiki_link" href="/5L%206s"&gt;5L 6s&lt;/a&gt; aka 5+6&lt;/h2&gt;
&lt;br /&gt;
Range: 218.182¢ (2\11edo) to 240¢ (1\&lt;a class="wiki_link" href="/5edo"&gt;5edo&lt;/a&gt;)&lt;br /&gt;
Albitonic MOS subsets: &lt;a class="wiki_link" href="/5L%201s"&gt;5L 1s&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Gorgo"&gt;Gorgo&lt;/a&gt;[11]/&lt;a class="wiki_link" href="/shoe11"&gt;Shoe&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/37edo"&gt;37edo&lt;/a&gt; (g=7\37 ~ 227.027¢): 5 2 5 2 5 2 5 2 2 5 2&lt;br /&gt;
&lt;a class="wiki_link" href="/Cynder"&gt;Cynder&lt;/a&gt;[11]/&lt;a class="wiki_link" href="/Mothra"&gt;Mothra&lt;/a&gt;[11]/&lt;a class="wiki_link" href="/Slendric"&gt;Slendric&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; (g=6\31 ~ 232.258¢): 1 5 1 5 1 5 1 5 1 1 5&lt;br /&gt;
&lt;a class="wiki_link" href="/Rodan"&gt;Rodan&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/41edo"&gt;41edo&lt;/a&gt; (g=8\41 ~ 234.146¢): 1 7 1 7 1 7 1 7 1 1 7&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="The 10 Generator Ranges-4L 7s aka 4+7"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;&lt;a class="wiki_link" href="/4L%207s"&gt;4L 7s&lt;/a&gt; aka 4+7&lt;/h2&gt;
&lt;br /&gt;
Range: 300¢ (1\&lt;a class="wiki_link" href="/4edo"&gt;4edo&lt;/a&gt;) to 327.273¢ (3\11edo)&lt;br /&gt;
Albitonic MOS subsets: &lt;a class="wiki_link" href="/4L%203s"&gt;4L 3s&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Myna"&gt;Myna&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/89edo"&gt;89edo&lt;/a&gt;: 3 3 17 3 3 17 3 3 17 3 17&lt;br /&gt;
&lt;a class="wiki_link" href="/Keemun"&gt;Keemun&lt;/a&gt;[11]/&lt;a class="wiki_link" href="/Hanson"&gt;Hanson&lt;/a&gt;[11]/&lt;a class="wiki_link" href="/Catakleismic"&gt;Catakleismic&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/72edo"&gt;72edo&lt;/a&gt; (g=19\72 ~ 316.667¢): 4 4 11 4 4 11 4 11 4 4 11&lt;br /&gt;
&lt;a class="wiki_link" href="/Orgone"&gt;Orgone&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/26edo"&gt;26edo&lt;/a&gt;: 2 3 2 3 2 2 3 2 2 3 2&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="The 10 Generator Ranges-7L 4s aka 7+4"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;&lt;a class="wiki_link" href="/7L%204s"&gt;7L 4s&lt;/a&gt; aka 7+4&lt;/h2&gt;
&lt;br /&gt;
Range: 327.273¢ (3\11edo) to 342.857¢ (2\7edo)&lt;br /&gt;
Albitonic MOS subsets: &lt;a class="wiki_link" href="/4L%203s"&gt;4L 3s&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Amity"&gt;Amity&lt;/a&gt;[11]/&lt;a class="wiki_link" href="/Hitchcock"&gt;Hitchcock&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/46edo"&gt;46edo&lt;/a&gt; (g=13\46 ~ 339.130¢): 1 6 6 1 6 1 6 6 1 6 6&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="The 10 Generator Ranges-3L 8s aka 3+8"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;&lt;a class="wiki_link" href="/3L%208s"&gt;3L 8s&lt;/a&gt; aka 3+8&lt;/h2&gt;
&lt;br /&gt;
Range: 400¢ (1\&lt;a class="wiki_link" href="/3edo"&gt;3edo&lt;/a&gt;) to 436.364¢ (4\11edo)&lt;br /&gt;
Albitonic MOS subsets: &lt;a class="wiki_link" href="/3L%205s"&gt;3L 5s&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Bossier"&gt;Bossier&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/37edo"&gt;37edo&lt;/a&gt; (g=13\37 ~ 431.622¢): 2 2 2 7 2 2 7 2 2 2 7&lt;br /&gt;
&lt;a class="wiki_link" href="/Squares"&gt;Squares&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/48edo"&gt;48edo&lt;/a&gt; (g=17\48 = 425¢): 8 3 3 8 3 3 3 8 3 3 3&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="The 10 Generator Ranges-8L 3s aka 8+3"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;&lt;a class="wiki_link" href="/8L%203s"&gt;8L 3s&lt;/a&gt; aka 8+3&lt;/h2&gt;
&lt;br /&gt;
Range: 436.364¢ (4\11edo) to 450¢ (3\&lt;a class="wiki_link" href="/8edo"&gt;8edo&lt;/a&gt;)&lt;br /&gt;
Albitonic MOS subsets: &lt;a class="wiki_link" href="/3L%205s"&gt;3L 5s&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Sensi"&gt;Sensi&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/46edo"&gt;46edo&lt;/a&gt; (g=17\46 ~ 443.478¢): 5 5 5 2 5 5 5 2 5 5 2&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc9"&gt;&lt;a name="The 10 Generator Ranges-9L 2s aka 9+2"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;&lt;a class="wiki_link" href="/9L%202s"&gt;9L 2s&lt;/a&gt; aka 9+2&lt;/h2&gt;
&lt;br /&gt;
Range: 533.333¢ (4\&lt;a class="wiki_link" href="/9edo"&gt;9edo&lt;/a&gt; to 545.455¢ (5\11edo)&lt;br /&gt;
Albitonic MOS subsets: &lt;a class="wiki_link" href="/2L%205s"&gt;2L 5s&lt;/a&gt;, &lt;a class="wiki_link" href="/2L%207s"&gt;2L 7s&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Avila"&gt;Avila&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/29edo"&gt;29edo&lt;/a&gt; (g=13\29 ~ 537.931¢): 1 3 3 3 3 3 1 3 3 3 3&lt;br /&gt;
&lt;a class="wiki_link" href="/Casablanca"&gt;Casablanca&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/73edo"&gt;73edo&lt;/a&gt; (g=33\73 ~ 542.466¢): 5 7 7 7 7 7 5 7 7 7 7&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc10"&gt;&lt;a name="The 10 Generator Ranges-2L 9s aka 2+9"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;&lt;a class="wiki_link" href="/2L%209s"&gt;2L 9s&lt;/a&gt; aka 2+9&lt;/h2&gt;
&lt;br /&gt;
Range: 545.455¢ (5\11edo) to 600¢ (1\&lt;a class="wiki_link" href="/2edo"&gt;2edo&lt;/a&gt;)&lt;br /&gt;
Albitonic MOS subsets: &lt;a class="wiki_link" href="/2L%205s"&gt;2L 5s&lt;/a&gt;, &lt;a class="wiki_link" href="/2L%207s"&gt;2L 7s&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Heinz"&gt;Heinz&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/46edo"&gt;46edo&lt;/a&gt; (g=21\46 ~ 547.826¢): 4 4 4 5 4 4 4 4 4 5 4&lt;br /&gt;
&lt;a class="wiki_link" href="/Liese"&gt;Liese&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/74edo"&gt;74edo&lt;/a&gt; (g=35\74 ~ 567.568¢): 4 4 4 19 4 4 4 4 19 4 4&lt;br /&gt;
&lt;a class="wiki_link" href="/Triton"&gt;Triton&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/19edo"&gt;19edo&lt;/a&gt; (g=9\19 ~ 568.421¢): 1 1 1 1 5 1 1 1 1 1 5&lt;br /&gt;
&lt;a class="wiki_link" href="/Tritonic"&gt;Tritonic&lt;/a&gt;[11] in &lt;a class="wiki_link" href="/60edo"&gt;60edo&lt;/a&gt; (g=29\60 = 580¢): 2 2 2 21 2 2 2 2 2 21 2&lt;/body&gt;&lt;/html&gt;</pre></div>

Latest revision as of 20:20, 23 April 2023

hendecatonic_MOS_scales_PING.png

Hendecatonic (11-tone) MOS Scales come in many varieties and are effective as chromatic scales out of which albitonic (diatonic-like) subsets can be taken. As 11 is a prime number, each Hendecatonic MOS Scale has the octave as a period, rather than some division of the octave like 600¢. It is a simple matter to retune a Halberstadt keyboard to a Hendecatonic MOS Scale, with the 2/1 occurring after 11 keys, or by skipping a key so the 2/1 occurs after 12 keys. The diagram above shows the 10 generator ranges ("Regions") where Hendecatonic MOS Scales occur.

See: chromatic pairs, tridecatonic MOS

The 10 Generator Ranges

1L 10s aka 1+10

Range: 0¢ to 109.091¢ (1\11edo)

Albitonic MOS subsets: 1L 6s, 1L 7s, 1L 8s etc.

Valentine[11] in 46edo (g=3\46 ~ 78.261¢): 3 3 3 3 3 3 3 3 3 16 3

Nautilus[11] in 29edo (g=2\29 ~ 82.759¢): 2 2 2 9 2 2 2 2 2 2

Octacot[11] in 41edo (g=3\41 ~ 88.805¢): 3 3 3 3 3 3 3 3 3 3 11

Passion[11] in 37edo (g=3\37 ~ 97.297¢): 3 3 3 3 3 3 3 3 3 3 7

Ripple[11] in 23edo (g=2\23 ~ 104.348¢): 2 2 2 2 2 2 2 2 2 2 3

10L 1s aka 10+1

Range: 109.091¢ (1\11edo) to 120¢ (1\10edo)

Albitonic MOS subsets: 1L 6s, 1L 7s, 1L 8s etc.

Miracle[11] in 72edo (g=7\72 ~ 116.667¢): 7 7 7 7 7 7 7 2 7 7 7

6L 5s aka 6+5

Range: 200¢ (1\6edo) to 218.182¢ (2\11edo)

Albitonic MOS subsets: 5L 1s

Baldy[11] in 47edo (g=8\47 ~ 204.255¢): 7 1 7 1 7 1 7 7 1 7 1

Machine[11] in 28edo (g=5\28 ~ 214.286¢): 3 2 3 2 3 2 3 3 2 3 2

5L 6s aka 5+6

Range: 218.182¢ (2\11edo) to 240¢ (1\5edo)

Albitonic MOS subsets: 5L 1s

Gorgo[11]/Shoe[11] in 37edo (g=7\37 ~ 227.027¢): 5 2 5 2 5 2 5 2 2 5 2

Cynder[11]/Mothra[11]/Slendric[11] in 31edo (g=6\31 ~ 232.258¢): 1 5 1 5 1 5 1 5 1 1 5

Rodan[11] in 41edo (g=8\41 ~ 234.146¢): 1 7 1 7 1 7 1 7 1 1 7

4L 7s aka 4+7

Range: 300¢ (1\4edo) to 327.273¢ (3\11edo)

Albitonic MOS subsets: 4L 3s

Myna[11] in 89edo: 3 3 17 3 3 17 3 3 17 3 17

Keemun[11]/Hanson[11]/Catakleismic[11] in 72edo (g=19\72 ~ 316.667¢): 4 4 11 4 4 11 4 11 4 4 11

Orgone[11] in 26edo: 2 3 2 3 2 2 3 2 2 3 2

7L 4s aka 7+4

Range: 327.273¢ (3\11edo) to 342.857¢ (2\7edo)

Albitonic MOS subsets: 4L 3s

Amity[11]/Hitchcock[11] in 46edo (g=13\46 ~ 339.130¢): 1 6 6 1 6 1 6 6 1 6 6

3L 8s aka 3+8

Range: 400¢ (1\3edo) to 436.364¢ (4\11edo)

Albitonic MOS subsets: 3L 5s

Bossier[11] in 37edo (g=13\37 ~ 431.622¢): 2 2 2 7 2 2 7 2 2 2 7

Squares[11] in 48edo (g=17\48 = 425¢): 8 3 3 8 3 3 3 8 3 3 3

8L 3s aka 8+3

Range: 436.364¢ (4\11edo) to 450¢ (3\8edo)

Albitonic MOS subsets: 3L 5s

Sensi[11] in 46edo (g=17\46 ~ 443.478¢): 5 5 5 2 5 5 5 2 5 5 2

9L 2s aka 9+2

Range: 533.333¢ (4\9edo to 545.455¢ (5\11edo)

Albitonic MOS subsets: 2L 5s, 2L 7s

Avila[11] in 29edo (g=13\29 ~ 537.931¢): 1 3 3 3 3 3 1 3 3 3 3

Casablanca[11] in 73edo (g=33\73 ~ 542.466¢): 5 7 7 7 7 7 5 7 7 7 7

2L 9s aka 2+9

Range: 545.455¢ (5\11edo) to 600¢ (1\2edo)

Albitonic MOS subsets: 2L 5s, 2L 7s

Heinz[11] in 46edo (g=21\46 ~ 547.826¢): 4 4 4 5 4 4 4 4 4 5 4

Liese[11] in 74edo (g=35\74 ~ 567.568¢): 4 4 4 19 4 4 4 4 19 4 4

Triton[11] in 19edo (g=9\19 ~ 568.421¢): 1 1 1 1 5 1 1 1 1 1 5

Tritonic[11] in 60edo (g=29\60 = 580¢): 2 2 2 21 2 2 2 2 2 21 2