Hendecatonic MOS
Hendecatonic (11-tone) MOS Scales come in many varieties and are effective as chromatic scales out of which albitonic (diatonic-like) subsets can be taken. As 11 is a prime number, each Hendecatonic MOS Scale has the octave as a period, rather than some division of the octave like 600¢. It is a simple matter to retune a Halberstadt keyboard to a Hendecatonic MOS Scale, with the 2/1 occurring after 11 keys, or by skipping a key so the 2/1 occurs after 12 keys. The diagram above shows the 10 generator ranges ("Regions") where Hendecatonic MOS Scales occur.
See: chromatic pairs, tridecatonic MOS
The 10 Generator Ranges
1L 10s aka 1+10
Range: 0¢ to 109.091¢ (1\11edo)
Albitonic MOS subsets: 1L 6s, 1L 7s, 1L 8s etc.
Valentine[11] in 46edo (g=3\46 ~ 78.261¢): 3 3 3 3 3 3 3 3 3 16 3
Nautilus[11] in 29edo (g=2\29 ~ 82.759¢): 2 2 2 9 2 2 2 2 2 2
Octacot[11] in 41edo (g=3\41 ~ 88.805¢): 3 3 3 3 3 3 3 3 3 3 11
Passion[11] in 37edo (g=3\37 ~ 97.297¢): 3 3 3 3 3 3 3 3 3 3 7
Ripple[11] in 23edo (g=2\23 ~ 104.348¢): 2 2 2 2 2 2 2 2 2 2 3
10L 1s aka 10+1
Range: 109.091¢ (1\11edo) to 120¢ (1\10edo)
Albitonic MOS subsets: 1L 6s, 1L 7s, 1L 8s etc.
Miracle[11] in 72edo (g=7\72 ~ 116.667¢): 7 7 7 7 7 7 7 2 7 7 7
6L 5s aka 6+5
Range: 200¢ (1\6edo) to 218.182¢ (2\11edo)
Albitonic MOS subsets: 5L 1s
Baldy[11] in 47edo (g=8\47 ~ 204.255¢): 7 1 7 1 7 1 7 7 1 7 1
Machine[11] in 28edo (g=5\28 ~ 214.286¢): 3 2 3 2 3 2 3 3 2 3 2
5L 6s aka 5+6
Range: 218.182¢ (2\11edo) to 240¢ (1\5edo)
Albitonic MOS subsets: 5L 1s
Gorgo[11]/Shoe[11] in 37edo (g=7\37 ~ 227.027¢): 5 2 5 2 5 2 5 2 2 5 2
Cynder[11]/Mothra[11]/Slendric[11] in 31edo (g=6\31 ~ 232.258¢): 1 5 1 5 1 5 1 5 1 1 5
Rodan[11] in 41edo (g=8\41 ~ 234.146¢): 1 7 1 7 1 7 1 7 1 1 7
4L 7s aka 4+7
Range: 300¢ (1\4edo) to 327.273¢ (3\11edo)
Albitonic MOS subsets: 4L 3s
Myna[11] in 89edo: 3 3 17 3 3 17 3 3 17 3 17
Keemun[11]/Hanson[11]/Catakleismic[11] in 72edo (g=19\72 ~ 316.667¢): 4 4 11 4 4 11 4 11 4 4 11
Orgone[11] in 26edo: 2 3 2 3 2 2 3 2 2 3 2
7L 4s aka 7+4
Range: 327.273¢ (3\11edo) to 342.857¢ (2\7edo)
Albitonic MOS subsets: 4L 3s
Amity[11]/Hitchcock[11] in 46edo (g=13\46 ~ 339.130¢): 1 6 6 1 6 1 6 6 1 6 6
3L 8s aka 3+8
Range: 400¢ (1\3edo) to 436.364¢ (4\11edo)
Albitonic MOS subsets: 3L 5s
Bossier[11] in 37edo (g=13\37 ~ 431.622¢): 2 2 2 7 2 2 7 2 2 2 7
Squares[11] in 48edo (g=17\48 = 425¢): 8 3 3 8 3 3 3 8 3 3 3
8L 3s aka 8+3
Range: 436.364¢ (4\11edo) to 450¢ (3\8edo)
Albitonic MOS subsets: 3L 5s
Sensi[11] in 46edo (g=17\46 ~ 443.478¢): 5 5 5 2 5 5 5 2 5 5 2
9L 2s aka 9+2
Range: 533.333¢ (4\9edo to 545.455¢ (5\11edo)
Albitonic MOS subsets: 2L 5s, 2L 7s
Avila[11] in 29edo (g=13\29 ~ 537.931¢): 1 3 3 3 3 3 1 3 3 3 3
Casablanca[11] in 73edo (g=33\73 ~ 542.466¢): 5 7 7 7 7 7 5 7 7 7 7
2L 9s aka 2+9
Range: 545.455¢ (5\11edo) to 600¢ (1\2edo)
Albitonic MOS subsets: 2L 5s, 2L 7s
Heinz[11] in 46edo (g=21\46 ~ 547.826¢): 4 4 4 5 4 4 4 4 4 5 4
Liese[11] in 74edo (g=35\74 ~ 567.568¢): 4 4 4 19 4 4 4 4 19 4 4
Triton[11] in 19edo (g=9\19 ~ 568.421¢): 1 1 1 1 5 1 1 1 1 1 5
Tritonic[11] in 60edo (g=29\60 = 580¢): 2 2 2 21 2 2 2 2 2 21 2