Hendecatonic MOS

From Xenharmonic Wiki
Jump to navigation Jump to search

hendecatonic_MOS_scales_PING.png

Hendecatonic (11-tone) MOS Scales come in many varieties and are effective as chromatic scales out of which albitonic (diatonic-like) subsets can be taken. As 11 is a prime number, each Hendecatonic MOS Scale has the octave as a period, rather than some division of the octave like 600¢. It is a simple matter to retune a Halberstadt keyboard to a Hendecatonic MOS Scale, with the 2/1 occurring after 11 keys, or by skipping a key so the 2/1 occurs after 12 keys. The diagram above shows the 10 generator ranges ("Regions") where Hendecatonic MOS Scales occur.

See: chromatic pairs, tridecatonic MOS

The 10 Generator Ranges

1L 10s aka 1+10

Range: 0¢ to 109.091¢ (1\11edo)

Albitonic MOS subsets: 1L 6s, 1L 7s, 1L 8s etc.

Valentine[11] in 46edo (g=3\46 ~ 78.261¢): 3 3 3 3 3 3 3 3 3 16 3

Nautilus[11] in 29edo (g=2\29 ~ 82.759¢): 2 2 2 9 2 2 2 2 2 2

Octacot[11] in 41edo (g=3\41 ~ 88.805¢): 3 3 3 3 3 3 3 3 3 3 11

Passion[11] in 37edo (g=3\37 ~ 97.297¢): 3 3 3 3 3 3 3 3 3 3 7

Ripple[11] in 23edo (g=2\23 ~ 104.348¢): 2 2 2 2 2 2 2 2 2 2 3

10L 1s aka 10+1

Range: 109.091¢ (1\11edo) to 120¢ (1\10edo)

Albitonic MOS subsets: 1L 6s, 1L 7s, 1L 8s etc.

Miracle[11] in 72edo (g=7\72 ~ 116.667¢): 7 7 7 7 7 7 7 2 7 7 7

6L 5s aka 6+5

Range: 200¢ (1\6edo) to 218.182¢ (2\11edo)

Albitonic MOS subsets: 5L 1s

Baldy[11] in 47edo (g=8\47 ~ 204.255¢): 7 1 7 1 7 1 7 7 1 7 1

Machine[11] in 28edo (g=5\28 ~ 214.286¢): 3 2 3 2 3 2 3 3 2 3 2

5L 6s aka 5+6

Range: 218.182¢ (2\11edo) to 240¢ (1\5edo)

Albitonic MOS subsets: 5L 1s

Gorgo[11]/Shoe[11] in 37edo (g=7\37 ~ 227.027¢): 5 2 5 2 5 2 5 2 2 5 2

Cynder[11]/Mothra[11]/Slendric[11] in 31edo (g=6\31 ~ 232.258¢): 1 5 1 5 1 5 1 5 1 1 5

Rodan[11] in 41edo (g=8\41 ~ 234.146¢): 1 7 1 7 1 7 1 7 1 1 7

4L 7s aka 4+7

Range: 300¢ (1\4edo) to 327.273¢ (3\11edo)

Albitonic MOS subsets: 4L 3s

Myna[11] in 89edo: 3 3 17 3 3 17 3 3 17 3 17

Keemun[11]/Hanson[11]/Catakleismic[11] in 72edo (g=19\72 ~ 316.667¢): 4 4 11 4 4 11 4 11 4 4 11

Orgone[11] in 26edo: 2 3 2 3 2 2 3 2 2 3 2

7L 4s aka 7+4

Range: 327.273¢ (3\11edo) to 342.857¢ (2\7edo)

Albitonic MOS subsets: 4L 3s

Amity[11]/Hitchcock[11] in 46edo (g=13\46 ~ 339.130¢): 1 6 6 1 6 1 6 6 1 6 6

3L 8s aka 3+8

Range: 400¢ (1\3edo) to 436.364¢ (4\11edo)

Albitonic MOS subsets: 3L 5s

Bossier[11] in 37edo (g=13\37 ~ 431.622¢): 2 2 2 7 2 2 7 2 2 2 7

Squares[11] in 48edo (g=17\48 = 425¢): 8 3 3 8 3 3 3 8 3 3 3

8L 3s aka 8+3

Range: 436.364¢ (4\11edo) to 450¢ (3\8edo)

Albitonic MOS subsets: 3L 5s

Sensi[11] in 46edo (g=17\46 ~ 443.478¢): 5 5 5 2 5 5 5 2 5 5 2

9L 2s aka 9+2

Range: 533.333¢ (4\9edo to 545.455¢ (5\11edo)

Albitonic MOS subsets: 2L 5s, 2L 7s

Avila[11] in 29edo (g=13\29 ~ 537.931¢): 1 3 3 3 3 3 1 3 3 3 3

Casablanca[11] in 73edo (g=33\73 ~ 542.466¢): 5 7 7 7 7 7 5 7 7 7 7

2L 9s aka 2+9

Range: 545.455¢ (5\11edo) to 600¢ (1\2edo)

Albitonic MOS subsets: 2L 5s, 2L 7s

Heinz[11] in 46edo (g=21\46 ~ 547.826¢): 4 4 4 5 4 4 4 4 4 5 4

Liese[11] in 74edo (g=35\74 ~ 567.568¢): 4 4 4 19 4 4 4 4 19 4 4

Triton[11] in 19edo (g=9\19 ~ 568.421¢): 1 1 1 1 5 1 1 1 1 1 5

Tritonic[11] in 60edo (g=29\60 = 580¢): 2 2 2 21 2 2 2 2 2 21 2