Olympic clan: Difference between revisions
→Cassaschismic: androschismic addressed in the garischismic family |
m Text replacement - "Category:Temperament clans" to "Category:Temperament clans Category:Pages with mostly numerical content" |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
The '''olympic clan''' of [[rank-3 temperament|rank-3]] [[temperament]]s [[tempering out|tempers out]] the [[olympia]] | {{Technical data page}} | ||
The '''olympic clan''' of [[rank-3 temperament|rank-3]] [[temperament]]s [[tempering out|tempers out]] the [[olympia]] ([[ratio]]: 131072/130977, {{monzo|legend=1| 17 -5 0 -2 -1 }}). This has the effect of equating the [[33/32|undecimal quartertone (33/32)]] with a stack of two [[64/63|septimal commas (64/63)]]. | |||
For the rank-4 olympic temperament, see [[Rank-4 temperament #Olympic (131072/130977)]]. | For the rank-4 olympic temperament, see [[Rank-4 temperament #Olympic (131072/130977)]]. | ||
Line 23: | Line 24: | ||
Temperaments discussed elsewhere are: | Temperaments discussed elsewhere are: | ||
* ''[[Akea]]'' (+385/384) → [[Hemifamity family #Akea|Hemifamity family]] | * ''[[Akea]]'' (+385/384) → [[Hemifamity family #Akea|Hemifamity family]] | ||
* ''[[Cassaschismic]]'' (+19712/19683) → [[Garischismic family #Cassaschismic|Garischismic family]] | |||
* ''[[Pessoal]]'' (+9801/9800) → [[Kalismic temperaments #Pessoal|Kalismic temperaments]] | * ''[[Pessoal]]'' (+9801/9800) → [[Kalismic temperaments #Pessoal|Kalismic temperaments]] | ||
* ''[[Lif]]'' (+2401/2400) → [[Breed family #Lif|Breed family]] | * ''[[Lif]]'' (+2401/2400) → [[Breed family #Lif|Breed family]] | ||
Line 28: | Line 30: | ||
* ''[[Hera]]'' (+6144/6125) → [[Porwell family #Hera|Porwell family]] | * ''[[Hera]]'' (+6144/6125) → [[Porwell family #Hera|Porwell family]] | ||
Considered below are orthoschismic | Considered below are orthoschismic, baffin and sophia. | ||
== Orthoschismic == | == Orthoschismic == | ||
Line 55: | Line 57: | ||
Badness: 0.833 × 10<sup>-3</sup> | Badness: 0.833 × 10<sup>-3</sup> | ||
== Baffin == | == Baffin == | ||
Line 181: | Line 142: | ||
[[Category:Temperament clans]] | [[Category:Temperament clans]] | ||
[[Category:Pages with mostly numerical content]] | |||
[[Category:Olympic clan| ]] <!-- main article --> | [[Category:Olympic clan| ]] <!-- main article --> | ||
[[Category:Olympic| ]] <!-- key article --> | [[Category:Olympic| ]] <!-- key article --> | ||
[[Category:Rank 3]] | [[Category:Rank 3]] |
Latest revision as of 00:26, 24 June 2025
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
The olympic clan of rank-3 temperaments tempers out the olympia (ratio: 131072/130977, monzo: [17 -5 0 -2 -1⟩). This has the effect of equating the undecimal quartertone (33/32) with a stack of two septimal commas (64/63).
For the rank-4 olympic temperament, see Rank-4 temperament #Olympic (131072/130977).
Olympian
Subgroup: 2.3.7.11
Comma list: 131072/130977
Subgroup-val mapping: [⟨1 0 0 17], ⟨0 1 0 -5], ⟨0 0 1 -2]]
- sval mapping generators: ~2, ~3, ~7
Optimal tuning (POTE): ~3/2 = 702.0805, ~7/4 = 969.0275
Optimal ET sequence: 41, 87, 89, 94, 130, 135, 359, 400, 494, 535, 670, 805, 1164, 1299, 1834, 1969, 5102bde, 5237bde, 7206bddee, 10339bbdddeee
Badness: 0.0183 × 10-3
Overview to extensions
The second comma in the comma list determines how we extend olympian to include the harmonic 5. Akea adds 385/384, and finds the harmonic 5 by equating the syntonic comma (81/80) with the septimal comma. Orthoschismic adds 32805/32768, and finds the harmonic 5 on the chain of fifths. Cassaschismic adds 19712/19683 with an independent generator for harmonic 5. Pessoal adds 9801/9800, splitting the octave into two. Lif adds 2401/2400, splitting the perfect fifth into two. Baffin adds 5632/5625, splitting the perfect twelfth into two. Lux adds 3025/3024, splitting the ~21/16 into two. Hera adds 6144/6125 or 8019/8000, splitting the ~21/16 into three. Finally, sophia adds 42875/42768, splitting the ~8/7 into three. These all have neat extensions to the 13-limit via tempering out both 2080/2079 and 4096/4095.
Temperaments discussed elsewhere are:
- Akea (+385/384) → Hemifamity family
- Cassaschismic (+19712/19683) → Garischismic family
- Pessoal (+9801/9800) → Kalismic temperaments
- Lif (+2401/2400) → Breed family
- Lux (+3025/3024) → Lehmerismic temperaments
- Hera (+6144/6125) → Porwell family
Considered below are orthoschismic, baffin and sophia.
Orthoschismic
Subgroup: 2.3.5.7.11
Comma list: 540/539, 32805/32768
Mapping: [⟨1 0 15 0 17], ⟨0 1 -8 0 -5], ⟨0 0 0 1 -2]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.7405, ~7/4 = 969.6950
Optimal ET sequence: 41, 53, 89, 94, 130, 183, 224, 354, 537, 578, 761d, 985d, 1115de
Badness: 1.18 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 540/539, 729/728, 4096/4095
Mapping: [⟨1 0 15 0 17 -3], ⟨0 1 -8 0 -5 6], ⟨0 0 0 1 -2 -1]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.7333, ~7/4 = 969.7085
Optimal ET sequence: 41, 53, 89, 94, 130, 183, 224, 354, 578, 985d
Badness: 0.833 × 10-3
Baffin
7-limit (decovulture)
Subgroup: 2.3.5.7
Comma list: 67108864/66976875
Mapping: [⟨1 0 0 13], ⟨0 2 0 -7], ⟨0 0 1 -2]]
- mapping generators: ~2, ~8192/4725, ~5
Optimal tuning (POTE): ~2 = 1\1, ~8192/4725 = 951.0868, ~5/4 = 386.6183
Optimal ET sequence: 10, 19d, 24, 34, 43, 53, 87, 130, 183, 217, 270, 593, 863, 1133, 1856cd, 2126cd, 2719cd, 2989bcd
Badness: 0.865 × 10-3
11-limit
Subgroup: 2.3.5.7.11
Comma list: 5632/5625, 131072/130977
Mapping: [⟨1 0 0 13 -9], ⟨0 2 0 -7 4], ⟨0 0 1 -2 4]]
Optimal tuning (POTE): ~2 = 1\1, ~400/231 = 951.0585, ~5/4 = 386.7912
Optimal ET sequence: 34, 43, 53, 87, 130, 183, 270, 670, 940, 1210, 2063c
Badness: 0.976 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 4096/4095
Mapping: [⟨1 0 0 13 -9 1], ⟨0 2 0 -7 4 3], ⟨0 0 1 -2 4 1]]
Optimal tuning (POTE): ~2 = 1\1, ~26/15 = 951.0882, ~5/4 = 386.7507
Optimal ET sequence: 34, 43, 53, 87, 130, 183, 217, 270, 940, 1210f
Badness: 0.604 × 10-3
Complexity spectrum: 15/13, 16/15, 13/12, 4/3, 16/13, 5/4, 18/13, 13/10, 6/5, 9/8, 11/10, 8/7, 7/5, 15/11, 10/9, 13/11, 15/14, 11/8, 7/6, 14/13, 12/11, 9/7, 11/9, 14/11
Sophia
Subgroup: 2.3.5.7.11
Comma list: 42875/42768, 131072/130977
Mapping: [⟨1 0 2 3 11], ⟨0 1 0 0 -5], ⟨0 0 5 -3 6]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.3024, ~256/245 = 77.1952
Optimal ET sequence: 46, 94, 140, 171, 217, 311, 979, 1290
Badness: 3.78 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 4096/4095, 13720/13689
Mapping: [⟨1 0 2 3 11 7], ⟨0 1 0 0 -5 -2], ⟨0 0 5 -3 6 -2]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.3319, ~117/112 = 77.2152
Optimal ET sequence: 46, 77e, 94, 140, 171, 217, 311, 668, 979, 1290
Badness: 1.67 × 10-3
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 595/594, 833/832, 1156/1155, 4096/4095
Mapping: [⟨1 0 2 3 11 7 7], ⟨0 1 0 0 -5 -2 -2], ⟨0 0 5 -3 6 -2 4]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.3205, ~68/65 = 77.2255
Optimal ET sequence: 46, 77e, 94, 140, 171, 217, 311, 668, 839e, 979g
Badness: 0.989 × 10-3