Semaphoresmic clan: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
POTE -> CTE
Update wording. - gencoms (trivial)
 
(43 intermediate revisions by 6 users not shown)
Line 1: Line 1:
The '''slendro clan''' tempers out the slendro diesis, [[49/48]], a triprime comma with factors of 2, 3 and 7.  
{{Technical data page}}
The '''semaphoresmic clan''' (or '''semaphore family''') of [[regular temperament|temperaments]] [[tempering out|tempers out]] the large septimal diesis, or semaphoresma, [[49/48]], a triprime comma with factors of 2, 3 and 7.
 
This article focuses on rank-2 temperaments. See [[Semaphoresmic family]] for the rank-3 temperament resulting from tempering out 49/48 alone in the full 7-limit.  


== Semaphore ==
== Semaphore ==
{{Main| Semaphore and godzilla }}
{{Main| Semaphore and godzilla }}
Semaphore tempers out 49/48, and splits a [[3/1|perfect twelfth]] into two halfs of [[7/4]][[~]][[12/7]], and a [[4/3|perfect fourth]] into two halfs of [[7/6]]~[[8/7]], hence the name ''semaphore'', which sounds like ''semifourth''; its [[ploidacot]] is alpha-dicot. [[19edo]] and [[24edo]] are among the possible edo tunings.


[[Subgroup]]: 2.3.7
[[Subgroup]]: 2.3.7
Line 10: Line 15:
{{Mapping|legend=2| 1 0 2 | 0 2 1 }}
{{Mapping|legend=2| 1 0 2 | 0 2 1 }}


: sval mapping generators: ~2, ~7/4
{{Mapping|legend=3| 1 0 0 2 | 0 2 0 1 }}


{{Mapping|legend=3| 1 2 0 3 | 0 -2 0 -1 }}
: mapping generators: ~2, ~7/4


: [[gencom]]: [2 7/6; 49/48]
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1202.8324{{c}}, ~7/4 = 951.8567{{c}}
: [[error map]]: {{val| +2.832 +1.758 -11.304 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~7/4 = 950.6890{{c}}
: error map: {{val| 0.000 -0.577 -18.137 }}


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~7/4 = 952.2948
{{Optimal ET sequence|legend=1| 5, 14, 19, 24, 67dd, 91dd, 115ddd }}


{{Optimal ET sequence|legend=1| 5, 14, 19, 24, 67dd, 91dd, 115ddd }}
[[Badness]] (Sintel): 0.193


Scales: [[semaphore5]], [[semaphore9]], [[semaphore14]]
Scales: [[semaphore5]], [[semaphore9]], [[semaphore14]]


=== Overview to extensions ===
=== Overview to extensions ===
The second comma of the comma list defines which 7-limit family member we are looking at.  
The second comma of the comma list defines which 7-limit family member we are looking at:
* Beep adds [[21/20]], for a tuning flat of 9edo;
* Superpelog adds [[135/128]], for a tuning between 9edo and 14c-edo;
* Godzilla adds [[81/80]], for a tuning between 14c-edo and 24edo;
* Helayo adds [[3645/3584]], for a tuning between 14edo and 24c-edo;
* Immunity adds [[2240/2187]], for a tuning sharp of 29edo;
* Baba adds [[16/15]], for a niche exotemperament well tuned around 11b-edo.  


Godzilla adds [[81/80]]. Immunity adds [[2240/2187]]. Superpelog adds [[135/128]]. Beep adds [[21/20]]. Baba adds [[16/15]]. These all use the same nominal generator as semaphore, though some of them are of very low accuracy.  
These all use the same nominal generator as semaphore, though some of them are of very low accuracy.  


Decimal adds [[25/24]], splitting the octave in two. Negri adds [[225/224]], splitting the hemifourth in two. Triforce adds [[128/125]], splitting the octave in three. Keemun adds [[126/125]], splitting the hemitwelfth in three. Nautilus adds [[250/243]], splitting the hemifourth in three. Nuke is like nautilus, but adds 3584/3375 instead. Blacksmith adds [[28/27]], splitting the octave in five. Spell adds [[3125/3072]], splitting the hemitwelfth in five. Hemiripple adds 6561/6250, splitting the hemifourth in five. Finally, mabila adds 28672/28125 and splits an interval of two octaves plus a hemifourth in five.  
Decimal adds [[25/24]]. Anguirus adds [[2048/2025]]. Those split the octave in two. Negri adds [[225/224]], splitting the hemifourth in two. Triforce adds [[128/125]], splitting the octave in three. Keemun adds [[126/125]], splitting the hemitwelfth in three. Nautilus adds [[250/243]], splitting the hemifourth in three. Nuke is like nautilus, but adds 3584/3375 instead. Hemidim adds [[648/625]] with a 1/4-octave period. Blackwood adds [[28/27]], with a 1/5-octave period. Spell adds [[3125/3072]], splitting the hemitwelfth in five. Hemiripple adds 6561/6250, splitting the hemifourth in five. Finally, semabila adds 28672/28125 and splits an interval of two octaves plus a hemifourth in five.  


Discussed elsewhere are  
Discussed elsewhere are  
* ''[[Baba]]'' → [[Father family #Baba|Father family]]
* ''[[Beep]]'' (+21/20) → [[Bug family #Beep|Bug family]]
* ''[[Beep]]'' → [[Bug family #Beep|Bug family]]
* ''[[Immunity]]'' (+2240/2187) → [[Immunity family #Septimal immunity|Immunity family]]
* ''[[Immunity]]'' → [[Immunity family #Septimal immunity|Immunity family]]
* ''[[Nessus]]'' (+10/9) → [[Very low accuracy temperaments #Nessus|Very low accuracy temperaments]]
* ''[[Decimal]]'' → [[Dicot family #Decimal|Dicot family]]
* ''[[Malacoda]]'' (+15/14) → [[Very low accuracy temperaments #Malacoda|Very low accuracy temperaments]]
* ''[[Triforce]]'' → [[Augmented family #Triforce|Augmented family]]
* [[Decimal]] (+25/24) → [[Dicot family #Decimal|Dicot family]]
* [[Keemun]] → [[Kleismic family #Keemun|Kleismic family]]
* ''[[Anguirus]]'' (+2048/2025) → [[Diaschismic family #Anguirus|Diaschismic family]]
* ''[[Nautilus]]'' → [[Porcupine family #Nautilus|Porcupine family]]
* ''[[Triforce]]'' (+128/125) → [[Augmented family #Triforce|Augmented family]]
* [[Blacksmith]] → [[Limmic temperaments #Blacksmith|Limmic temperaments]]
* [[Keemun]] (+126/125) → [[Kleismic family #Keemun|Kleismic family]]
* ''[[Spell]]'' → [[Hemimean clan #Spell|Hemimean clan]]
* ''[[Nautilus]]'' (+250/243) → [[Porcupine family #Nautilus|Porcupine family]]
* ''[[Hemidim]]'' (+648/625) → [[Diminished family #Hemidim|Diminished family]]
* [[Blackwood]] (+28/27) → [[Limmic temperaments #Blackwood|Limmic temperaments]]
* ''[[Spell]]'' (+3125/3072) → [[Hemimean clan #Spell|Hemimean clan]]
* ''[[Hemiripple]]'' (+6561/6250) → [[Ripple family #Hemiripple|Ripple family]]
* ''[[Semabila]]'' (+28672/28125) → [[Mabila family #Mabila|Mabila family]]


Considered below are godzilla, superpelog, negri, nuke, mabila, and hemiripple.
Considered below are godzilla, helayo, superpelog, baba, negri, and nuke.


== Godzilla ==
== Godzilla ==
Line 46: Line 66:
{{Main| Semaphore and godzilla }}
{{Main| Semaphore and godzilla }}


Godzilla tempers out [[81/80]], equating 9/8 and 10/9, so it finds the prime 5 at a stack of four fifths, as does any temperament in the [[meantone family]]. [[19edo]] is close to being the optimal generator tuning; hence it can be more or less equated with taking 4\19 as a generator. [[Mos scale]]s are of 5, 9, or 14 notes.
Godzilla tempers out [[81/80]], equating [[9/8]] and [[10/9]], so it finds the prime 5 at a stack of four fifths, as does any temperament in the [[meantone family]]. Like many entries of this clan, godzilla can be extended naturally to the 2.3.5.7.13 subgroup by identifying the hemifourth as ~15/13, tempering out [[91/90]] and [[105/104]]. [[19edo]] is close to being the optimal generator tuning; hence it can be more or less equated with taking 4\19 as a generator. [[Mos scale]]s are of 5, 9, or 14 notes.


=== 7-limit ===
[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 49/48, 81/80
[[Comma list]]: 49/48, 81/80


{{Mapping|legend=1|| 1 0 -4 2 | 0 2 8 1 }}
{{Mapping|legend=1| 1 0 -4 2 | 0 2 8 1 }}


: mapping generators: ~2, ~7/4
: mapping generators: ~2, ~7/4


{{Multival|legend=1| 2 8 1 8 -4 -20 }}
[[Optimal tuning]]s:
 
* [[WE]]: ~2 = 1203.8275{{c}}, ~7/4 = 950.3867{{c}}
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~7/4 = 948.7959
: [[error map]]: {{val| +3.827 -1.182 +1.470 -10.784 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~7/4 = 947.8216{{c}}
: error map: {{val| 0.000 -6.312 -3.741 -21.004 }}


[[Tuning ranges]]:  
[[Tuning ranges]]:  
* 7- and 9-odd-limit [[diamond monotone]]: ~7/4 = [942.857, 960.000] (1\14 to 4\5)
* 7- and 9-odd-limit [[diamond monotone]]: ~7/4 = [942.857, 960.000] (11\14 to 4\5)
* 7- and 9-odd-limit [[diamond tradeoff]]: ~7/4 = [933.129, 968.826]
* 7- and 9-odd-limit [[diamond tradeoff]]: ~7/4 = [933.129, 968.826]
* 7- and 9-odd-limit diamond monotone and tradeoff: ~7/4 = [942.857, 960.000]


{{Optimal ET sequence|legend=1| 5, 14c, 19 }}
{{Optimal ET sequence|legend=1| 5, 14c, 19 }}


[[Badness]]: 0.026747
[[Badness]] (Sintel): 0.677


=== 11-limit ===
==== 2.3.5.7.13 subgroup ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 49/48, 81/80, 91/90
 
Subgroup-val mapping: {{mapping| 1 0 -4 2 -5 | 0 2 8 1 11 }}
 
Optimal tunings:
* WE: ~2 = 1203.7816{{c}}, ~7/4 = 950.5570{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 948.0037{{c}}
 
{{Optimal ET sequence|legend=0| 5, 14cf, 19 }}
 
Badness (Sintel): 0.591
 
=== Undecimal godzilla ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Line 76: Line 113:
Mapping: {{mapping| 1 0 -4 2 -6 | 0 2 8 1 12 }}
Mapping: {{mapping| 1 0 -4 2 -6 | 0 2 8 1 12 }}


Optimal tuning (CTE): ~2 = 1\1, ~7/4 = 947.4563
Optimal tunings:
* WE: ~2 = 1204.4129{{c}}, ~7/4 = 949.4513{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 946.4361{{c}}


Tuning ranges:  
Tuning ranges:  
* 11-odd-limit diamond monotone: ~7/4 = [942.857, 947.368] (11\14 to 15\19)
* 11-odd-limit diamond monotone: ~7/4 = [942.857, 947.368] (11\14 to 15\19)
* 11-odd-limit diamond tradeoff: ~7/4 = [933.129, 968.826]
* 11-odd-limit diamond tradeoff: ~7/4 = [933.129, 968.826]
* 11-odd-limit diamond monotone and tradeoff: ~7/4 = [942.857, 947.368]


{{Optimal ET sequence|legend=1| 14c, 19, 33cd }}
{{Optimal ET sequence|legend=0| 14c, 19, 33cd }}


Badness: 0.028947
Badness (Sintel): 0.957


==== 13-limit ====
==== 13-limit ====
Line 94: Line 132:
Mapping: {{mapping| 1 0 -4 2 -6 -5 | 0 2 8 1 12 11 }}
Mapping: {{mapping| 1 0 -4 2 -6 -5 | 0 2 8 1 12 11 }}


Optimal tuning (CTE): ~2 = 1\1, ~7/4 = 947.8877
Optimal tunings:
* WE: ~2 = 1203.7164{{c}}, ~7/4 = 949.2061{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 946.4131{{c}}


Tuning ranges:  
Tuning ranges:  
* 13- and 15-odd-limit diamond monotone: ~7/4 = 947.368 (15\19)
* 13- and 15-odd-limit diamond monotone: ~7/4 = 947.368 (15\19)
* 13- and 15-odd-limit diamond tradeoff: ~7/4 = [910.890, 968.826]
* 13- and 15-odd-limit diamond tradeoff: ~7/4 = [910.890, 968.826]
* 13- and 15-odd-limit diamond monotone and tradeoff: ~7/4 = 947.368


{{Optimal ET sequence|legend=1| 14cf, 19, 33cdff }}
{{Optimal ET sequence|legend=0| 14cf, 19, 33cdff }}


Badness: 0.022503
Badness (Sintel): 0.930


=== Semafour ===
=== Semafour ===
Line 112: Line 151:
Mapping: {{mapping| 1 0 -4 2 5 | 0 2 8 1 -2 }}
Mapping: {{mapping| 1 0 -4 2 5 | 0 2 8 1 -2 }}


Optimal tuning (CTE): ~2 = 1\1, ~7/4 = 948.2089
Optimal tunings:
* WE: ~2 = 1206.9595{{c}}, ~7/4 = 951.4440{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 946.4472{{c}}
 
{{Optimal ET sequence|legend=0| 14c, 19e, 33cdee, 52cdeee }}
 
Badness (Sintel): 0.943
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 33/32, 49/48, 55/54, 91/90
 
Mapping: {{mapping| 1 0 -4 2 5 -5 | 0 2 8 1 -2 11 }}


{{Optimal ET sequence|legend=1| 14c, 19e, 33cdee, 52cdeee }}
Optimal tunings:
* WE: ~2 = 1206.9737{{c}}, ~7/4 = 951.7738{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 946.7732{{c}}


Badness: 0.028510
{{Optimal ET sequence|legend=0| 14cf, 19e, 33cdeeff, 52cdeeeff }}
 
Badness (Sintel): 0.975


=== Varan ===
=== Varan ===
Line 125: Line 181:
Mapping: {{mapping| 1 0 -4 2 -10 | 0 2 8 1 17 }}
Mapping: {{mapping| 1 0 -4 2 -10 | 0 2 8 1 17 }}


Optimal tuning (CTE): ~2 = 1\1, ~7/4 = 949.6160
Optimal tunings:
* WE: ~2 = 1202.5842{{c}}, ~7/4 = 950.9647{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 949.1239{{c}}


{{Optimal ET sequence|legend=1| 19e, 24, 43de }}
{{Optimal ET sequence|legend=0| 19e, 24, 43de }}


Badness: 0.039647
Badness (Sintel): 1.31


==== 13-limit ====
==== 13-limit ====
Line 138: Line 196:
Mapping: {{mapping| 1 0 -4 2 -10 -5 | 0 2 8 1 17 11 }}
Mapping: {{mapping| 1 0 -4 2 -10 -5 | 0 2 8 1 17 11 }}


Optimal tuning (CTE): ~2 = 1\1, ~7/4 = 949.5255
Optimal tunings:
* WE: ~2 = 1202.4367{{c}}, ~7/4 = 950.7615{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 949.0338{{c}}


{{Optimal ET sequence|legend=1| 19e, 24, 43de }}
{{Optimal ET sequence|legend=0| 19e, 24, 43de }}


Badness: 0.025676
Badness (Sintel): 1.06


=== Baragon ===
=== Baragon ===
Line 151: Line 211:
Mapping: {{mapping| 1 0 -4 2 9 | 0 2 8 1 -7 }}
Mapping: {{mapping| 1 0 -4 2 9 | 0 2 8 1 -7 }}


Optimal tuning (CTE): ~2 = 1\1, ~8/7 = 949.0311
Optimal tunings:
* WE: ~2 = 1201.1412{{c}}, ~7/4 = 949.7291{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 948.8625{{c}}


{{Optimal ET sequence|legend=1| 5, 19, 24 }}
{{Optimal ET sequence|legend=0| 19, 24 }}


Badness: 0.035673
Badness (Sintel): 1.18


==== 13-limit ====
==== 13-limit ====
Line 164: Line 226:
Mapping: {{mapping| 1 0 -4 2 9 -5 | 0 2 8 1 -7 11 }}
Mapping: {{mapping| 1 0 -4 2 9 -5 | 0 2 8 1 -7 11 }}


Optimal tuning (CTE): ~2 = 1\1, ~7/4 = 949.0670
Optimal tunings:
* WE: ~2 = 1201.1228{{c}}, ~7/4 = 949.6894{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 948.8468{{c}}


{{Optimal ET sequence|legend=1| 5, 19, 24 }}
{{Optimal ET sequence|legend=0| 19, 24 }}


Badness: 0.026703
Badness (Sintel): 1.10
 
== Helayo ==
: ''For the 5-limit version of this temperament see [[Miscellaneous 5-limit temperaments #Hogzilla]].''
 
Helayo tempers out 3645/3584 and may be thought of as the opposite of godzilla with respect to 19edo. Like godzilla, 19edo's generator is close to the optimum.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 49/48, 3645/3584
 
{{Mapping|legend=1| 1 0 11 2 | 0 2 -11 1 }}
 
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1204.0199{{c}}, ~7/4 = 950.7917{{c}}
: [[error map]]: {{val| +4.020 -0.372 -0.804 -9.995 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~7/4 = 947.5047{{c}}
: error map: {{val| 0.000 -6.946 -8.866 -21.321 }}
 
{{Optimal ET sequence|legend=1| 5c, 14, 19 }}
 
[[Badness]] (Sintel): 2.00
 
; Music
* ''Helayo EP'' (2023) by [[User:Francium|Francium]] – [https://open.spotify.com/album/2ksz9PrjIygDlmH3SWhnyH Spotify] | [https://francium223.bandcamp.com/album/helayo-ep Bandcamp] | [https://www.youtube.com/playlist?list=PLLZE7hMjEXRadymOhRyLSKj3RydMAKzlJ YouTube] – 3-piece extended play


== Superpelog ==
== Superpelog ==
Superpelog tempers out 135/128 and finds the prime 5 at a stack of three fourths, as does any temperament in the [[mavila family]]. It may be described as {{nowrap| 9 & 14c }}, with [[23edo]] (23d val) giving a tuning close to the optimum.
[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


Line 177: Line 267:
{{Mapping|legend=1| 1 0 7 2 | 0 2 -6 1 }}
{{Mapping|legend=1| 1 0 7 2 | 0 2 -6 1 }}


{{Multival|legend=1| 2 -6 1 -14 -4 19 }}
[[Optimal tuning]]s:
 
* [[WE]]: ~2 = 1208.8222{{c}}, ~7/4 = 946.9590{{c}}
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~7/4 = 939.0297
: [[error map]]: {{val| +8.822 -8.037 -6.313 -4.223 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~7/4 = 939.8419{{c}}
: error map: {{val| 0.000 -22.271 -25.365 -28.984 }}


{{Optimal ET sequence|legend=1| 9, 14c, 23d, 37bcd, 60bbccdd }}
{{Optimal ET sequence|legend=1| 9, 14c, 23d, 37bcd, 60bbccdd }}


[[Badness]]: 0.058216
[[Badness]] (Sintel): 1.47


=== 11-limit ===
=== 11-limit ===
Line 192: Line 284:
Mapping: {{mapping| 1 0 7 2 5 | 0 2 -6 1 -2 }}
Mapping: {{mapping| 1 0 7 2 5 | 0 2 -6 1 -2 }}


Optimal tuning (CTE): ~2 = 1\1, ~7/4 = 938.4673
Optimal tunings:
* WE: ~2 = 1208.8663{{c}}, ~7/4 = 946.9861{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 939.7687{{c}}


{{Optimal ET sequence|legend=1| 9, 14c, 23de, 37bcde }}
{{Optimal ET sequence|legend=0| 9, 14c, 23de, 37bcde, 60bbccddeee }}


Badness: 0.028535
Badness (Sintel): 0.943


; Music
; Music
: ''[http://micro.soonlabel.com/MOS/20120418-9mos-mindaugas.mp3 Mindaugas Rex Lithuaniae]'' by [[Chris Vaisvil]] ([http://chrisvaisvil.com/?p=2267 blog]) (superpelog[9] in 23edo tuning)
: ''Mindaugas Rex Lithuaniae'' (2012) by [[Chris Vaisvil]] – [https://web.archive.org/web/20201127013438/http://micro.soonlabel.com/MOS/20120418-9mos-mindaugas.mp3 listen] | [https://www.chrisvaisvil.com/mindaugas-rex-lithuaniae/ blog] – in Superpelog[9], 23edo tuning
 
== Baba ==
This low-accuracy extension tempers out 16/15, so the perfect fifth stands in for ~8/5 as in [[father]].


== Negri ==
[[Subgroup]]: 2.3.5.7
{{Main| Negri }}


Negri tempers out the [[negri comma]] in the 5-limit, [[49/48]] and [[225/224]] in the 7-limit. It can be extended naturally to the 2.3.5.7.13 subgroup by adding [[91/90]] to the comma list; this will be discussed below under the title of negra.
[[Comma list]]: 16/15, 49/45


[[Subgroup]]: 2.3.5
{{Mapping|legend=1| 1 0 4 2 | 0 2 -2 1 }}


[[Comma list]]: 16875/16384
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1184.7407{{c}}, ~7/4 = 960.9196{{c}}
: [[error map]]: {{val| -15.259 +19.884 +30.810 -38.425 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~7/4 = 972.2994{{c}}
: error map: {{val| 0.000 +42.644 +69.088 +3.473 }}


{{Mapping|legend=1| 1 2 2 | 0 -4 3 }}
{{Optimal ET sequence|legend=1| 5, 11b, 16bc }}


: mapping generators: ~2, ~16/15
[[Badness]] (Sintel): 1.12


{{Multival|legend=1| 4 -3 -14 }}
=== 11-limit ===
Subgroup: 2.3.5.7.11


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~16/15 = 125.7549
Comma list: 16/15, 22/21, 49/45


{{Optimal ET sequence|legend=1| 9, 10, 19, 67c, 86c, 105c }}
Mapping: {{mapping| 1 0 4 2 1 | 0 2 -2 1 3 }}


[[Badness]]: 0.086856
Optimal tunings:
* WE: ~2 = 1187.4876{{c}}, ~7/4 = 967.9643{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 976.9298{{c}}
 
{{Optimal ET sequence|legend=0| 5, 11b }}
 
Badness (Sintel): 1.21
 
== Negri ==
{{Main| Negri }}
: ''For the 5-limit version, see [[Syntonic–kleismic equivalence continuum #Negri (5-limit)]].''
 
Negri tempers out the [[negri comma]] in the 5-limit, 49/48 and [[225/224]] in the 7-limit. It may be described as {{nowrap| 9 & 10 }}; its ploidacot is omega-tetracot. It can be extended naturally to the 2.3.5.7.13 subgroup by adding 91/90 and/or 105/104 to the comma list; this will be discussed below under the title of negra.  


=== 7-limit ===
=== 7-limit ===
Line 229: Line 342:
{{Mapping|legend=1| 1 2 2 3 | 0 -4 3 -2 }}
{{Mapping|legend=1| 1 2 2 3 | 0 -4 3 -2 }}


{{Multival|legend=1| 4 -3 2 -14 -8 13 }}
[[Optimal tuning]]s:
 
* [[WE]]: ~2 = 1203.4810{{c}}, ~15/14 = 125.9724{{c}}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~15/14 = 125.608
: [[error map]]: {{val| +3.481 +1.118 -1.435 -10.328 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~15/14 = 125.4347{{c}}
: error map: {{val| 0.000 -3.694 -10.009 -19.695 }}


{{Optimal ET sequence|legend=1| 9, 10, 19, 48d, 67cdd, 86cdd }}
{{Optimal ET sequence|legend=1| 9, 10, 19, 48d, 67cdd, 86cdd }}


[[Badness]]: 0.026483
[[Badness]] (Sintel): 0.670


==== 2.3.5.7.13 subgroup (negra) ====
==== 2.3.5.7.13 subgroup (negra) ====
Line 242: Line 357:
Comma list: 49/48, 65/64, 91/90
Comma list: 49/48, 65/64, 91/90


Sval mapping: {{mapping| 1 2 2 3 4 | 0 -4 3 -2 -3 }}
Subgroup-val mapping: {{mapping| 1 2 2 3 4 | 0 -4 3 -2 -3 }}


Gencom mapping: {{mapping| 1 2 2 3 0 4 | 0 -4 3 -2 0 -3 }}
Gencom mapping: {{mapping| 1 2 2 3 0 4 | 0 -4 3 -2 0 -3 }}


: gencom: [2 14/13; 49/48 65/64 91/90]
Optimal tunings:  
* WE: ~2 = 1203.6981{{c}}, ~14/13 = 125.9545{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~14/13 = 125.3543{{c}}


Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 125.567
{{Optimal ET sequence|legend=0| 9, 10, 19, 48df, 67cddf, 86cddff }}


{{Optimal ET sequence|legend=1| 9, 10, 19, 48df, 67cddf, 86cddff }}
Badness (Sintel): 0.463


=== 11-limit ===
=== Undecimal negri ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Line 259: Line 376:
Mapping: {{mapping| 1 2 2 3 4 | 0 -4 3 -2 -5 }}
Mapping: {{mapping| 1 2 2 3 4 | 0 -4 3 -2 -5 }}


Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 126.474
Optimal tunings:
* WE: ~2 = 1202.1045{{c}}, ~15/14 = 126.6961{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~15/14 = 126.3382{{c}}


{{Optimal ET sequence|legend=1| 9, 10, 19 }}
{{Optimal ET sequence|legend=0| 9, 10, 19 }}


Badness: 0.026190
Badness (Sintel): 0.866


==== 13-limit ====
==== 13-limit ====
Line 272: Line 391:
Mapping: {{mapping| 1 2 2 3 4 4 | 0 -4 3 -2 -5 -3 }}
Mapping: {{mapping| 1 2 2 3 4 4 | 0 -4 3 -2 -5 -3 }}


Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 126.431
Optimal tunings:
* WE: ~2 = 1202.6035{{c}}, ~14/13 = 126.7054{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~14/13 = 126.2534{{c}}


{{Optimal ET sequence|legend=1| 9, 10, 19 }}
{{Optimal ET sequence|legend=0| 9, 10, 19 }}


Badness: 0.017833
Badness (Sintel): 0.737


=== Negril ===
=== Negril ===
Line 285: Line 406:
Mapping: {{mapping| 1 2 2 3 2 | 0 -4 3 -2 14 }}
Mapping: {{mapping| 1 2 2 3 2 | 0 -4 3 -2 14 }}


Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 124.767
Optimal tunings:
* WE: ~2 = 1202.7081{{c}}, ~15/14 = 125.0491{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~15/14 = 124.8066{{c}}


{{Optimal ET sequence|legend=1| 19, 29, 48d, 77cdd }}
{{Optimal ET sequence|legend=0| 10e, 19, 29, 48d, 77cdd }}


Badness: 0.038679
Badness (Sintel): 1.28


==== 13-limit ====
==== 13-limit ====
Line 298: Line 421:
Mapping: {{mapping| 1 2 2 3 2 4 | 0 -4 3 -2 14 -3 }}
Mapping: {{mapping| 1 2 2 3 2 4 | 0 -4 3 -2 14 -3 }}


Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 124.716
Optimal tunings:
* WE: ~2 = 1202.9319{{c}}, ~14/13 = 125.0204{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~14/13 = 124.7374{{c}}


{{Optimal ET sequence|legend=1| 19, 29, 48df, 77cddf }}
{{Optimal ET sequence|legend=0| 10e, 19, 29, 48df, 77cddf }}


Badness: 0.024383
Badness (Sintel): 1.01


=== Negric ===
=== Negric ===
Line 311: Line 436:
Mapping: {{mapping| 1 2 2 3 3 | 0 -4 3 -2 4 }}
Mapping: {{mapping| 1 2 2 3 3 | 0 -4 3 -2 4 }}


Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 127.039
Optimal tunings:
* WE: ~2 = 1205.7810{{c}}, ~15/14 = 127.6513{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~15/14 = 126.9620{{c}}


{{Optimal ET sequence|legend=1| 9, 19e }}
{{Optimal ET sequence|legend=0| 9, 19e }}


Badness: 0.030617
Badness (Sintel): 1.01


==== 13-limit ====
==== 13-limit ====
Line 324: Line 451:
Mapping: {{mapping| 1 2 2 3 3 4 | 0 -4 3 -2 4 -3 }}
Mapping: {{mapping| 1 2 2 3 3 4 | 0 -4 3 -2 4 -3 }}


Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 127.039
Optimal tunings:
* WE: ~2 = 1205.7833{{c}}, ~14/13 = 127.6507{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~14/13 = 126.9093{{c}}


{{Optimal ET sequence|legend=1| 9, 19e }}
{{Optimal ET sequence|legend=0| 9, 19e }}


Badness: 0.020205
Badness (Sintel): 0.835


=== Negroni ===
=== Negroni ===
Line 337: Line 466:
Mapping: {{mapping| 1 2 2 3 5 | 0 -4 3 -2 -15 }}
Mapping: {{mapping| 1 2 2 3 5 | 0 -4 3 -2 -15 }}


Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 124.539
Optimal tunings:
* WE: ~2 = 1203.4738{{c}}, ~15/14 = 124.8992{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~15/14 = 124.3642{{c}}


{{Optimal ET sequence|legend=1| 10, 19e, 29, 77cddee }}
{{Optimal ET sequence|legend=0| 10, 19e, 29, 77cddee }}


Badness: 0.035296
Badness (Sintel): 1.17


==== 13-limit ====
==== 13-limit ====
Line 350: Line 481:
Mapping: {{mapping| 1 2 2 3 5 4 | 0 -4 3 -2 -15 -3 }}
Mapping: {{mapping| 1 2 2 3 5 4 | 0 -4 3 -2 -15 -3 }}


Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 124.545
Optimal tunings:
* WE: ~2 = 1203.5354{{c}}, ~14/13 = 124.9118{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~14/13 = 124.3733{{c}}


{{Optimal ET sequence|legend=1| 10, 19e, 29, 77cddeef }}
{{Optimal ET sequence|legend=0| 10, 19e, 29, 77cddeef }}


Badness: 0.021559
Badness (Sintel): 0.890


=== Wilsec ===
=== Wilsec ===
Wilsec splits the fifthward generator of negri in half for 11/8~15/11, tempering out [[121/120]]. Its ploidacot is gamma-octacot.
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 49/48, 121/120, 225/224
Comma list: 49/48, 121/120, 225/224


Mapping: {{mapping| 1 6 -1 5 4 | 0 -8 6 -4 -1 }}
Mapping: {{mapping| 1 -2 5 1 3 | 0 8 -6 4 1 }}
 
: mapping generators: ~2, ~11/8


Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 537.186
Optimal tunings:
* WE: ~2 = 1203.6080{{c}}, ~11/8 = 538.8007{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/8 = 537.2654{{c}}


{{Optimal ET sequence|legend=1| 9, 20, 29, 38d, 67cdde }}
{{Optimal ET sequence|legend=0| 9, 20, 29, 38d, 67cdde, 105cdddee }}


Badness: 0.041886
Badness (Sintel): 1.38


==== 13-limit ====
==== 13-limit ====
Line 374: Line 513:
Comma list: 49/48, 65/64, 91/90, 121/120
Comma list: 49/48, 65/64, 91/90, 121/120


Mapping: {{mapping| 1 6 -1 5 4 7 | 0 -8 6 -4 -1 -6 }}
Mapping: {{mapping| 1 -2 5 1 3 1 | 0 8 -6 4 1 6 }}


Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 537.208
Optimal tunings:
* WE: ~2 = 1203.7672{{c}}, ~11/8 = 538.8948{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/8 = 537.3053{{c}}


{{Optimal ET sequence|legend=1| 9, 20, 29, 38df, 67cddef }}
{{Optimal ET sequence|legend=0| 9, 20, 29, 38df, 67cddef, 105cdddeefff }}


Badness: 0.025192
Badness (Sintel): 1.04


==== 17-limit ====
==== 17-limit ====
Line 387: Line 528:
Comma list: 49/48, 65/64, 91/90, 121/120, 154/153
Comma list: 49/48, 65/64, 91/90, 121/120, 154/153


Mapping: {{mapping| 1 6 -1 5 4 7 -2 | 0 -8 6 -4 -1 -6 11 }}
Mapping: {{mapping| 1 -2 5 1 3 1 9 | 0 8 -6 4 1 6 -11 }}


Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 537.230
Optimal tunings:
* WE: ~2 = 1203.7154{{c}}, ~11/8 = 538.8932{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/8 = 537.2633{{c}}


{{Optimal ET sequence|legend=1| 9, 20g, 29g, 38df, 67cddefg }}
{{Optimal ET sequence|legend=0| 9, 20g, 29g, 38df, 67cddefg }}


Badness: 0.021778
Badness (Sintel): 1.11


==== 19-limit ====
==== 19-limit ====
Line 400: Line 543:
Comma list: 49/48, 65/64, 77/76, 91/90, 121/120, 154/153
Comma list: 49/48, 65/64, 77/76, 91/90, 121/120, 154/153


Mapping: {{mapping| 1 6 -1 5 4 7 -2 7 | 0 -8 6 -4 -1 -6 11 -5 }}
Mapping: {{mapping| 1 -2 5 1 3 1 9 2 | 0 8 -6 4 1 6 -11 5 }}


Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 537.214
Optimal tunings:
* WE: ~2 = 1203.5906{{c}}, ~11/8 = 538.8216{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/8 = 537.2534{{c}}


{{Optimal ET sequence|legend=1| 9, 20g, 29g, 38df, 67cddefgh }}
{{Optimal ET sequence|legend=0| 9, 20g, 29g, 38df, 67cddefgh }}


Badness: 0.016828
Badness (Sintel): 1.02


== Nuke ==
== Nuke ==
Nuke tempers out 3584/3375 and is the {{nowrap| 14 & 15 }} temperament. It splits the hemifourth into three generators of ~16/15. Its ploidacot is omega-hexacot. [[15edo]] is about as accurate as it can be tuned.
[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


Line 415: Line 562:
{{Mapping|legend=1| 1 2 2 3 | 0 -6 5 -3 }}
{{Mapping|legend=1| 1 2 2 3 | 0 -6 5 -3 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~16/15 = 80.9538
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1197.0059{{c}}, ~16/15 = 80.7519{{c}}
: [[error map]]: {{val| -2.994 +7.546 +11.457 -20.064 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~16/15 = 81.0408{{c}}
: error map: {{val| 0.000 +11.800 +18.890 -11.948 }}


{{Optimal ET sequence|legend=1| 14, 15, 44cd }}
{{Optimal ET sequence|legend=1| 14, 15 }}


[[Badness]]: 0.129339
[[Badness]] (Sintel): 3.27


=== 11-limit ===
=== 11-limit ===
Line 428: Line 579:
Mapping: {{mapping| 1 2 2 3 3 | 0 -6 5 -3 7 }}
Mapping: {{mapping| 1 2 2 3 3 | 0 -6 5 -3 7 }}


Optimal tuning (POTE): ~2 = 1\1, ~16/15 = 80.8171
Optimal tunings:
* WE: ~2 = 1196.6821{{c}}, ~16/15 = 80.5936{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~16/15 = 80.8326{{c}}


{{Optimal ET sequence|legend=1| 14e, 15 }}
{{Optimal ET sequence|legend=0| 14e, 15 }}


Badness: 0.069398
Badness (Sintel): 2.29


=== 13-limit ===
=== 13-limit ===
Line 441: Line 594:
Mapping: {{mapping| 1 2 2 3 3 4 | 0 -6 5 -3 7 -4 }}
Mapping: {{mapping| 1 2 2 3 3 4 | 0 -6 5 -3 7 -4 }}


Optimal tuning (POTE): ~2 = 1\1, ~16/15 = 81.0243
Optimal tunings:  
 
* WE: ~2 = 1195.6248{{c}}, ~16/15 = 80.7288{{c}}
{{Optimal ET sequence|legend=1| 14e, 15, 44cdeff }}
* CWE: ~2 = 1200.0000{{c}}, ~16/15 = 81.0685{{c}}
 
Badness: 0.048553
 
== Mabila ==
{{See also| Mabila family }}
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 49/48, 28672/28125
 
[[Mapping]]: {{mapping| 1 6 1 5 | 0 -10 3 -5 }}
 
{{Multival|legend=1| 10 -3 5 -28 -20 20 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~75/56 = 529.667
 
{{Optimal ET sequence|legend=1| 9, 25, 34 }}
 
[[Badness]]: 0.133638
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 49/48, 56/55, 1350/1331
 
Mapping: {{mapping| 1 6 1 5 7 | 0 -10 3 -5 -8 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~15/11 = 529.729
 
{{Optimal ET sequence|legend=1| 9, 25e, 34 }}
 
Badness: 0.061501
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 49/48, 56/55, 91/90, 847/845
 
Mapping: {{mapping| 1 6 1 5 7 9 | 0 -10 3 -5 -8 -12 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~15/11 = 529.763
 
{{Optimal ET sequence|legend=1| 9, 25e, 34 }}
 
Badness: 0.037270
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 49/48, 56/55, 91/90, 154/153, 375/374
 
Mapping: {{mapping| 1 6 1 5 7 9 1 | 0 -10 3 -5 -8 -12 7 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~15/11 = 529.695
 
{{Optimal ET sequence|legend=1| 9, 25e, 34 }}
 
Badness: 0.031888
 
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 49/48, 56/55, 76/75, 91/90, 154/153, 190/187
 
Mapping: {{mapping| 1 6 1 5 7 9 1 6 | 0 -10 3 -5 -8 -12 7 -4 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~15/11 = 529.736
 
{{Optimal ET sequence|legend=1| 9, 25e, 34 }}
 
Badness: 0.026981
 
== Hemiripple ==
{{See also| Ripple family #Hemiripple }}
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 49/48, 6561/6250
 
{{Mapping|legend=1| 1 2 3 3 | 0 -10 -16 -5 }}
 
{{Multival|legend=1| 10 16 5 2 -20 -33 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~36/35 = 50.826
 
{{Optimal ET sequence|legend=1| 23d, 24, 47d, 71bdd }}
 
[[Badness]]: 0.175113
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 49/48, 121/120, 567/550
 
Mapping: {{mapping| 1 2 3 3 4 | 0 -10 -16 -5 -13 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~36/35 = 50.826
 
{{Optimal ET sequence|legend=1| 23de, 24, 47de, 71bdde }}
 
Badness: 0.066834
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 49/48, 66/65, 121/120, 351/350
 
Mapping: {{mapping| 1 2 3 3 4 4 | 0 -10 -16 -5 -13 -7 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~36/35 = 50.635


{{Optimal ET sequence|legend=1| 23de, 24, 47de, 71bdde }}
{{Optimal ET sequence|legend=0| 14e, 15 }}


Badness: 0.046588
Badness (Sintel): 2.01


[[Category:Temperament clans]]
[[Category:Temperament clans]]
[[Category:Slendro clan| ]] <!-- main article -->
[[Category:Pages with mostly numerical content]]
[[Category:Semaphoresmic clan| ]] <!-- main article -->
[[Category:Rank 2]]
[[Category:Rank 2]]

Latest revision as of 11:30, 23 August 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The semaphoresmic clan (or semaphore family) of temperaments tempers out the large septimal diesis, or semaphoresma, 49/48, a triprime comma with factors of 2, 3 and 7.

This article focuses on rank-2 temperaments. See Semaphoresmic family for the rank-3 temperament resulting from tempering out 49/48 alone in the full 7-limit.

Semaphore

Semaphore tempers out 49/48, and splits a perfect twelfth into two halfs of 7/4~12/7, and a perfect fourth into two halfs of 7/6~8/7, hence the name semaphore, which sounds like semifourth; its ploidacot is alpha-dicot. 19edo and 24edo are among the possible edo tunings.

Subgroup: 2.3.7

Comma list: 49/48

Subgroup-val mapping[1 0 2], 0 2 1]]

Gencom mapping[1 0 0 2], 0 2 0 1]]

mapping generators: ~2, ~7/4

Optimal tunings:

  • WE: ~2 = 1202.8324 ¢, ~7/4 = 951.8567 ¢
error map: +2.832 +1.758 -11.304]
  • CWE: ~2 = 1200.0000 ¢, ~7/4 = 950.6890 ¢
error map: 0.000 -0.577 -18.137]

Optimal ET sequence5, 14, 19, 24, 67dd, 91dd, 115ddd

Badness (Sintel): 0.193

Scales: semaphore5, semaphore9, semaphore14

Overview to extensions

The second comma of the comma list defines which 7-limit family member we are looking at:

  • Beep adds 21/20, for a tuning flat of 9edo;
  • Superpelog adds 135/128, for a tuning between 9edo and 14c-edo;
  • Godzilla adds 81/80, for a tuning between 14c-edo and 24edo;
  • Helayo adds 3645/3584, for a tuning between 14edo and 24c-edo;
  • Immunity adds 2240/2187, for a tuning sharp of 29edo;
  • Baba adds 16/15, for a niche exotemperament well tuned around 11b-edo.

These all use the same nominal generator as semaphore, though some of them are of very low accuracy.

Decimal adds 25/24. Anguirus adds 2048/2025. Those split the octave in two. Negri adds 225/224, splitting the hemifourth in two. Triforce adds 128/125, splitting the octave in three. Keemun adds 126/125, splitting the hemitwelfth in three. Nautilus adds 250/243, splitting the hemifourth in three. Nuke is like nautilus, but adds 3584/3375 instead. Hemidim adds 648/625 with a 1/4-octave period. Blackwood adds 28/27, with a 1/5-octave period. Spell adds 3125/3072, splitting the hemitwelfth in five. Hemiripple adds 6561/6250, splitting the hemifourth in five. Finally, semabila adds 28672/28125 and splits an interval of two octaves plus a hemifourth in five.

Discussed elsewhere are

Considered below are godzilla, helayo, superpelog, baba, negri, and nuke.

Godzilla

Deutsch

Godzilla tempers out 81/80, equating 9/8 and 10/9, so it finds the prime 5 at a stack of four fifths, as does any temperament in the meantone family. Like many entries of this clan, godzilla can be extended naturally to the 2.3.5.7.13 subgroup by identifying the hemifourth as ~15/13, tempering out 91/90 and 105/104. 19edo is close to being the optimal generator tuning; hence it can be more or less equated with taking 4\19 as a generator. Mos scales are of 5, 9, or 14 notes.

7-limit

Subgroup: 2.3.5.7

Comma list: 49/48, 81/80

Mapping[1 0 -4 2], 0 2 8 1]]

mapping generators: ~2, ~7/4

Optimal tunings:

  • WE: ~2 = 1203.8275 ¢, ~7/4 = 950.3867 ¢
error map: +3.827 -1.182 +1.470 -10.784]
  • CWE: ~2 = 1200.0000 ¢, ~7/4 = 947.8216 ¢
error map: 0.000 -6.312 -3.741 -21.004]

Tuning ranges:

Optimal ET sequence5, 14c, 19

Badness (Sintel): 0.677

2.3.5.7.13 subgroup

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 81/80, 91/90

Subgroup-val mapping: [1 0 -4 2 -5], 0 2 8 1 11]]

Optimal tunings:

  • WE: ~2 = 1203.7816 ¢, ~7/4 = 950.5570 ¢
  • CWE: ~2 = 1200.0000 ¢, ~7/4 = 948.0037 ¢

Optimal ET sequence: 5, 14cf, 19

Badness (Sintel): 0.591

Undecimal godzilla

Subgroup: 2.3.5.7.11

Comma list: 45/44, 49/48, 81/80

Mapping: [1 0 -4 2 -6], 0 2 8 1 12]]

Optimal tunings:

  • WE: ~2 = 1204.4129 ¢, ~7/4 = 949.4513 ¢
  • CWE: ~2 = 1200.0000 ¢, ~7/4 = 946.4361 ¢

Tuning ranges:

  • 11-odd-limit diamond monotone: ~7/4 = [942.857, 947.368] (11\14 to 15\19)
  • 11-odd-limit diamond tradeoff: ~7/4 = [933.129, 968.826]

Optimal ET sequence: 14c, 19, 33cd

Badness (Sintel): 0.957

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 49/48, 78/77, 81/80

Mapping: [1 0 -4 2 -6 -5], 0 2 8 1 12 11]]

Optimal tunings:

  • WE: ~2 = 1203.7164 ¢, ~7/4 = 949.2061 ¢
  • CWE: ~2 = 1200.0000 ¢, ~7/4 = 946.4131 ¢

Tuning ranges:

  • 13- and 15-odd-limit diamond monotone: ~7/4 = 947.368 (15\19)
  • 13- and 15-odd-limit diamond tradeoff: ~7/4 = [910.890, 968.826]

Optimal ET sequence: 14cf, 19, 33cdff

Badness (Sintel): 0.930

Semafour

Subgroup: 2.3.5.7.11

Comma list: 33/32, 49/48, 55/54

Mapping: [1 0 -4 2 5], 0 2 8 1 -2]]

Optimal tunings:

  • WE: ~2 = 1206.9595 ¢, ~7/4 = 951.4440 ¢
  • CWE: ~2 = 1200.0000 ¢, ~7/4 = 946.4472 ¢

Optimal ET sequence: 14c, 19e, 33cdee, 52cdeee

Badness (Sintel): 0.943

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 33/32, 49/48, 55/54, 91/90

Mapping: [1 0 -4 2 5 -5], 0 2 8 1 -2 11]]

Optimal tunings:

  • WE: ~2 = 1206.9737 ¢, ~7/4 = 951.7738 ¢
  • CWE: ~2 = 1200.0000 ¢, ~7/4 = 946.7732 ¢

Optimal ET sequence: 14cf, 19e, 33cdeeff, 52cdeeeff

Badness (Sintel): 0.975

Varan

Subgroup: 2.3.5.7.11

Comma list: 49/48, 77/75, 81/80

Mapping: [1 0 -4 2 -10], 0 2 8 1 17]]

Optimal tunings:

  • WE: ~2 = 1202.5842 ¢, ~7/4 = 950.9647 ¢
  • CWE: ~2 = 1200.0000 ¢, ~7/4 = 949.1239 ¢

Optimal ET sequence: 19e, 24, 43de

Badness (Sintel): 1.31

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 66/65, 77/75, 81/80

Mapping: [1 0 -4 2 -10 -5], 0 2 8 1 17 11]]

Optimal tunings:

  • WE: ~2 = 1202.4367 ¢, ~7/4 = 950.7615 ¢
  • CWE: ~2 = 1200.0000 ¢, ~7/4 = 949.0338 ¢

Optimal ET sequence: 19e, 24, 43de

Badness (Sintel): 1.06

Baragon

Subgroup: 2.3.5.7.11

Comma list: 49/48, 56/55, 81/80

Mapping: [1 0 -4 2 9], 0 2 8 1 -7]]

Optimal tunings:

  • WE: ~2 = 1201.1412 ¢, ~7/4 = 949.7291 ¢
  • CWE: ~2 = 1200.0000 ¢, ~7/4 = 948.8625 ¢

Optimal ET sequence: 19, 24

Badness (Sintel): 1.18

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 56/55, 81/80, 91/90

Mapping: [1 0 -4 2 9 -5], 0 2 8 1 -7 11]]

Optimal tunings:

  • WE: ~2 = 1201.1228 ¢, ~7/4 = 949.6894 ¢
  • CWE: ~2 = 1200.0000 ¢, ~7/4 = 948.8468 ¢

Optimal ET sequence: 19, 24

Badness (Sintel): 1.10

Helayo

For the 5-limit version of this temperament see Miscellaneous 5-limit temperaments #Hogzilla.

Helayo tempers out 3645/3584 and may be thought of as the opposite of godzilla with respect to 19edo. Like godzilla, 19edo's generator is close to the optimum.

Subgroup: 2.3.5.7

Comma list: 49/48, 3645/3584

Mapping[1 0 11 2], 0 2 -11 1]]

Optimal tunings:

  • WE: ~2 = 1204.0199 ¢, ~7/4 = 950.7917 ¢
error map: +4.020 -0.372 -0.804 -9.995]
  • CWE: ~2 = 1200.0000 ¢, ~7/4 = 947.5047 ¢
error map: 0.000 -6.946 -8.866 -21.321]

Optimal ET sequence5c, 14, 19

Badness (Sintel): 2.00

Music

Superpelog

Superpelog tempers out 135/128 and finds the prime 5 at a stack of three fourths, as does any temperament in the mavila family. It may be described as 9 & 14c, with 23edo (23d val) giving a tuning close to the optimum.

Subgroup: 2.3.5.7

Comma list: 49/48, 135/128

Mapping[1 0 7 2], 0 2 -6 1]]

Optimal tunings:

  • WE: ~2 = 1208.8222 ¢, ~7/4 = 946.9590 ¢
error map: +8.822 -8.037 -6.313 -4.223]
  • CWE: ~2 = 1200.0000 ¢, ~7/4 = 939.8419 ¢
error map: 0.000 -22.271 -25.365 -28.984]

Optimal ET sequence9, 14c, 23d, 37bcd, 60bbccdd

Badness (Sintel): 1.47

11-limit

Subgroup: 2.3.5.7.11

Comma list: 33/32, 45/44, 49/48

Mapping: [1 0 7 2 5], 0 2 -6 1 -2]]

Optimal tunings:

  • WE: ~2 = 1208.8663 ¢, ~7/4 = 946.9861 ¢
  • CWE: ~2 = 1200.0000 ¢, ~7/4 = 939.7687 ¢

Optimal ET sequence: 9, 14c, 23de, 37bcde, 60bbccddeee

Badness (Sintel): 0.943

Music
Mindaugas Rex Lithuaniae (2012) by Chris Vaisvillisten | blog – in Superpelog[9], 23edo tuning

Baba

This low-accuracy extension tempers out 16/15, so the perfect fifth stands in for ~8/5 as in father.

Subgroup: 2.3.5.7

Comma list: 16/15, 49/45

Mapping[1 0 4 2], 0 2 -2 1]]

Optimal tunings:

  • WE: ~2 = 1184.7407 ¢, ~7/4 = 960.9196 ¢
error map: -15.259 +19.884 +30.810 -38.425]
  • CWE: ~2 = 1200.0000 ¢, ~7/4 = 972.2994 ¢
error map: 0.000 +42.644 +69.088 +3.473]

Optimal ET sequence5, 11b, 16bc

Badness (Sintel): 1.12

11-limit

Subgroup: 2.3.5.7.11

Comma list: 16/15, 22/21, 49/45

Mapping: [1 0 4 2 1], 0 2 -2 1 3]]

Optimal tunings:

  • WE: ~2 = 1187.4876 ¢, ~7/4 = 967.9643 ¢
  • CWE: ~2 = 1200.0000 ¢, ~7/4 = 976.9298 ¢

Optimal ET sequence: 5, 11b

Badness (Sintel): 1.21

Negri

For the 5-limit version, see Syntonic–kleismic equivalence continuum #Negri (5-limit).

Negri tempers out the negri comma in the 5-limit, 49/48 and 225/224 in the 7-limit. It may be described as 9 & 10; its ploidacot is omega-tetracot. It can be extended naturally to the 2.3.5.7.13 subgroup by adding 91/90 and/or 105/104 to the comma list; this will be discussed below under the title of negra.

7-limit

Subgroup: 2.3.5.7

Comma list: 49/48, 225/224

Mapping[1 2 2 3], 0 -4 3 -2]]

Optimal tunings:

  • WE: ~2 = 1203.4810 ¢, ~15/14 = 125.9724 ¢
error map: +3.481 +1.118 -1.435 -10.328]
  • CWE: ~2 = 1200.0000 ¢, ~15/14 = 125.4347 ¢
error map: 0.000 -3.694 -10.009 -19.695]

Optimal ET sequence9, 10, 19, 48d, 67cdd, 86cdd

Badness (Sintel): 0.670

2.3.5.7.13 subgroup (negra)

Subgroup: 2.3.5.7.13

Comma list: 49/48, 65/64, 91/90

Subgroup-val mapping: [1 2 2 3 4], 0 -4 3 -2 -3]]

Gencom mapping: [1 2 2 3 0 4], 0 -4 3 -2 0 -3]]

Optimal tunings:

  • WE: ~2 = 1203.6981 ¢, ~14/13 = 125.9545 ¢
  • CWE: ~2 = 1200.0000 ¢, ~14/13 = 125.3543 ¢

Optimal ET sequence: 9, 10, 19, 48df, 67cddf, 86cddff

Badness (Sintel): 0.463

Undecimal negri

Subgroup: 2.3.5.7.11

Comma list: 45/44, 49/48, 56/55

Mapping: [1 2 2 3 4], 0 -4 3 -2 -5]]

Optimal tunings:

  • WE: ~2 = 1202.1045 ¢, ~15/14 = 126.6961 ¢
  • CWE: ~2 = 1200.0000 ¢, ~15/14 = 126.3382 ¢

Optimal ET sequence: 9, 10, 19

Badness (Sintel): 0.866

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 49/48, 56/55, 78/77

Mapping: [1 2 2 3 4 4], 0 -4 3 -2 -5 -3]]

Optimal tunings:

  • WE: ~2 = 1202.6035 ¢, ~14/13 = 126.7054 ¢
  • CWE: ~2 = 1200.0000 ¢, ~14/13 = 126.2534 ¢

Optimal ET sequence: 9, 10, 19

Badness (Sintel): 0.737

Negril

Subgroup: 2.3.5.7.11

Comma list: 49/48, 100/99, 225/224

Mapping: [1 2 2 3 2], 0 -4 3 -2 14]]

Optimal tunings:

  • WE: ~2 = 1202.7081 ¢, ~15/14 = 125.0491 ¢
  • CWE: ~2 = 1200.0000 ¢, ~15/14 = 124.8066 ¢

Optimal ET sequence: 10e, 19, 29, 48d, 77cdd

Badness (Sintel): 1.28

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 65/64, 91/90, 875/858

Mapping: [1 2 2 3 2 4], 0 -4 3 -2 14 -3]]

Optimal tunings:

  • WE: ~2 = 1202.9319 ¢, ~14/13 = 125.0204 ¢
  • CWE: ~2 = 1200.0000 ¢, ~14/13 = 124.7374 ¢

Optimal ET sequence: 10e, 19, 29, 48df, 77cddf

Badness (Sintel): 1.01

Negric

Subgroup: 2.3.5.7.11

Comma list: 33/32, 49/48, 77/75

Mapping: [1 2 2 3 3], 0 -4 3 -2 4]]

Optimal tunings:

  • WE: ~2 = 1205.7810 ¢, ~15/14 = 127.6513 ¢
  • CWE: ~2 = 1200.0000 ¢, ~15/14 = 126.9620 ¢

Optimal ET sequence: 9, 19e

Badness (Sintel): 1.01

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 33/32, 49/48, 65/64, 91/90

Mapping: [1 2 2 3 3 4], 0 -4 3 -2 4 -3]]

Optimal tunings:

  • WE: ~2 = 1205.7833 ¢, ~14/13 = 127.6507 ¢
  • CWE: ~2 = 1200.0000 ¢, ~14/13 = 126.9093 ¢

Optimal ET sequence: 9, 19e

Badness (Sintel): 0.835

Negroni

Subgroup: 2.3.5.7.11

Comma list: 49/48, 55/54, 225/224

Mapping: [1 2 2 3 5], 0 -4 3 -2 -15]]

Optimal tunings:

  • WE: ~2 = 1203.4738 ¢, ~15/14 = 124.8992 ¢
  • CWE: ~2 = 1200.0000 ¢, ~15/14 = 124.3642 ¢

Optimal ET sequence: 10, 19e, 29, 77cddee

Badness (Sintel): 1.17

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 55/54, 65/64, 91/90

Mapping: [1 2 2 3 5 4], 0 -4 3 -2 -15 -3]]

Optimal tunings:

  • WE: ~2 = 1203.5354 ¢, ~14/13 = 124.9118 ¢
  • CWE: ~2 = 1200.0000 ¢, ~14/13 = 124.3733 ¢

Optimal ET sequence: 10, 19e, 29, 77cddeef

Badness (Sintel): 0.890

Wilsec

Wilsec splits the fifthward generator of negri in half for 11/8~15/11, tempering out 121/120. Its ploidacot is gamma-octacot.

Subgroup: 2.3.5.7.11

Comma list: 49/48, 121/120, 225/224

Mapping: [1 -2 5 1 3], 0 8 -6 4 1]]

mapping generators: ~2, ~11/8

Optimal tunings:

  • WE: ~2 = 1203.6080 ¢, ~11/8 = 538.8007 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/8 = 537.2654 ¢

Optimal ET sequence: 9, 20, 29, 38d, 67cdde, 105cdddee

Badness (Sintel): 1.38

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 65/64, 91/90, 121/120

Mapping: [1 -2 5 1 3 1], 0 8 -6 4 1 6]]

Optimal tunings:

  • WE: ~2 = 1203.7672 ¢, ~11/8 = 538.8948 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/8 = 537.3053 ¢

Optimal ET sequence: 9, 20, 29, 38df, 67cddef, 105cdddeefff

Badness (Sintel): 1.04

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 49/48, 65/64, 91/90, 121/120, 154/153

Mapping: [1 -2 5 1 3 1 9], 0 8 -6 4 1 6 -11]]

Optimal tunings:

  • WE: ~2 = 1203.7154 ¢, ~11/8 = 538.8932 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/8 = 537.2633 ¢

Optimal ET sequence: 9, 20g, 29g, 38df, 67cddefg

Badness (Sintel): 1.11

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 49/48, 65/64, 77/76, 91/90, 121/120, 154/153

Mapping: [1 -2 5 1 3 1 9 2], 0 8 -6 4 1 6 -11 5]]

Optimal tunings:

  • WE: ~2 = 1203.5906 ¢, ~11/8 = 538.8216 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/8 = 537.2534 ¢

Optimal ET sequence: 9, 20g, 29g, 38df, 67cddefgh

Badness (Sintel): 1.02

Nuke

Nuke tempers out 3584/3375 and is the 14 & 15 temperament. It splits the hemifourth into three generators of ~16/15. Its ploidacot is omega-hexacot. 15edo is about as accurate as it can be tuned.

Subgroup: 2.3.5.7

Comma list: 49/48, 3584/3375

Mapping[1 2 2 3], 0 -6 5 -3]]

Optimal tunings:

  • WE: ~2 = 1197.0059 ¢, ~16/15 = 80.7519 ¢
error map: -2.994 +7.546 +11.457 -20.064]
  • CWE: ~2 = 1200.0000 ¢, ~16/15 = 81.0408 ¢
error map: 0.000 +11.800 +18.890 -11.948]

Optimal ET sequence14, 15

Badness (Sintel): 3.27

11-limit

Subgroup: 2.3.5.7.11

Comma list: 49/48, 77/75, 512/495

Mapping: [1 2 2 3 3], 0 -6 5 -3 7]]

Optimal tunings:

  • WE: ~2 = 1196.6821 ¢, ~16/15 = 80.5936 ¢
  • CWE: ~2 = 1200.0000 ¢, ~16/15 = 80.8326 ¢

Optimal ET sequence: 14e, 15

Badness (Sintel): 2.29

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 66/65, 77/75, 448/429

Mapping: [1 2 2 3 3 4], 0 -6 5 -3 7 -4]]

Optimal tunings:

  • WE: ~2 = 1195.6248 ¢, ~16/15 = 80.7288 ¢
  • CWE: ~2 = 1200.0000 ¢, ~16/15 = 81.0685 ¢

Optimal ET sequence: 14e, 15

Badness (Sintel): 2.01