Wikispaces>Andrew_Heathwaite |
|
(11 intermediate revisions by 3 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | [[File:hendecatonic_MOS_scales_PING.png|alt=hendecatonic_MOS_scales_PING.png|hendecatonic_MOS_scales_PING.png]] |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2011-11-24 17:26:38 UTC</tt>.<br>
| |
| : The original revision id was <tt>278861876</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[image:hendecatonic_MOS_scales_corrected.jpg]]
| |
|
| |
|
| [[image:hendecatonic_MOS_scales_PING.png]]
| | Hendecatonic (11-tone) [[MOSScales|MOS Scales]] come in many varieties and are effective as chromatic scales out of which albitonic (diatonic-like) subsets can be taken. As 11 is a prime number, each Hendecatonic MOS Scale has the octave as a period, rather than some division of the octave like 600¢. It is a simple matter to retune a Halberstadt keyboard to a Hendecatonic MOS Scale, with the 2/1 occurring after 11 keys, or by skipping a key so the 2/1 occurs after 12 keys. The diagram above shows the 10 generator ranges ("Regions") where Hendecatonic MOS Scales occur. |
| Hendecatonic (11-tone) [[MOSScales|MOS Scales]] come in many varieties and are effective as chromatic scales out of which albitonic (diatonic-like) subsets can be taken. As 11 is a prime number, each Hendecatonic MOS Scale will have the octave as a period, rather than a division of the octave. It is a simple matter to retune a Halberstadt keyboard to a Hendecatonic MOS Scale, with the 2/1 occurring after 11 keys, or by skipping a key so the 2/1 occurs after 12 keys. The diagram above shows the 10 generator ranges ("Regions") where Hendecatonic MOS Scales occur. | |
|
| |
|
| See: [[chromatic pairs]] | | See: [[Chromatic_pairs|chromatic pairs]], [[Tridecatonic_MOS|tridecatonic MOS]] |
|
| |
|
| =The 10 Generator Ranges= | | =The 10 Generator Ranges= |
|
| |
|
| ==[[1L 10s]] aka 1+10== | | ==[[1L_10s|1L 10s]] aka 1+10== |
|
| |
|
| Range: 0¢ to 109.091¢ (1\[[11edo]]) | | Range: 0¢ to 109.091¢ (1\[[11edo|11edo]]) |
|
| |
|
| Some 1+10 scales:
| | Albitonic MOS subsets: [[1L_6s|1L 6s]], [[1L_7s|1L 7s]], [[1L_8s|1L 8s]] etc. |
| [[Valentine]][11] in [[46edo]]: 3 3 3 3 3 3 3 3 3 16 3 | |
| [[Nautilus]][11] in [[29edo]]: 2 2 2 2 9 2 2 2 2 2 2 | |
| [[Octacot]][11] in [[41edo]]: 3 3 3 3 3 3 3 3 3 3 11
| |
|
| |
|
| ==[[10L 1s]] aka 10+1==
| | [[Valentine|Valentine]][11] in [[46edo|46edo]] (g=3\46 ~ 78.261¢): 3 3 3 3 3 3 3 3 3 16 3 |
|
| |
|
| Range: 109.091¢ (1\11edo) to 120¢ (1\[[10edo]])
| | [[Nautilus|Nautilus]][11] in [[29edo|29edo]] (g=2\29 ~ 82.759¢): 2 2 2 9 2 2 2 2 2 2 |
|
| |
|
| Some 10+1 scales:
| | [[Octacot|Octacot]][11] in [[41edo|41edo]] (g=3\41 ~ 88.805¢): 3 3 3 3 3 3 3 3 3 3 11 |
| [[Miracle]][11] in [[72edo]]: 7 7 7 7 7 7 7 2 7 7 7 | |
|
| |
|
| ==[[6L 5s]] aka 6+5==
| | [[Passion|Passion]][11] in [[37edo|37edo]] (g=3\37 ~ 97.297¢): 3 3 3 3 3 3 3 3 3 3 7 |
|
| |
|
| Range: 200¢ (1\[[6edo]]) to 218.182¢ (2\11edo)
| | [[Ripple|Ripple]][11] in [[23edo|23edo]] (g=2\23 ~ 104.348¢): 2 2 2 2 2 2 2 2 2 2 3 |
|
| |
|
| Some 6+5 scales:
| | ==[[10L_1s|10L 1s]] aka 10+1== |
| [[baldy11|Baldy]][11] in [[47edo]]: 7 1 7 1 7 1 7 7 1 7 1 | |
| [[machine11|Machine]][11] in [[28edo]]: 3 2 3 2 3 2 3 3 2 3 2
| |
|
| |
|
| ==[[5L 6s]] aka 5+6==
| | Range: 109.091¢ (1\11edo) to 120¢ (1\[[10edo|10edo]]) |
|
| |
|
| Range: 218.182¢ (2\11edo) to 240¢ (1\[[5edo]])
| | Albitonic MOS subsets: [[1L_6s|1L 6s]], [[1L_7s|1L 7s]], [[1L_8s|1L 8s]] etc. |
|
| |
|
| Some 5+6 scales:
| | [[Miracle|Miracle]][11] in [[72edo|72edo]] (g=7\72 ~ 116.667¢): 7 7 7 7 7 7 7 2 7 7 7 |
| [[Gorgo]][11]/[[shoe11|Shoe]][11] in [[37edo]]: 5 2 5 2 5 2 5 2 2 5 2
| |
| [[Cynder]][11]/[[Mothra]][11]/[[Slendric]][11] in [[31edo]]: 1 5 1 5 1 5 1 5 1 1 5
| |
| [[Rodan]][11] in [[41edo]]: 1 7 1 7 1 7 1 7 1 1 7
| |
|
| |
|
| ==[[4L 7s]] aka 4+7== | | ==[[6L_5s|6L 5s]] aka 6+5== |
|
| |
|
| Range: 300¢ (1\[[4edo]]) to 327.273¢ (3\11edo) | | Range: 200¢ (1\[[6edo|6edo]]) to 218.182¢ (2\11edo) |
|
| |
|
| Some 4+7 scales:
| | Albitonic MOS subsets: [[5L_1s|5L 1s]] |
| [[Myna]][11] in [[89edo]]: 3 3 17 3 3 17 3 3 17 3 17 | | |
| [[Keemun]][11]/[[Hanson]][11]/[[Catakleismic]][11] in [[72edo]] | | [[baldy11|Baldy]][11] in [[47edo|47edo]] (g=8\47 ~ 204.255¢): 7 1 7 1 7 1 7 7 1 7 1 |
| [[Orgone]][11] in [[26edo]]</pre></div> | | |
| <h4>Original HTML content:</h4>
| | [[machine11|Machine]][11] in [[28edo|28edo]] (g=5\28 ~ 214.286¢): 3 2 3 2 3 2 3 3 2 3 2 |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Hendecatonic MOS</title></head><body><!-- ws:start:WikiTextLocalImageRule:12:&lt;img src=&quot;/file/view/hendecatonic_MOS_scales_corrected.jpg/278681228/hendecatonic_MOS_scales_corrected.jpg&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/hendecatonic_MOS_scales_corrected.jpg/278681228/hendecatonic_MOS_scales_corrected.jpg" alt="hendecatonic_MOS_scales_corrected.jpg" title="hendecatonic_MOS_scales_corrected.jpg" /><!-- ws:end:WikiTextLocalImageRule:12 --><br />
| | |
| <br />
| | ==[[5L_6s|5L 6s]] aka 5+6== |
| <!-- ws:start:WikiTextLocalImageRule:13:&lt;img src=&quot;/file/view/hendecatonic_MOS_scales_PING.png/278861814/hendecatonic_MOS_scales_PING.png&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/hendecatonic_MOS_scales_PING.png/278861814/hendecatonic_MOS_scales_PING.png" alt="hendecatonic_MOS_scales_PING.png" title="hendecatonic_MOS_scales_PING.png" /><!-- ws:end:WikiTextLocalImageRule:13 --><br />
| | |
| Hendecatonic (11-tone) <a class="wiki_link" href="/MOSScales">MOS Scales</a> come in many varieties and are effective as chromatic scales out of which albitonic (diatonic-like) subsets can be taken. As 11 is a prime number, each Hendecatonic MOS Scale will have the octave as a period, rather than a division of the octave. It is a simple matter to retune a Halberstadt keyboard to a Hendecatonic MOS Scale, with the 2/1 occurring after 11 keys, or by skipping a key so the 2/1 occurs after 12 keys. The diagram above shows the 10 generator ranges (&quot;Regions&quot;) where Hendecatonic MOS Scales occur.<br />
| | Range: 218.182¢ (2\11edo) to 240¢ (1\[[5edo|5edo]]) |
| <br />
| | |
| See: <a class="wiki_link" href="/chromatic%20pairs">chromatic pairs</a><br />
| | Albitonic MOS subsets: [[5L_1s|5L 1s]] |
| <br />
| | |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="The 10 Generator Ranges"></a><!-- ws:end:WikiTextHeadingRule:0 -->The 10 Generator Ranges</h1>
| | [[Gorgo|Gorgo]][11]/[[shoe11|Shoe]][11] in [[37edo|37edo]] (g=7\37 ~ 227.027¢): 5 2 5 2 5 2 5 2 2 5 2 |
| <br />
| | |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="The 10 Generator Ranges-1L 10s aka 1+10"></a><!-- ws:end:WikiTextHeadingRule:2 --><a class="wiki_link" href="/1L%2010s">1L 10s</a> aka 1+10</h2>
| | [[Cynder|Cynder]][11]/[[Mothra|Mothra]][11]/[[Slendric|Slendric]][11] in [[31edo|31edo]] (g=6\31 ~ 232.258¢): 1 5 1 5 1 5 1 5 1 1 5 |
| <br />
| | |
| Range: 0¢ to 109.091¢ (1\<a class="wiki_link" href="/11edo">11edo</a>)<br /> | | [[Rodan|Rodan]][11] in [[41edo|41edo]] (g=8\41 ~ 234.146¢): 1 7 1 7 1 7 1 7 1 1 7 |
| <br />
| | |
| Some 1+10 scales:<br />
| | ==[[4L_7s|4L 7s]] aka 4+7== |
| <a class="wiki_link" href="/Valentine">Valentine</a>[11] in <a class="wiki_link" href="/46edo">46edo</a>: 3 3 3 3 3 3 3 3 3 16 3<br />
| | |
| <a class="wiki_link" href="/Nautilus">Nautilus</a>[11] in <a class="wiki_link" href="/29edo">29edo</a>: 2 2 2 2 9 2 2 2 2 2 2<br />
| | Range: 300¢ (1\[[4edo|4edo]]) to 327.273¢ (3\11edo) |
| <a class="wiki_link" href="/Octacot">Octacot</a>[11] in <a class="wiki_link" href="/41edo">41edo</a>: 3 3 3 3 3 3 3 3 3 3 11<br />
| | |
| <br />
| | Albitonic MOS subsets: [[4L_3s|4L 3s]] |
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="The 10 Generator Ranges-10L 1s aka 10+1"></a><!-- ws:end:WikiTextHeadingRule:4 --><a class="wiki_link" href="/10L%201s">10L 1s</a> aka 10+1</h2>
| | |
| <br />
| | [[Myna|Myna]][11] in [[89edo|89edo]]: 3 3 17 3 3 17 3 3 17 3 17 |
| Range: 109.091¢ (1\11edo) to 120¢ (1\<a class="wiki_link" href="/10edo">10edo</a>)<br /> | | |
| <br />
| | [[Keemun|Keemun]][11]/[[Hanson|Hanson]][11]/[[catakleismic|Catakleismic]][11] in [[72edo|72edo]] (g=19\72 ~ 316.667¢): 4 4 11 4 4 11 4 11 4 4 11 |
| Some 10+1 scales:<br />
| | |
| <a class="wiki_link" href="/Miracle">Miracle</a>[11] in <a class="wiki_link" href="/72edo">72edo</a>: 7 7 7 7 7 7 7 2 7 7 7<br />
| | [[Orgone|Orgone]][11] in [[26edo|26edo]]: 2 3 2 3 2 2 3 2 2 3 2 |
| <br />
| | |
| <!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="The 10 Generator Ranges-6L 5s aka 6+5"></a><!-- ws:end:WikiTextHeadingRule:6 --><a class="wiki_link" href="/6L%205s">6L 5s</a> aka 6+5</h2>
| | ==[[7L_4s|7L 4s]] aka 7+4== |
| <br />
| | |
| Range: 200¢ (1\<a class="wiki_link" href="/6edo">6edo</a>) to 218.182¢ (2\11edo)<br /> | | Range: 327.273¢ (3\11edo) to 342.857¢ (2\7edo) |
| <br />
| | |
| Some 6+5 scales:<br />
| | Albitonic MOS subsets: [[4L_3s|4L 3s]] |
| <a class="wiki_link" href="/baldy11">Baldy</a>[11] in <a class="wiki_link" href="/47edo">47edo</a>: 7 1 7 1 7 1 7 7 1 7 1<br />
| | |
| <a class="wiki_link" href="/machine11">Machine</a>[11] in <a class="wiki_link" href="/28edo">28edo</a>: 3 2 3 2 3 2 3 3 2 3 2<br />
| | [[Amity|Amity]][11]/[[Hitchcock|Hitchcock]][11] in [[46edo|46edo]] (g=13\46 ~ 339.130¢): 1 6 6 1 6 1 6 6 1 6 6 |
| <br />
| | |
| <!-- ws:start:WikiTextHeadingRule:8:&lt;h2&gt; --><h2 id="toc4"><a name="The 10 Generator Ranges-5L 6s aka 5+6"></a><!-- ws:end:WikiTextHeadingRule:8 --><a class="wiki_link" href="/5L%206s">5L 6s</a> aka 5+6</h2>
| | ==[[3L_8s|3L 8s]] aka 3+8== |
| <br />
| | |
| Range: 218.182¢ (2\11edo) to 240¢ (1\<a class="wiki_link" href="/5edo">5edo</a>)<br /> | | Range: 400¢ (1\[[3edo|3edo]]) to 436.364¢ (4\11edo) |
| <br />
| | |
| Some 5+6 scales:<br />
| | Albitonic MOS subsets: [[3L_5s|3L 5s]] |
| <a class="wiki_link" href="/Gorgo">Gorgo</a>[11]/<a class="wiki_link" href="/shoe11">Shoe</a>[11] in <a class="wiki_link" href="/37edo">37edo</a>: 5 2 5 2 5 2 5 2 2 5 2<br />
| | |
| <a class="wiki_link" href="/Cynder">Cynder</a>[11]/<a class="wiki_link" href="/Mothra">Mothra</a>[11]/<a class="wiki_link" href="/Slendric">Slendric</a>[11] in <a class="wiki_link" href="/31edo">31edo</a>: 1 5 1 5 1 5 1 5 1 1 5<br />
| | [[Bossier|Bossier]][11] in [[37edo|37edo]] (g=13\37 ~ 431.622¢): 2 2 2 7 2 2 7 2 2 2 7 |
| <a class="wiki_link" href="/Rodan">Rodan</a>[11] in <a class="wiki_link" href="/41edo">41edo</a>: 1 7 1 7 1 7 1 7 1 1 7<br />
| | |
| <br />
| | [[Squares|Squares]][11] in [[48edo|48edo]] (g=17\48 = 425¢): 8 3 3 8 3 3 3 8 3 3 3 |
| <!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="The 10 Generator Ranges-4L 7s aka 4+7"></a><!-- ws:end:WikiTextHeadingRule:10 --><a class="wiki_link" href="/4L%207s">4L 7s</a> aka 4+7</h2>
| | |
| <br />
| | ==[[8L_3s|8L 3s]] aka 8+3== |
| Range: 300¢ (1\<a class="wiki_link" href="/4edo">4edo</a>) to 327.273¢ (3\11edo)<br /> | | |
| <br />
| | Range: 436.364¢ (4\11edo) to 450¢ (3\[[8edo|8edo]]) |
| Some 4+7 scales:<br />
| | |
| <a class="wiki_link" href="/Myna">Myna</a>[11] in <a class="wiki_link" href="/89edo">89edo</a>: 3 3 17 3 3 17 3 3 17 3 17<br />
| | Albitonic MOS subsets: [[3L_5s|3L 5s]] |
| <a class="wiki_link" href="/Keemun">Keemun</a>[11]/<a class="wiki_link" href="/Hanson">Hanson</a>[11]/<a class="wiki_link" href="/Catakleismic">Catakleismic</a>[11] in <a class="wiki_link" href="/72edo">72edo</a><br />
| | |
| <a class="wiki_link" href="/Orgone">Orgone</a>[11] in <a class="wiki_link" href="/26edo">26edo</a></body></html></pre></div>
| | [[Sensi|Sensi]][11] in [[46edo|46edo]] (g=17\46 ~ 443.478¢): 5 5 5 2 5 5 5 2 5 5 2 |
| | |
| | ==[[9L_2s|9L 2s]] aka 9+2== |
| | |
| | Range: 533.333¢ (4\[[9edo|9edo]] to 545.455¢ (5\11edo) |
| | |
| | Albitonic MOS subsets: [[2L_5s|2L 5s]], [[2L_7s|2L 7s]] |
| | |
| | [[Avila|Avila]][11] in [[29edo|29edo]] (g=13\29 ~ 537.931¢): 1 3 3 3 3 3 1 3 3 3 3 |
| | |
| | [[casablanca|Casablanca]][11] in [[73edo|73edo]] (g=33\73 ~ 542.466¢): 5 7 7 7 7 7 5 7 7 7 7 |
| | |
| | ==[[2L_9s|2L 9s]] aka 2+9== |
| | |
| | Range: 545.455¢ (5\11edo) to 600¢ (1\[[2edo|2edo]]) |
| | |
| | Albitonic MOS subsets: [[2L_5s|2L 5s]], [[2L_7s|2L 7s]] |
| | |
| | [[Heinz|Heinz]][11] in [[46edo|46edo]] (g=21\46 ~ 547.826¢): 4 4 4 5 4 4 4 4 4 5 4 |
| | |
| | [[Liese|Liese]][11] in [[74edo|74edo]] (g=35\74 ~ 567.568¢): 4 4 4 19 4 4 4 4 19 4 4 |
| | |
| | [[Triton|Triton]][11] in [[19edo|19edo]] (g=9\19 ~ 568.421¢): 1 1 1 1 5 1 1 1 1 1 5 |
| | |
| | [[Tritonic|Tritonic]][11] in [[60edo|60edo]] (g=29\60 = 580¢): 2 2 2 21 2 2 2 2 2 21 2 |
| | [[Category:Lists of scales]] |
| | [[Category:MOS scales]] |
| | [[Category:11-tone scales]] |
Hendecatonic (11-tone) MOS Scales come in many varieties and are effective as chromatic scales out of which albitonic (diatonic-like) subsets can be taken. As 11 is a prime number, each Hendecatonic MOS Scale has the octave as a period, rather than some division of the octave like 600¢. It is a simple matter to retune a Halberstadt keyboard to a Hendecatonic MOS Scale, with the 2/1 occurring after 11 keys, or by skipping a key so the 2/1 occurs after 12 keys. The diagram above shows the 10 generator ranges ("Regions") where Hendecatonic MOS Scales occur.
See: chromatic pairs, tridecatonic MOS
The 10 Generator Ranges
Range: 0¢ to 109.091¢ (1\11edo)
Albitonic MOS subsets: 1L 6s, 1L 7s, 1L 8s etc.
Valentine[11] in 46edo (g=3\46 ~ 78.261¢): 3 3 3 3 3 3 3 3 3 16 3
Nautilus[11] in 29edo (g=2\29 ~ 82.759¢): 2 2 2 9 2 2 2 2 2 2
Octacot[11] in 41edo (g=3\41 ~ 88.805¢): 3 3 3 3 3 3 3 3 3 3 11
Passion[11] in 37edo (g=3\37 ~ 97.297¢): 3 3 3 3 3 3 3 3 3 3 7
Ripple[11] in 23edo (g=2\23 ~ 104.348¢): 2 2 2 2 2 2 2 2 2 2 3
Range: 109.091¢ (1\11edo) to 120¢ (1\10edo)
Albitonic MOS subsets: 1L 6s, 1L 7s, 1L 8s etc.
Miracle[11] in 72edo (g=7\72 ~ 116.667¢): 7 7 7 7 7 7 7 2 7 7 7
Range: 200¢ (1\6edo) to 218.182¢ (2\11edo)
Albitonic MOS subsets: 5L 1s
Baldy[11] in 47edo (g=8\47 ~ 204.255¢): 7 1 7 1 7 1 7 7 1 7 1
Machine[11] in 28edo (g=5\28 ~ 214.286¢): 3 2 3 2 3 2 3 3 2 3 2
Range: 218.182¢ (2\11edo) to 240¢ (1\5edo)
Albitonic MOS subsets: 5L 1s
Gorgo[11]/Shoe[11] in 37edo (g=7\37 ~ 227.027¢): 5 2 5 2 5 2 5 2 2 5 2
Cynder[11]/Mothra[11]/Slendric[11] in 31edo (g=6\31 ~ 232.258¢): 1 5 1 5 1 5 1 5 1 1 5
Rodan[11] in 41edo (g=8\41 ~ 234.146¢): 1 7 1 7 1 7 1 7 1 1 7
Range: 300¢ (1\4edo) to 327.273¢ (3\11edo)
Albitonic MOS subsets: 4L 3s
Myna[11] in 89edo: 3 3 17 3 3 17 3 3 17 3 17
Keemun[11]/Hanson[11]/Catakleismic[11] in 72edo (g=19\72 ~ 316.667¢): 4 4 11 4 4 11 4 11 4 4 11
Orgone[11] in 26edo: 2 3 2 3 2 2 3 2 2 3 2
Range: 327.273¢ (3\11edo) to 342.857¢ (2\7edo)
Albitonic MOS subsets: 4L 3s
Amity[11]/Hitchcock[11] in 46edo (g=13\46 ~ 339.130¢): 1 6 6 1 6 1 6 6 1 6 6
Range: 400¢ (1\3edo) to 436.364¢ (4\11edo)
Albitonic MOS subsets: 3L 5s
Bossier[11] in 37edo (g=13\37 ~ 431.622¢): 2 2 2 7 2 2 7 2 2 2 7
Squares[11] in 48edo (g=17\48 = 425¢): 8 3 3 8 3 3 3 8 3 3 3
Range: 436.364¢ (4\11edo) to 450¢ (3\8edo)
Albitonic MOS subsets: 3L 5s
Sensi[11] in 46edo (g=17\46 ~ 443.478¢): 5 5 5 2 5 5 5 2 5 5 2
Range: 533.333¢ (4\9edo to 545.455¢ (5\11edo)
Albitonic MOS subsets: 2L 5s, 2L 7s
Avila[11] in 29edo (g=13\29 ~ 537.931¢): 1 3 3 3 3 3 1 3 3 3 3
Casablanca[11] in 73edo (g=33\73 ~ 542.466¢): 5 7 7 7 7 7 5 7 7 7 7
Range: 545.455¢ (5\11edo) to 600¢ (1\2edo)
Albitonic MOS subsets: 2L 5s, 2L 7s
Heinz[11] in 46edo (g=21\46 ~ 547.826¢): 4 4 4 5 4 4 4 4 4 5 4
Liese[11] in 74edo (g=35\74 ~ 567.568¢): 4 4 4 19 4 4 4 4 19 4 4
Triton[11] in 19edo (g=9\19 ~ 568.421¢): 1 1 1 1 5 1 1 1 1 1 5
Tritonic[11] in 60edo (g=29\60 = 580¢): 2 2 2 21 2 2 2 2 2 21 2