Luna and hemithirds

From Xenharmonic Wiki
(Redirected from Hemithird)
Jump to navigation Jump to search
Hemithirds
Subgroups 2.3.5.7
Comma basis 1029/1024, 3136/3125 (2.3.5.7)
Reduced mapping ⟨1; -15 2 5]
Edo join 31 & 56
Generator (CWE) ~28/25 = 193.2 ¢
MOS scales 1L 5s, 6L 1s, 6L 7s, 6L 13s, 6L 19s, 25L 6s
Ploidacot beta-pentadecacot
Pergen (P8, ccP4/15)
Color name Latrizo & Zozoquinguti
Minimax error (7-odd limit) 2.5 ¢;
((7-limit) 25-odd limit) 3.6 ¢
Target scale size (7-odd limit) 56 notes;
((7-limit) 25-odd limit) 87 notes

The 7-limit hemithirds temperament functions as a strong extension of didacus, the 2.5.7 subgroup temperament, which is defined by tempering out 3136/3125 such that two of its generators (hemithird, ~28/25, around 193.2 cents) reach ~5/4, three reach ~7/5, and therefore five reach ~7/4. Hemithirds extends didacus in the range between 25edo and 31edo tuning, by tempering out 1029/1024, such that three intervals of ~8/7 reach ~3/2, therefore finding ~4/3 after fifteen generators in total. The canonical extension to the 13-limit tempers out 385/384 and 441/440 to reach ~55/32 at four ~8/7s and therefore ~11/8 at 22 generators down, and then 196/195 (along with 352/351, 625/624, and 1001/1000) to interpret the generator as ~143/128 and find ~13/8 at 23 generators up.

Luna is a restriction of hemithirds to the 5-limit that is a microtemperament, supported by such high-precision tuning systems as 323edo and 441edo; another notable tuning of luna is 1000edo. It can further be re-extended to the 7-limit in the form of lunatic by adding 4375/4374 to the comma list, but that extension is extremely complex (finding the 7th harmonic at 113 generators down).

See Hemimean clan #Hemithirds and Luna family #Luna for more information.

Intervals

In the following table, odd harmonics and subharmonics 1–39 are labeled in bold.

# Cents* Approximate ratios
7-limit hemithirds 13-limit extension
0 0.0 1/1
1 193.2 28/25, 125/112 39/35
2 386.5 5/4 96/77
3 579.7 7/5 39/28, 88/63
4 773.0 25/16 39/25, 120/77
5 966.2 7/4 96/55, 110/63
6 1159.4 49/25, 125/64 39/20, 88/45
7 152.7 35/32 12/11
8 345.9 49/40, 128/105 11/9, 39/32
9 539.2 15/11
10 732.4 32/21, 49/32 55/36, 84/55
11 925.6 128/75 77/45
12 1118.9 40/21 21/11
13 112.1 16/15 77/72
14 305.3 25/21
15 498.6 4/3
16 691.8 112/75 52/35
17 885.1 5/3 128/77
18 1078.3 28/15 13/7
19 71.5 25/24 26/25, 80/77
20 264.8 7/6 64/55
21 458.0 98/75, 125/96 13/10
22 651.3 35/24 16/11
23 844.5 49/30 13/8, 44/27
24 1037.7 20/11
25 31.0 64/63, 49/48 55/54, 56/55, 65/64

* In CWE 7-limit hemithirds tuning

Chords

Tunings

Tuning spectrum

Vals are for 13-limit hemithirds and 7-limit lunatic in their respective ranges.

EDO
generator
Eigenmonzo
(unchanged interval)
*
Generator (¢) Comments
4\25 192.0000 25ef val, lower bound of 7- and 9-odd-limit diamond monotone
13\81 192.5926 81bef val
9\56 192.8571 Lower bound of 11- to 15-odd-limit diamond monotone
32/21 192.9219
40/21 192.9601
23\143 193.0070
64/63 193.0906
14\87 193.1034
5/4 193.1569 1/2-comma didacus
33\205 193.1707 205d val (hemithirds)
↑ Hemithirds
↓ Lunatic
52\323 193.1889
25/24 193.1933
71\441 193.1973
5/3 193.1976 5-odd-limit minimax tuning
10/9 193.2001
90\559 193.2021
4/3 193.2030 (2.3.7) 21- and 27-odd-limit minimax tuning (hemithirds)
16/15 193.2101
19\118 193.2203 ↑ Lunatic
↓ Hemithirds
28/27 193.2592 2.3.7 CEE tuning
14/9 193.2833 9-odd-limit minimax tuning
24\149 193.2886 149f val
29\180 193.3333 180ef val
7/6 193.3435 7-odd-limit minimax tuning
28/15 193.3643
34\211 193.3649 211eff val
49/48 193.4279
5\31 193.5484 Upper bound of 9- to 15-odd-limit diamond monotone
7/4 193.7652 2/5-comma didacus
6\37 194.5946 37beff val, upper bound of 7-odd-limit diamond monotone
28/25 196.1985 Untempered didacus

* Besides the octave

15-odd-limit eigenmonzos

15-odd-limit eigenmonzos of 13-limit hemithirds
Eigenmonzo
(Unchanged-interval)
Generator
(¢)
Comments
14/13 192.872
12/11 192.948
15/11 192.995
13/10 193.058
16/13 193.066
13/11 193.094
15/13 193.118
13/12 193.120
11/8 193.122
11/10 193.125
18/13 193.144
5/4 193.157
6/5 193.198 5-odd-limit minimax
10/9 193.200
4/3 193.203
16/15 193.210
14/11 193.241 11-odd-limit minimax
9/7 193.283 9-odd-limit minimax
7/6 193.344 7-odd-limit minimax
15/14 193.364
11/9 193.426
8/7 193.765
7/5 194.171