25L 6s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLLLLsLLLLsLLLLsLLLLsLLLLsLLLLs
sLLLLsLLLLsLLLLsLLLLsLLLLsLLLLL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
26\31 to 21\25 (1006.5¢ to 1008.0¢)
Dark
4\25 to 5\31 (192.0¢ to 193.5¢)
TAMNAMS information
Descends from
6L 1s (archaeotonic)
Ancestor's step ratio range
4:1 to 5:1
Related MOS scales
Parent
6L 19s
Sister
6L 25s
Daughters
31L 25s, 25L 31s
Neutralized
19L 12s
2-Flought
56L 6s, 25L 37s
Equal tunings
Equalized (L:s = 1:1)
26\31 (1006.5¢)
Supersoft (L:s = 4:3)
99\118 (1006.8¢)
Soft (L:s = 3:2)
73\87 (1006.9¢)
Semisoft (L:s = 5:3)
120\143 (1007.0¢)
Basic (L:s = 2:1)
47\56 (1007.1¢)
Semihard (L:s = 5:2)
115\137 (1007.3¢)
Hard (L:s = 3:1)
68\81 (1007.4¢)
Superhard (L:s = 4:1)
89\106 (1007.5¢)
Collapsed (L:s = 1:0)
21\25 (1008.0¢)
↖ 24L 5s | ↑ 25L 5s | 26L 5s ↗ |
← 24L 6s | 25L 6s | 26L 6s → |
↙ 24L 7s | ↓ 25L 7s | 26L 7s ↘ |
┌╥╥╥╥╥┬╥╥╥╥┬╥╥╥╥┬╥╥╥╥┬╥╥╥╥┬╥╥╥╥┬┐ │║║║║║│║║║║│║║║║│║║║║│║║║║│║║║║││ │││││││││││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLLLLsLLLLsLLLLsLLLLsLLLLsLLLLL
25L 6s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 25 large steps and 6 small steps, repeating every octave. 25L 6s is related to 6L 1s, expanding it by 24 tones. Generators that produce this scale range from 1006.5¢ to 1008¢, or from 192¢ to 193.5¢.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 38.7¢ |
Major 1-mosstep | M1ms | L | 38.7¢ to 48.0¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 48.0¢ to 77.4¢ |
Major 2-mosstep | M2ms | 2L | 77.4¢ to 96.0¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 2L + s | 96.0¢ to 116.1¢ |
Major 3-mosstep | M3ms | 3L | 116.1¢ to 144.0¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 3L + s | 144.0¢ to 154.8¢ |
Major 4-mosstep | M4ms | 4L | 154.8¢ to 192.0¢ | |
5-mosstep | Perfect 5-mosstep | P5ms | 4L + s | 192.0¢ to 193.5¢ |
Augmented 5-mosstep | A5ms | 5L | 193.5¢ to 240.0¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 4L + 2s | 192.0¢ to 232.3¢ |
Major 6-mosstep | M6ms | 5L + s | 232.3¢ to 240.0¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 5L + 2s | 240.0¢ to 271.0¢ |
Major 7-mosstep | M7ms | 6L + s | 271.0¢ to 288.0¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 6L + 2s | 288.0¢ to 309.7¢ |
Major 8-mosstep | M8ms | 7L + s | 309.7¢ to 336.0¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 7L + 2s | 336.0¢ to 348.4¢ |
Major 9-mosstep | M9ms | 8L + s | 348.4¢ to 384.0¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 8L + 2s | 384.0¢ to 387.1¢ |
Major 10-mosstep | M10ms | 9L + s | 387.1¢ to 432.0¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 8L + 3s | 384.0¢ to 425.8¢ |
Major 11-mosstep | M11ms | 9L + 2s | 425.8¢ to 432.0¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 9L + 3s | 432.0¢ to 464.5¢ |
Major 12-mosstep | M12ms | 10L + 2s | 464.5¢ to 480.0¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 10L + 3s | 480.0¢ to 503.2¢ |
Major 13-mosstep | M13ms | 11L + 2s | 503.2¢ to 528.0¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 11L + 3s | 528.0¢ to 541.9¢ |
Major 14-mosstep | M14ms | 12L + 2s | 541.9¢ to 576.0¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 12L + 3s | 576.0¢ to 580.6¢ |
Major 15-mosstep | M15ms | 13L + 2s | 580.6¢ to 624.0¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 12L + 4s | 576.0¢ to 619.4¢ |
Major 16-mosstep | M16ms | 13L + 3s | 619.4¢ to 624.0¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 13L + 4s | 624.0¢ to 658.1¢ |
Major 17-mosstep | M17ms | 14L + 3s | 658.1¢ to 672.0¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 14L + 4s | 672.0¢ to 696.8¢ |
Major 18-mosstep | M18ms | 15L + 3s | 696.8¢ to 720.0¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 15L + 4s | 720.0¢ to 735.5¢ |
Major 19-mosstep | M19ms | 16L + 3s | 735.5¢ to 768.0¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 16L + 4s | 768.0¢ to 774.2¢ |
Major 20-mosstep | M20ms | 17L + 3s | 774.2¢ to 816.0¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 16L + 5s | 768.0¢ to 812.9¢ |
Major 21-mosstep | M21ms | 17L + 4s | 812.9¢ to 816.0¢ | |
22-mosstep | Minor 22-mosstep | m22ms | 17L + 5s | 816.0¢ to 851.6¢ |
Major 22-mosstep | M22ms | 18L + 4s | 851.6¢ to 864.0¢ | |
23-mosstep | Minor 23-mosstep | m23ms | 18L + 5s | 864.0¢ to 890.3¢ |
Major 23-mosstep | M23ms | 19L + 4s | 890.3¢ to 912.0¢ | |
24-mosstep | Minor 24-mosstep | m24ms | 19L + 5s | 912.0¢ to 929.0¢ |
Major 24-mosstep | M24ms | 20L + 4s | 929.0¢ to 960.0¢ | |
25-mosstep | Minor 25-mosstep | m25ms | 20L + 5s | 960.0¢ to 967.7¢ |
Major 25-mosstep | M25ms | 21L + 4s | 967.7¢ to 1008.0¢ | |
26-mosstep | Diminished 26-mosstep | d26ms | 20L + 6s | 960.0¢ to 1006.5¢ |
Perfect 26-mosstep | P26ms | 21L + 5s | 1006.5¢ to 1008.0¢ | |
27-mosstep | Minor 27-mosstep | m27ms | 21L + 6s | 1008.0¢ to 1045.2¢ |
Major 27-mosstep | M27ms | 22L + 5s | 1045.2¢ to 1056.0¢ | |
28-mosstep | Minor 28-mosstep | m28ms | 22L + 6s | 1056.0¢ to 1083.9¢ |
Major 28-mosstep | M28ms | 23L + 5s | 1083.9¢ to 1104.0¢ | |
29-mosstep | Minor 29-mosstep | m29ms | 23L + 6s | 1104.0¢ to 1122.6¢ |
Major 29-mosstep | M29ms | 24L + 5s | 1122.6¢ to 1152.0¢ | |
30-mosstep | Minor 30-mosstep | m30ms | 24L + 6s | 1152.0¢ to 1161.3¢ |
Major 30-mosstep | M30ms | 25L + 5s | 1161.3¢ to 1200.0¢ | |
31-mosstep | Perfect 31-mosstep | P31ms | 25L + 6s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
26\31 | 1006.452 | 193.548 | 1:1 | 1.000 | Equalized 25L 6s | |||||
151\180 | 1006.667 | 193.333 | 6:5 | 1.200 | ||||||
125\149 | 1006.711 | 193.289 | 5:4 | 1.250 | ||||||
224\267 | 1006.742 | 193.258 | 9:7 | 1.286 | ||||||
99\118 | 1006.780 | 193.220 | 4:3 | 1.333 | Supersoft 25L 6s | |||||
271\323 | 1006.811 | 193.189 | 11:8 | 1.375 | ||||||
172\205 | 1006.829 | 193.171 | 7:5 | 1.400 | ||||||
245\292 | 1006.849 | 193.151 | 10:7 | 1.429 | ||||||
73\87 | 1006.897 | 193.103 | 3:2 | 1.500 | Soft 25L 6s | |||||
266\317 | 1006.940 | 193.060 | 11:7 | 1.571 | ||||||
193\230 | 1006.957 | 193.043 | 8:5 | 1.600 | ||||||
313\373 | 1006.971 | 193.029 | 13:8 | 1.625 | ||||||
120\143 | 1006.993 | 193.007 | 5:3 | 1.667 | Semisoft 25L 6s | |||||
287\342 | 1007.018 | 192.982 | 12:7 | 1.714 | ||||||
167\199 | 1007.035 | 192.965 | 7:4 | 1.750 | ||||||
214\255 | 1007.059 | 192.941 | 9:5 | 1.800 | ||||||
47\56 | 1007.143 | 192.857 | 2:1 | 2.000 | Basic 25L 6s Scales with tunings softer than this are proper | |||||
209\249 | 1007.229 | 192.771 | 9:4 | 2.250 | ||||||
162\193 | 1007.254 | 192.746 | 7:3 | 2.333 | ||||||
277\330 | 1007.273 | 192.727 | 12:5 | 2.400 | ||||||
115\137 | 1007.299 | 192.701 | 5:2 | 2.500 | Semihard 25L 6s | |||||
298\355 | 1007.324 | 192.676 | 13:5 | 2.600 | ||||||
183\218 | 1007.339 | 192.661 | 8:3 | 2.667 | ||||||
251\299 | 1007.358 | 192.642 | 11:4 | 2.750 | ||||||
68\81 | 1007.407 | 192.593 | 3:1 | 3.000 | Hard 25L 6s | |||||
225\268 | 1007.463 | 192.537 | 10:3 | 3.333 | ||||||
157\187 | 1007.487 | 192.513 | 7:2 | 3.500 | ||||||
246\293 | 1007.509 | 192.491 | 11:3 | 3.667 | ||||||
89\106 | 1007.547 | 192.453 | 4:1 | 4.000 | Superhard 25L 6s | |||||
199\237 | 1007.595 | 192.405 | 9:2 | 4.500 | ||||||
110\131 | 1007.634 | 192.366 | 5:1 | 5.000 | ||||||
131\156 | 1007.692 | 192.308 | 6:1 | 6.000 | ||||||
21\25 | 1008.000 | 192.000 | 1:0 | → ∞ | Collapsed 25L 6s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |