6L 25s
Jump to navigation
Jump to search
Scale structure
Step pattern
LssssLssssLssssLssssLssssLsssss
sssssLssssLssssLssssLssssLssssL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
5\31 to 1\6 (193.5¢ to 200.0¢)
Dark
5\6 to 26\31 (1000.0¢ to 1006.5¢)
TAMNAMS information
Descends from
6L 1s (archaeotonic)
Ancestor's step ratio range
5:1 to 1:0
Related MOS scales
Parent
6L 19s
Sister
25L 6s
Daughters
31L 6s, 6L 31s
Neutralized
12L 19s
2-Flought
37L 25s, 6L 56s
Equal tunings
Equalized (L:s = 1:1)
5\31 (193.5¢)
Supersoft (L:s = 4:3)
16\99 (193.9¢)
Soft (L:s = 3:2)
11\68 (194.1¢)
Semisoft (L:s = 5:3)
17\105 (194.3¢)
Basic (L:s = 2:1)
6\37 (194.6¢)
Semihard (L:s = 5:2)
13\80 (195.0¢)
Hard (L:s = 3:1)
7\43 (195.3¢)
Superhard (L:s = 4:1)
8\49 (195.9¢)
Collapsed (L:s = 1:0)
1\6 (200.0¢)
↖ 5L 24s | ↑ 6L 24s | 7L 24s ↗ |
← 5L 25s | 6L 25s | 7L 25s → |
↙ 5L 26s | ↓ 6L 26s | 7L 26s ↘ |
┌╥┬┬┬┬╥┬┬┬┬╥┬┬┬┬╥┬┬┬┬╥┬┬┬┬╥┬┬┬┬┬┐ │║││││║││││║││││║││││║││││║││││││ │││││││││││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sssssLssssLssssLssssLssssLssssL
6L 25s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 6 large steps and 25 small steps, repeating every octave. 6L 25s is related to 6L 1s, expanding it by 24 tones. Generators that produce this scale range from 193.5¢ to 200¢, or from 1000¢ to 1006.5¢.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 38.7¢ |
Major 1-mosstep | M1ms | L | 38.7¢ to 200.0¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0¢ to 77.4¢ |
Major 2-mosstep | M2ms | L + s | 77.4¢ to 200.0¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 3s | 0.0¢ to 116.1¢ |
Major 3-mosstep | M3ms | L + 2s | 116.1¢ to 200.0¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 4s | 0.0¢ to 154.8¢ |
Major 4-mosstep | M4ms | L + 3s | 154.8¢ to 200.0¢ | |
5-mosstep | Diminished 5-mosstep | d5ms | 5s | 0.0¢ to 193.5¢ |
Perfect 5-mosstep | P5ms | L + 4s | 193.5¢ to 200.0¢ | |
6-mosstep | Minor 6-mosstep | m6ms | L + 5s | 200.0¢ to 232.3¢ |
Major 6-mosstep | M6ms | 2L + 4s | 232.3¢ to 400.0¢ | |
7-mosstep | Minor 7-mosstep | m7ms | L + 6s | 200.0¢ to 271.0¢ |
Major 7-mosstep | M7ms | 2L + 5s | 271.0¢ to 400.0¢ | |
8-mosstep | Minor 8-mosstep | m8ms | L + 7s | 200.0¢ to 309.7¢ |
Major 8-mosstep | M8ms | 2L + 6s | 309.7¢ to 400.0¢ | |
9-mosstep | Minor 9-mosstep | m9ms | L + 8s | 200.0¢ to 348.4¢ |
Major 9-mosstep | M9ms | 2L + 7s | 348.4¢ to 400.0¢ | |
10-mosstep | Minor 10-mosstep | m10ms | L + 9s | 200.0¢ to 387.1¢ |
Major 10-mosstep | M10ms | 2L + 8s | 387.1¢ to 400.0¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 2L + 9s | 400.0¢ to 425.8¢ |
Major 11-mosstep | M11ms | 3L + 8s | 425.8¢ to 600.0¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 2L + 10s | 400.0¢ to 464.5¢ |
Major 12-mosstep | M12ms | 3L + 9s | 464.5¢ to 600.0¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 2L + 11s | 400.0¢ to 503.2¢ |
Major 13-mosstep | M13ms | 3L + 10s | 503.2¢ to 600.0¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 2L + 12s | 400.0¢ to 541.9¢ |
Major 14-mosstep | M14ms | 3L + 11s | 541.9¢ to 600.0¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 2L + 13s | 400.0¢ to 580.6¢ |
Major 15-mosstep | M15ms | 3L + 12s | 580.6¢ to 600.0¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 3L + 13s | 600.0¢ to 619.4¢ |
Major 16-mosstep | M16ms | 4L + 12s | 619.4¢ to 800.0¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 3L + 14s | 600.0¢ to 658.1¢ |
Major 17-mosstep | M17ms | 4L + 13s | 658.1¢ to 800.0¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 3L + 15s | 600.0¢ to 696.8¢ |
Major 18-mosstep | M18ms | 4L + 14s | 696.8¢ to 800.0¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 3L + 16s | 600.0¢ to 735.5¢ |
Major 19-mosstep | M19ms | 4L + 15s | 735.5¢ to 800.0¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 3L + 17s | 600.0¢ to 774.2¢ |
Major 20-mosstep | M20ms | 4L + 16s | 774.2¢ to 800.0¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 4L + 17s | 800.0¢ to 812.9¢ |
Major 21-mosstep | M21ms | 5L + 16s | 812.9¢ to 1000.0¢ | |
22-mosstep | Minor 22-mosstep | m22ms | 4L + 18s | 800.0¢ to 851.6¢ |
Major 22-mosstep | M22ms | 5L + 17s | 851.6¢ to 1000.0¢ | |
23-mosstep | Minor 23-mosstep | m23ms | 4L + 19s | 800.0¢ to 890.3¢ |
Major 23-mosstep | M23ms | 5L + 18s | 890.3¢ to 1000.0¢ | |
24-mosstep | Minor 24-mosstep | m24ms | 4L + 20s | 800.0¢ to 929.0¢ |
Major 24-mosstep | M24ms | 5L + 19s | 929.0¢ to 1000.0¢ | |
25-mosstep | Minor 25-mosstep | m25ms | 4L + 21s | 800.0¢ to 967.7¢ |
Major 25-mosstep | M25ms | 5L + 20s | 967.7¢ to 1000.0¢ | |
26-mosstep | Perfect 26-mosstep | P26ms | 5L + 21s | 1000.0¢ to 1006.5¢ |
Augmented 26-mosstep | A26ms | 6L + 20s | 1006.5¢ to 1200.0¢ | |
27-mosstep | Minor 27-mosstep | m27ms | 5L + 22s | 1000.0¢ to 1045.2¢ |
Major 27-mosstep | M27ms | 6L + 21s | 1045.2¢ to 1200.0¢ | |
28-mosstep | Minor 28-mosstep | m28ms | 5L + 23s | 1000.0¢ to 1083.9¢ |
Major 28-mosstep | M28ms | 6L + 22s | 1083.9¢ to 1200.0¢ | |
29-mosstep | Minor 29-mosstep | m29ms | 5L + 24s | 1000.0¢ to 1122.6¢ |
Major 29-mosstep | M29ms | 6L + 23s | 1122.6¢ to 1200.0¢ | |
30-mosstep | Minor 30-mosstep | m30ms | 5L + 25s | 1000.0¢ to 1161.3¢ |
Major 30-mosstep | M30ms | 6L + 24s | 1161.3¢ to 1200.0¢ | |
31-mosstep | Perfect 31-mosstep | P31ms | 6L + 25s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
5\31 | 193.548 | 1006.452 | 1:1 | 1.000 | Equalized 6L 25s | |||||
26\161 | 193.789 | 1006.211 | 6:5 | 1.200 | ||||||
21\130 | 193.846 | 1006.154 | 5:4 | 1.250 | ||||||
37\229 | 193.886 | 1006.114 | 9:7 | 1.286 | ||||||
16\99 | 193.939 | 1006.061 | 4:3 | 1.333 | Supersoft 6L 25s | |||||
43\266 | 193.985 | 1006.015 | 11:8 | 1.375 | ||||||
27\167 | 194.012 | 1005.988 | 7:5 | 1.400 | ||||||
38\235 | 194.043 | 1005.957 | 10:7 | 1.429 | ||||||
11\68 | 194.118 | 1005.882 | 3:2 | 1.500 | Soft 6L 25s | |||||
39\241 | 194.191 | 1005.809 | 11:7 | 1.571 | ||||||
28\173 | 194.220 | 1005.780 | 8:5 | 1.600 | ||||||
45\278 | 194.245 | 1005.755 | 13:8 | 1.625 | ||||||
17\105 | 194.286 | 1005.714 | 5:3 | 1.667 | Semisoft 6L 25s | |||||
40\247 | 194.332 | 1005.668 | 12:7 | 1.714 | ||||||
23\142 | 194.366 | 1005.634 | 7:4 | 1.750 | ||||||
29\179 | 194.413 | 1005.587 | 9:5 | 1.800 | ||||||
6\37 | 194.595 | 1005.405 | 2:1 | 2.000 | Basic 6L 25s Scales with tunings softer than this are proper | |||||
25\154 | 194.805 | 1005.195 | 9:4 | 2.250 | ||||||
19\117 | 194.872 | 1005.128 | 7:3 | 2.333 | ||||||
32\197 | 194.924 | 1005.076 | 12:5 | 2.400 | ||||||
13\80 | 195.000 | 1005.000 | 5:2 | 2.500 | Semihard 6L 25s | |||||
33\203 | 195.074 | 1004.926 | 13:5 | 2.600 | ||||||
20\123 | 195.122 | 1004.878 | 8:3 | 2.667 | ||||||
27\166 | 195.181 | 1004.819 | 11:4 | 2.750 | ||||||
7\43 | 195.349 | 1004.651 | 3:1 | 3.000 | Hard 6L 25s | |||||
22\135 | 195.556 | 1004.444 | 10:3 | 3.333 | ||||||
15\92 | 195.652 | 1004.348 | 7:2 | 3.500 | ||||||
23\141 | 195.745 | 1004.255 | 11:3 | 3.667 | ||||||
8\49 | 195.918 | 1004.082 | 4:1 | 4.000 | Superhard 6L 25s | |||||
17\104 | 196.154 | 1003.846 | 9:2 | 4.500 | ||||||
9\55 | 196.364 | 1003.636 | 5:1 | 5.000 | ||||||
10\61 | 196.721 | 1003.279 | 6:1 | 6.000 | ||||||
1\6 | 200.000 | 1000.000 | 1:0 | → ∞ | Collapsed 6L 25s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |