278edo
Jump to navigation
Jump to search
Prime factorization
2 × 139
Step size
4.31655¢
Fifth
163\278 (703.597¢)
Semitones (A1:m2)
29:19 (125.2¢ : 82.01¢)
Dual sharp fifth
163\278 (703.597¢)
Dual flat fifth
162\278 (699.281¢) (→81\139)
Dual major 2nd
47\278 (202.878¢)
Consistency limit
3
Distinct consistency limit
3
← 277edo | 278edo | 279edo → |
278 equal divisions of the octave (278edo), or 278-tone equal temperament (278tet), 278 equal temperament (278et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 278 equal parts of about 4.32 ¢ each.
Theory
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +1.64 | -2.14 | -1.92 | -1.03 | +1.20 | +1.20 | -0.50 | -1.36 | +0.33 | -0.28 | +1.94 |
relative (%) | +38 | -50 | -44 | -24 | +28 | +28 | -12 | -31 | +8 | -6 | +45 | |
Steps (reduced) |
441 (163) |
645 (89) |
780 (224) |
881 (47) |
962 (128) |
1029 (195) |
1086 (252) |
1136 (24) |
1181 (69) |
1221 (109) |
1258 (146) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it.