6L 19s
Jump to navigation
Jump to search
Scale structure
Step pattern
LsssLsssLsssLsssLsssLssss
ssssLsssLsssLsssLsssLsssL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
4\25 to 1\6 (192.0¢ to 200.0¢)
Dark
5\6 to 21\25 (1000.0¢ to 1008.0¢)
TAMNAMS information
Descends from
6L 1s (archaeotonic)
Ancestor's step ratio range
4:1 to 1:0 (ultrahard)
Related MOS scales
Parent
6L 13s
Sister
19L 6s
Daughters
25L 6s, 6L 25s
Neutralized
12L 13s
2-Flought
31L 19s, 6L 44s
Equal tunings
Equalized (L:s = 1:1)
4\25 (192.0¢)
Supersoft (L:s = 4:3)
13\81 (192.6¢)
Soft (L:s = 3:2)
9\56 (192.9¢)
Semisoft (L:s = 5:3)
14\87 (193.1¢)
Basic (L:s = 2:1)
5\31 (193.5¢)
Semihard (L:s = 5:2)
11\68 (194.1¢)
Hard (L:s = 3:1)
6\37 (194.6¢)
Superhard (L:s = 4:1)
7\43 (195.3¢)
Collapsed (L:s = 1:0)
1\6 (200.0¢)
↖ 5L 18s | ↑ 6L 18s | 7L 18s ↗ |
← 5L 19s | 6L 19s | 7L 19s → |
↙ 5L 20s | ↓ 6L 20s | 7L 20s ↘ |
┌╥┬┬┬╥┬┬┬╥┬┬┬╥┬┬┬╥┬┬┬╥┬┬┬┬┐ │║│││║│││║│││║│││║│││║│││││ │││││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
ssssLsssLsssLsssLsssLsssL
6L 19s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 6 large steps and 19 small steps, repeating every octave. 6L 19s is a great-grandchild scale of 6L 1s, expanding it by 18 tones. Generators that produce this scale range from 192¢ to 200¢, or from 1000¢ to 1008¢.
This is the MOS where the large steps divide the small steps into groups of 3-3-3-3-3-4. It is generated by a "neutral" whole tone of no less than 4/25edo (192 cents), laying estimates of the boundary of "practicality" between 37edo (minimum) and 43edo (maximum).
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
24|0 | 1 | LsssLsssLsssLsssLsssLssss |
23|1 | 5 | LsssLsssLsssLsssLssssLsss |
22|2 | 9 | LsssLsssLsssLssssLsssLsss |
21|3 | 13 | LsssLsssLssssLsssLsssLsss |
20|4 | 17 | LsssLssssLsssLsssLsssLsss |
19|5 | 21 | LssssLsssLsssLsssLsssLsss |
18|6 | 25 | sLsssLsssLsssLsssLsssLsss |
17|7 | 4 | sLsssLsssLsssLsssLssssLss |
16|8 | 8 | sLsssLsssLsssLssssLsssLss |
15|9 | 12 | sLsssLsssLssssLsssLsssLss |
14|10 | 16 | sLsssLssssLsssLsssLsssLss |
13|11 | 20 | sLssssLsssLsssLsssLsssLss |
12|12 | 24 | ssLsssLsssLsssLsssLsssLss |
11|13 | 3 | ssLsssLsssLsssLsssLssssLs |
10|14 | 7 | ssLsssLsssLsssLssssLsssLs |
9|15 | 11 | ssLsssLsssLssssLsssLsssLs |
8|16 | 15 | ssLsssLssssLsssLsssLsssLs |
7|17 | 19 | ssLssssLsssLsssLsssLsssLs |
6|18 | 23 | sssLsssLsssLsssLsssLsssLs |
5|19 | 2 | sssLsssLsssLsssLsssLssssL |
4|20 | 6 | sssLsssLsssLsssLssssLsssL |
3|21 | 10 | sssLsssLsssLssssLsssLsssL |
2|22 | 14 | sssLsssLssssLsssLsssLsssL |
1|23 | 18 | sssLssssLsssLsssLsssLsssL |
0|24 | 22 | ssssLsssLsssLsssLsssLsssL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 48.0¢ |
Major 1-mosstep | M1ms | L | 48.0¢ to 200.0¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0¢ to 96.0¢ |
Major 2-mosstep | M2ms | L + s | 96.0¢ to 200.0¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 3s | 0.0¢ to 144.0¢ |
Major 3-mosstep | M3ms | L + 2s | 144.0¢ to 200.0¢ | |
4-mosstep | Diminished 4-mosstep | d4ms | 4s | 0.0¢ to 192.0¢ |
Perfect 4-mosstep | P4ms | L + 3s | 192.0¢ to 200.0¢ | |
5-mosstep | Minor 5-mosstep | m5ms | L + 4s | 200.0¢ to 240.0¢ |
Major 5-mosstep | M5ms | 2L + 3s | 240.0¢ to 400.0¢ | |
6-mosstep | Minor 6-mosstep | m6ms | L + 5s | 200.0¢ to 288.0¢ |
Major 6-mosstep | M6ms | 2L + 4s | 288.0¢ to 400.0¢ | |
7-mosstep | Minor 7-mosstep | m7ms | L + 6s | 200.0¢ to 336.0¢ |
Major 7-mosstep | M7ms | 2L + 5s | 336.0¢ to 400.0¢ | |
8-mosstep | Minor 8-mosstep | m8ms | L + 7s | 200.0¢ to 384.0¢ |
Major 8-mosstep | M8ms | 2L + 6s | 384.0¢ to 400.0¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 2L + 7s | 400.0¢ to 432.0¢ |
Major 9-mosstep | M9ms | 3L + 6s | 432.0¢ to 600.0¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 2L + 8s | 400.0¢ to 480.0¢ |
Major 10-mosstep | M10ms | 3L + 7s | 480.0¢ to 600.0¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 2L + 9s | 400.0¢ to 528.0¢ |
Major 11-mosstep | M11ms | 3L + 8s | 528.0¢ to 600.0¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 2L + 10s | 400.0¢ to 576.0¢ |
Major 12-mosstep | M12ms | 3L + 9s | 576.0¢ to 600.0¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 3L + 10s | 600.0¢ to 624.0¢ |
Major 13-mosstep | M13ms | 4L + 9s | 624.0¢ to 800.0¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 3L + 11s | 600.0¢ to 672.0¢ |
Major 14-mosstep | M14ms | 4L + 10s | 672.0¢ to 800.0¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 3L + 12s | 600.0¢ to 720.0¢ |
Major 15-mosstep | M15ms | 4L + 11s | 720.0¢ to 800.0¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 3L + 13s | 600.0¢ to 768.0¢ |
Major 16-mosstep | M16ms | 4L + 12s | 768.0¢ to 800.0¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 4L + 13s | 800.0¢ to 816.0¢ |
Major 17-mosstep | M17ms | 5L + 12s | 816.0¢ to 1000.0¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 4L + 14s | 800.0¢ to 864.0¢ |
Major 18-mosstep | M18ms | 5L + 13s | 864.0¢ to 1000.0¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 4L + 15s | 800.0¢ to 912.0¢ |
Major 19-mosstep | M19ms | 5L + 14s | 912.0¢ to 1000.0¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 4L + 16s | 800.0¢ to 960.0¢ |
Major 20-mosstep | M20ms | 5L + 15s | 960.0¢ to 1000.0¢ | |
21-mosstep | Perfect 21-mosstep | P21ms | 5L + 16s | 1000.0¢ to 1008.0¢ |
Augmented 21-mosstep | A21ms | 6L + 15s | 1008.0¢ to 1200.0¢ | |
22-mosstep | Minor 22-mosstep | m22ms | 5L + 17s | 1000.0¢ to 1056.0¢ |
Major 22-mosstep | M22ms | 6L + 16s | 1056.0¢ to 1200.0¢ | |
23-mosstep | Minor 23-mosstep | m23ms | 5L + 18s | 1000.0¢ to 1104.0¢ |
Major 23-mosstep | M23ms | 6L + 17s | 1104.0¢ to 1200.0¢ | |
24-mosstep | Minor 24-mosstep | m24ms | 5L + 19s | 1000.0¢ to 1152.0¢ |
Major 24-mosstep | M24ms | 6L + 18s | 1152.0¢ to 1200.0¢ | |
25-mosstep | Perfect 25-mosstep | P25ms | 6L + 19s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
4\25 | 192.000 | 1008.000 | 1:1 | 1.000 | Equalized 6L 19s | |||||
21\131 | 192.366 | 1007.634 | 6:5 | 1.200 | ||||||
17\106 | 192.453 | 1007.547 | 5:4 | 1.250 | ||||||
30\187 | 192.513 | 1007.487 | 9:7 | 1.286 | ||||||
13\81 | 192.593 | 1007.407 | 4:3 | 1.333 | Supersoft 6L 19s | |||||
35\218 | 192.661 | 1007.339 | 11:8 | 1.375 | ||||||
22\137 | 192.701 | 1007.299 | 7:5 | 1.400 | ||||||
31\193 | 192.746 | 1007.254 | 10:7 | 1.429 | ||||||
9\56 | 192.857 | 1007.143 | 3:2 | 1.500 | Soft 6L 19s | |||||
32\199 | 192.965 | 1007.035 | 11:7 | 1.571 | ||||||
23\143 | 193.007 | 1006.993 | 8:5 | 1.600 | ||||||
37\230 | 193.043 | 1006.957 | 13:8 | 1.625 | ||||||
14\87 | 193.103 | 1006.897 | 5:3 | 1.667 | Semisoft 6L 19s | |||||
33\205 | 193.171 | 1006.829 | 12:7 | 1.714 | ||||||
19\118 | 193.220 | 1006.780 | 7:4 | 1.750 | ||||||
24\149 | 193.289 | 1006.711 | 9:5 | 1.800 | ||||||
5\31 | 193.548 | 1006.452 | 2:1 | 2.000 | Basic 6L 19s Scales with tunings softer than this are proper | |||||
21\130 | 193.846 | 1006.154 | 9:4 | 2.250 | ||||||
16\99 | 193.939 | 1006.061 | 7:3 | 2.333 | ||||||
27\167 | 194.012 | 1005.988 | 12:5 | 2.400 | ||||||
11\68 | 194.118 | 1005.882 | 5:2 | 2.500 | Semihard 6L 19s | |||||
28\173 | 194.220 | 1005.780 | 13:5 | 2.600 | ||||||
17\105 | 194.286 | 1005.714 | 8:3 | 2.667 | ||||||
23\142 | 194.366 | 1005.634 | 11:4 | 2.750 | ||||||
6\37 | 194.595 | 1005.405 | 3:1 | 3.000 | Hard 6L 19s | |||||
19\117 | 194.872 | 1005.128 | 10:3 | 3.333 | ||||||
13\80 | 195.000 | 1005.000 | 7:2 | 3.500 | ||||||
20\123 | 195.122 | 1004.878 | 11:3 | 3.667 | ||||||
7\43 | 195.349 | 1004.651 | 4:1 | 4.000 | Superhard 6L 19s | |||||
15\92 | 195.652 | 1004.348 | 9:2 | 4.500 | ||||||
8\49 | 195.918 | 1004.082 | 5:1 | 5.000 | ||||||
9\55 | 196.364 | 1003.636 | 6:1 | 6.000 | ||||||
1\6 | 200.000 | 1000.000 | 1:0 | → ∞ | Collapsed 6L 19s |