19L 6s
Jump to navigation
Jump to search
Step pattern
LLLLsLLLsLLLsLLLsLLLsLLLs
sLLLsLLLsLLLsLLLsLLLsLLLL
Equave
2/1 (1200.0 ¢)
Period
2/1 (1200.0 ¢)
Bright
21\25 to 16\19 (1008.0 ¢ to 1010.5 ¢)
Dark
3\19 to 4\25 (189.5 ¢ to 192.0 ¢)
Related to
6L 1s (archaeotonic)
With tunings
3:1 to 4:1 (parahard)
Parent
6L 13s
Sister
6L 19s
Daughters
25L 19s, 19L 25s
Neutralized
13L 12s
2-Flought
44L 6s, 19L 31s
Equalized (L:s = 1:1)
21\25 (1008.0 ¢)
Supersoft (L:s = 4:3)
79\94 (1008.5 ¢)
Soft (L:s = 3:2)
58\69 (1008.7 ¢)
Semisoft (L:s = 5:3)
95\113 (1008.8 ¢)
Basic (L:s = 2:1)
37\44 (1009.1 ¢)
Semihard (L:s = 5:2)
90\107 (1009.3 ¢)
Hard (L:s = 3:1)
53\63 (1009.5 ¢)
Superhard (L:s = 4:1)
69\82 (1009.8 ¢)
Collapsed (L:s = 1:0)
16\19 (1010.5 ¢)
↖ 18L 5s | ↑ 19L 5s | 20L 5s ↗ |
← 18L 6s | 19L 6s | 20L 6s → |
↙ 18L 7s | ↓ 19L 7s | 20L 7s ↘ |
┌╥╥╥╥┬╥╥╥┬╥╥╥┬╥╥╥┬╥╥╥┬╥╥╥┬┐ │║║║║│║║║│║║║│║║║│║║║│║║║││ │││││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
sLLLsLLLsLLLsLLLsLLLsLLLL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
19L 6s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 19 large steps and 6 small steps, repeating every octave. 19L 6s is a great-grandchild scale of 6L 1s, expanding it by 18 tones. Generators that produce this scale range from 1008 ¢ to 1010.5 ¢, or from 189.5 ¢ to 192 ¢.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 48.0 ¢ |
Major 1-mosstep | M1ms | L | 48.0 ¢ to 63.2 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 63.2 ¢ to 96.0 ¢ |
Major 2-mosstep | M2ms | 2L | 96.0 ¢ to 126.3 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 2L + s | 126.3 ¢ to 144.0 ¢ |
Major 3-mosstep | M3ms | 3L | 144.0 ¢ to 189.5 ¢ | |
4-mosstep | Perfect 4-mosstep | P4ms | 3L + s | 189.5 ¢ to 192.0 ¢ |
Augmented 4-mosstep | A4ms | 4L | 192.0 ¢ to 252.6 ¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 3L + 2s | 189.5 ¢ to 240.0 ¢ |
Major 5-mosstep | M5ms | 4L + s | 240.0 ¢ to 252.6 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 4L + 2s | 252.6 ¢ to 288.0 ¢ |
Major 6-mosstep | M6ms | 5L + s | 288.0 ¢ to 315.8 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 5L + 2s | 315.8 ¢ to 336.0 ¢ |
Major 7-mosstep | M7ms | 6L + s | 336.0 ¢ to 378.9 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 6L + 2s | 378.9 ¢ to 384.0 ¢ |
Major 8-mosstep | M8ms | 7L + s | 384.0 ¢ to 442.1 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 6L + 3s | 378.9 ¢ to 432.0 ¢ |
Major 9-mosstep | M9ms | 7L + 2s | 432.0 ¢ to 442.1 ¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 7L + 3s | 442.1 ¢ to 480.0 ¢ |
Major 10-mosstep | M10ms | 8L + 2s | 480.0 ¢ to 505.3 ¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 8L + 3s | 505.3 ¢ to 528.0 ¢ |
Major 11-mosstep | M11ms | 9L + 2s | 528.0 ¢ to 568.4 ¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 9L + 3s | 568.4 ¢ to 576.0 ¢ |
Major 12-mosstep | M12ms | 10L + 2s | 576.0 ¢ to 631.6 ¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 9L + 4s | 568.4 ¢ to 624.0 ¢ |
Major 13-mosstep | M13ms | 10L + 3s | 624.0 ¢ to 631.6 ¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 10L + 4s | 631.6 ¢ to 672.0 ¢ |
Major 14-mosstep | M14ms | 11L + 3s | 672.0 ¢ to 694.7 ¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 11L + 4s | 694.7 ¢ to 720.0 ¢ |
Major 15-mosstep | M15ms | 12L + 3s | 720.0 ¢ to 757.9 ¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 12L + 4s | 757.9 ¢ to 768.0 ¢ |
Major 16-mosstep | M16ms | 13L + 3s | 768.0 ¢ to 821.1 ¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 12L + 5s | 757.9 ¢ to 816.0 ¢ |
Major 17-mosstep | M17ms | 13L + 4s | 816.0 ¢ to 821.1 ¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 13L + 5s | 821.1 ¢ to 864.0 ¢ |
Major 18-mosstep | M18ms | 14L + 4s | 864.0 ¢ to 884.2 ¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 14L + 5s | 884.2 ¢ to 912.0 ¢ |
Major 19-mosstep | M19ms | 15L + 4s | 912.0 ¢ to 947.4 ¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 15L + 5s | 947.4 ¢ to 960.0 ¢ |
Major 20-mosstep | M20ms | 16L + 4s | 960.0 ¢ to 1010.5 ¢ | |
21-mosstep | Diminished 21-mosstep | d21ms | 15L + 6s | 947.4 ¢ to 1008.0 ¢ |
Perfect 21-mosstep | P21ms | 16L + 5s | 1008.0 ¢ to 1010.5 ¢ | |
22-mosstep | Minor 22-mosstep | m22ms | 16L + 6s | 1010.5 ¢ to 1056.0 ¢ |
Major 22-mosstep | M22ms | 17L + 5s | 1056.0 ¢ to 1073.7 ¢ | |
23-mosstep | Minor 23-mosstep | m23ms | 17L + 6s | 1073.7 ¢ to 1104.0 ¢ |
Major 23-mosstep | M23ms | 18L + 5s | 1104.0 ¢ to 1136.8 ¢ | |
24-mosstep | Minor 24-mosstep | m24ms | 18L + 6s | 1136.8 ¢ to 1152.0 ¢ |
Major 24-mosstep | M24ms | 19L + 5s | 1152.0 ¢ to 1200.0 ¢ | |
25-mosstep | Perfect 25-mosstep | P25ms | 19L + 6s | 1200.0 ¢ |
Generator chain
Bright gens | Scale degree | Abbrev. |
---|---|---|
43 | Augmented 3-mosdegree | A3md |
42 | Augmented 7-mosdegree | A7md |
41 | Augmented 11-mosdegree | A11md |
40 | Augmented 15-mosdegree | A15md |
39 | Augmented 19-mosdegree | A19md |
38 | Augmented 23-mosdegree | A23md |
37 | Augmented 2-mosdegree | A2md |
36 | Augmented 6-mosdegree | A6md |
35 | Augmented 10-mosdegree | A10md |
34 | Augmented 14-mosdegree | A14md |
33 | Augmented 18-mosdegree | A18md |
32 | Augmented 22-mosdegree | A22md |
31 | Augmented 1-mosdegree | A1md |
30 | Augmented 5-mosdegree | A5md |
29 | Augmented 9-mosdegree | A9md |
28 | Augmented 13-mosdegree | A13md |
27 | Augmented 17-mosdegree | A17md |
26 | Augmented 21-mosdegree | A21md |
25 | Augmented 0-mosdegree | A0md |
24 | Augmented 4-mosdegree | A4md |
23 | Major 8-mosdegree | M8md |
22 | Major 12-mosdegree | M12md |
21 | Major 16-mosdegree | M16md |
20 | Major 20-mosdegree | M20md |
19 | Major 24-mosdegree | M24md |
18 | Major 3-mosdegree | M3md |
17 | Major 7-mosdegree | M7md |
16 | Major 11-mosdegree | M11md |
15 | Major 15-mosdegree | M15md |
14 | Major 19-mosdegree | M19md |
13 | Major 23-mosdegree | M23md |
12 | Major 2-mosdegree | M2md |
11 | Major 6-mosdegree | M6md |
10 | Major 10-mosdegree | M10md |
9 | Major 14-mosdegree | M14md |
8 | Major 18-mosdegree | M18md |
7 | Major 22-mosdegree | M22md |
6 | Major 1-mosdegree | M1md |
5 | Major 5-mosdegree | M5md |
4 | Major 9-mosdegree | M9md |
3 | Major 13-mosdegree | M13md |
2 | Major 17-mosdegree | M17md |
1 | Perfect 21-mosdegree | P21md |
0 | Perfect 0-mosdegree Perfect 25-mosdegree |
P0md P25md |
−1 | Perfect 4-mosdegree | P4md |
−2 | Minor 8-mosdegree | m8md |
−3 | Minor 12-mosdegree | m12md |
−4 | Minor 16-mosdegree | m16md |
−5 | Minor 20-mosdegree | m20md |
−6 | Minor 24-mosdegree | m24md |
−7 | Minor 3-mosdegree | m3md |
−8 | Minor 7-mosdegree | m7md |
−9 | Minor 11-mosdegree | m11md |
−10 | Minor 15-mosdegree | m15md |
−11 | Minor 19-mosdegree | m19md |
−12 | Minor 23-mosdegree | m23md |
−13 | Minor 2-mosdegree | m2md |
−14 | Minor 6-mosdegree | m6md |
−15 | Minor 10-mosdegree | m10md |
−16 | Minor 14-mosdegree | m14md |
−17 | Minor 18-mosdegree | m18md |
−18 | Minor 22-mosdegree | m22md |
−19 | Minor 1-mosdegree | m1md |
−20 | Minor 5-mosdegree | m5md |
−21 | Minor 9-mosdegree | m9md |
−22 | Minor 13-mosdegree | m13md |
−23 | Minor 17-mosdegree | m17md |
−24 | Diminished 21-mosdegree | d21md |
−25 | Diminished 25-mosdegree | d25md |
−26 | Diminished 4-mosdegree | d4md |
−27 | Diminished 8-mosdegree | d8md |
−28 | Diminished 12-mosdegree | d12md |
−29 | Diminished 16-mosdegree | d16md |
−30 | Diminished 20-mosdegree | d20md |
−31 | Diminished 24-mosdegree | d24md |
−32 | Diminished 3-mosdegree | d3md |
−33 | Diminished 7-mosdegree | d7md |
−34 | Diminished 11-mosdegree | d11md |
−35 | Diminished 15-mosdegree | d15md |
−36 | Diminished 19-mosdegree | d19md |
−37 | Diminished 23-mosdegree | d23md |
−38 | Diminished 2-mosdegree | d2md |
−39 | Diminished 6-mosdegree | d6md |
−40 | Diminished 10-mosdegree | d10md |
−41 | Diminished 14-mosdegree | d14md |
−42 | Diminished 18-mosdegree | d18md |
−43 | Diminished 22-mosdegree | d22md |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |||
24|0 | 1 | LLLLsLLLsLLLsLLLsLLLsLLLs | Perf. | Maj. | Maj. | Maj. | Aug. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Perf. |
23|1 | 22 | LLLsLLLLsLLLsLLLsLLLsLLLs | Perf. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Perf. |
22|2 | 18 | LLLsLLLsLLLLsLLLsLLLsLLLs | Perf. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Perf. |
21|3 | 14 | LLLsLLLsLLLsLLLLsLLLsLLLs | Perf. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Perf. |
20|4 | 10 | LLLsLLLsLLLsLLLsLLLLsLLLs | Perf. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Perf. |
19|5 | 6 | LLLsLLLsLLLsLLLsLLLsLLLLs | Perf. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Maj. | Perf. |
18|6 | 2 | LLLsLLLsLLLsLLLsLLLsLLLsL | Perf. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Perf. |
17|7 | 23 | LLsLLLLsLLLsLLLsLLLsLLLsL | Perf. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Perf. |
16|8 | 19 | LLsLLLsLLLLsLLLsLLLsLLLsL | Perf. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Perf. |
15|9 | 15 | LLsLLLsLLLsLLLLsLLLsLLLsL | Perf. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Perf. |
14|10 | 11 | LLsLLLsLLLsLLLsLLLLsLLLsL | Perf. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Perf. |
13|11 | 7 | LLsLLLsLLLsLLLsLLLsLLLLsL | Perf. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Perf. | Maj. | Maj. | Min. | Perf. |
12|12 | 3 | LLsLLLsLLLsLLLsLLLsLLLsLL | Perf. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Min. | Perf. |
11|13 | 24 | LsLLLLsLLLsLLLsLLLsLLLsLL | Perf. | Maj. | Min. | Min. | Perf. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Min. | Perf. |
10|14 | 20 | LsLLLsLLLLsLLLsLLLsLLLsLL | Perf. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Min. | Perf. |
9|15 | 16 | LsLLLsLLLsLLLLsLLLsLLLsLL | Perf. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Min. | Perf. |
8|16 | 12 | LsLLLsLLLsLLLsLLLLsLLLsLL | Perf. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Min. | Perf. |
7|17 | 8 | LsLLLsLLLsLLLsLLLsLLLLsLL | Perf. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Perf. | Maj. | Min. | Min. | Perf. |
6|18 | 4 | LsLLLsLLLsLLLsLLLsLLLsLLL | Perf. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Perf. |
5|19 | 25 | sLLLLsLLLsLLLsLLLsLLLsLLL | Perf. | Min. | Min. | Min. | Perf. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Perf. |
4|20 | 21 | sLLLsLLLLsLLLsLLLsLLLsLLL | Perf. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Perf. |
3|21 | 17 | sLLLsLLLsLLLLsLLLsLLLsLLL | Perf. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Perf. |
2|22 | 13 | sLLLsLLLsLLLsLLLLsLLLsLLL | Perf. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Perf. |
1|23 | 9 | sLLLsLLLsLLLsLLLsLLLLsLLL | Perf. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Perf. |
0|24 | 5 | sLLLsLLLsLLLsLLLsLLLsLLLL | Perf. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Dim. | Min. | Min. | Min. | Perf. |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
21\25 | 1008.000 | 192.000 | 1:1 | 1.000 | Equalized 19L 6s | |||||
121\144 | 1008.333 | 191.667 | 6:5 | 1.200 | ||||||
100\119 | 1008.403 | 191.597 | 5:4 | 1.250 | ||||||
179\213 | 1008.451 | 191.549 | 9:7 | 1.286 | ||||||
79\94 | 1008.511 | 191.489 | 4:3 | 1.333 | Supersoft 19L 6s | |||||
216\257 | 1008.560 | 191.440 | 11:8 | 1.375 | ||||||
137\163 | 1008.589 | 191.411 | 7:5 | 1.400 | ||||||
195\232 | 1008.621 | 191.379 | 10:7 | 1.429 | ||||||
58\69 | 1008.696 | 191.304 | 3:2 | 1.500 | Soft 19L 6s | |||||
211\251 | 1008.765 | 191.235 | 11:7 | 1.571 | ||||||
153\182 | 1008.791 | 191.209 | 8:5 | 1.600 | ||||||
248\295 | 1008.814 | 191.186 | 13:8 | 1.625 | ||||||
95\113 | 1008.850 | 191.150 | 5:3 | 1.667 | Semisoft 19L 6s | |||||
227\270 | 1008.889 | 191.111 | 12:7 | 1.714 | ||||||
132\157 | 1008.917 | 191.083 | 7:4 | 1.750 | ||||||
169\201 | 1008.955 | 191.045 | 9:5 | 1.800 | ||||||
37\44 | 1009.091 | 190.909 | 2:1 | 2.000 | Basic 19L 6s Scales with tunings softer than this are proper | |||||
164\195 | 1009.231 | 190.769 | 9:4 | 2.250 | ||||||
127\151 | 1009.272 | 190.728 | 7:3 | 2.333 | ||||||
217\258 | 1009.302 | 190.698 | 12:5 | 2.400 | ||||||
90\107 | 1009.346 | 190.654 | 5:2 | 2.500 | Semihard 19L 6s | |||||
233\277 | 1009.386 | 190.614 | 13:5 | 2.600 | ||||||
143\170 | 1009.412 | 190.588 | 8:3 | 2.667 | ||||||
196\233 | 1009.442 | 190.558 | 11:4 | 2.750 | ||||||
53\63 | 1009.524 | 190.476 | 3:1 | 3.000 | Hard 19L 6s | |||||
175\208 | 1009.615 | 190.385 | 10:3 | 3.333 | ||||||
122\145 | 1009.655 | 190.345 | 7:2 | 3.500 | ||||||
191\227 | 1009.692 | 190.308 | 11:3 | 3.667 | ||||||
69\82 | 1009.756 | 190.244 | 4:1 | 4.000 | Superhard 19L 6s | |||||
154\183 | 1009.836 | 190.164 | 9:2 | 4.500 | ||||||
85\101 | 1009.901 | 190.099 | 5:1 | 5.000 | ||||||
101\120 | 1010.000 | 190.000 | 6:1 | 6.000 | ||||||
16\19 | 1010.526 | 189.474 | 1:0 | → ∞ | Collapsed 19L 6s |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |