12L 19s
Jump to navigation
Jump to search
↖ 11L 18s | ↑ 12L 18s | 13L 18s ↗ |
← 11L 19s | 12L 19s | 13L 19s → |
↙ 11L 20s | ↓ 12L 20s | 13L 20s ↘ |
┌╥┬╥┬┬╥┬╥┬┬╥┬╥┬┬╥┬┬╥┬╥┬┬╥┬╥┬┬╥┬┬┐ │║│║││║│║││║│║││║││║│║││║│║││║│││ │││││││││││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
ssLssLsLssLsLssLssLsLssLsLssLsL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
12L 19s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 12 large steps and 19 small steps, repeating every octave. 12L 19s is a great-grandchild scale of 5L 2s, expanding it by 24 tones. Generators that produce this scale range from 696.8 ¢ to 700 ¢, or from 500 ¢ to 503.2 ¢. It is associated with sharper meantone temperaments.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 38.7 ¢ |
Major 1-mosstep | M1ms | L | 38.7 ¢ to 100.0 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0 ¢ to 77.4 ¢ |
Major 2-mosstep | M2ms | L + s | 77.4 ¢ to 100.0 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 100.0 ¢ to 116.1 ¢ |
Major 3-mosstep | M3ms | 2L + s | 116.1 ¢ to 200.0 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | L + 3s | 100.0 ¢ to 154.8 ¢ |
Major 4-mosstep | M4ms | 2L + 2s | 154.8 ¢ to 200.0 ¢ | |
5-mosstep | Minor 5-mosstep | m5ms | L + 4s | 100.0 ¢ to 193.5 ¢ |
Major 5-mosstep | M5ms | 2L + 3s | 193.5 ¢ to 200.0 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 2L + 4s | 200.0 ¢ to 232.3 ¢ |
Major 6-mosstep | M6ms | 3L + 3s | 232.3 ¢ to 300.0 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 2L + 5s | 200.0 ¢ to 271.0 ¢ |
Major 7-mosstep | M7ms | 3L + 4s | 271.0 ¢ to 300.0 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 3L + 5s | 300.0 ¢ to 309.7 ¢ |
Major 8-mosstep | M8ms | 4L + 4s | 309.7 ¢ to 400.0 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 3L + 6s | 300.0 ¢ to 348.4 ¢ |
Major 9-mosstep | M9ms | 4L + 5s | 348.4 ¢ to 400.0 ¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 3L + 7s | 300.0 ¢ to 387.1 ¢ |
Major 10-mosstep | M10ms | 4L + 6s | 387.1 ¢ to 400.0 ¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 4L + 7s | 400.0 ¢ to 425.8 ¢ |
Major 11-mosstep | M11ms | 5L + 6s | 425.8 ¢ to 500.0 ¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 4L + 8s | 400.0 ¢ to 464.5 ¢ |
Major 12-mosstep | M12ms | 5L + 7s | 464.5 ¢ to 500.0 ¢ | |
13-mosstep | Perfect 13-mosstep | P13ms | 5L + 8s | 500.0 ¢ to 503.2 ¢ |
Augmented 13-mosstep | A13ms | 6L + 7s | 503.2 ¢ to 600.0 ¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 5L + 9s | 500.0 ¢ to 541.9 ¢ |
Major 14-mosstep | M14ms | 6L + 8s | 541.9 ¢ to 600.0 ¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 5L + 10s | 500.0 ¢ to 580.6 ¢ |
Major 15-mosstep | M15ms | 6L + 9s | 580.6 ¢ to 600.0 ¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 6L + 10s | 600.0 ¢ to 619.4 ¢ |
Major 16-mosstep | M16ms | 7L + 9s | 619.4 ¢ to 700.0 ¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 6L + 11s | 600.0 ¢ to 658.1 ¢ |
Major 17-mosstep | M17ms | 7L + 10s | 658.1 ¢ to 700.0 ¢ | |
18-mosstep | Diminished 18-mosstep | d18ms | 6L + 12s | 600.0 ¢ to 696.8 ¢ |
Perfect 18-mosstep | P18ms | 7L + 11s | 696.8 ¢ to 700.0 ¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 7L + 12s | 700.0 ¢ to 735.5 ¢ |
Major 19-mosstep | M19ms | 8L + 11s | 735.5 ¢ to 800.0 ¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 7L + 13s | 700.0 ¢ to 774.2 ¢ |
Major 20-mosstep | M20ms | 8L + 12s | 774.2 ¢ to 800.0 ¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 8L + 13s | 800.0 ¢ to 812.9 ¢ |
Major 21-mosstep | M21ms | 9L + 12s | 812.9 ¢ to 900.0 ¢ | |
22-mosstep | Minor 22-mosstep | m22ms | 8L + 14s | 800.0 ¢ to 851.6 ¢ |
Major 22-mosstep | M22ms | 9L + 13s | 851.6 ¢ to 900.0 ¢ | |
23-mosstep | Minor 23-mosstep | m23ms | 8L + 15s | 800.0 ¢ to 890.3 ¢ |
Major 23-mosstep | M23ms | 9L + 14s | 890.3 ¢ to 900.0 ¢ | |
24-mosstep | Minor 24-mosstep | m24ms | 9L + 15s | 900.0 ¢ to 929.0 ¢ |
Major 24-mosstep | M24ms | 10L + 14s | 929.0 ¢ to 1000.0 ¢ | |
25-mosstep | Minor 25-mosstep | m25ms | 9L + 16s | 900.0 ¢ to 967.7 ¢ |
Major 25-mosstep | M25ms | 10L + 15s | 967.7 ¢ to 1000.0 ¢ | |
26-mosstep | Minor 26-mosstep | m26ms | 10L + 16s | 1000.0 ¢ to 1006.5 ¢ |
Major 26-mosstep | M26ms | 11L + 15s | 1006.5 ¢ to 1100.0 ¢ | |
27-mosstep | Minor 27-mosstep | m27ms | 10L + 17s | 1000.0 ¢ to 1045.2 ¢ |
Major 27-mosstep | M27ms | 11L + 16s | 1045.2 ¢ to 1100.0 ¢ | |
28-mosstep | Minor 28-mosstep | m28ms | 10L + 18s | 1000.0 ¢ to 1083.9 ¢ |
Major 28-mosstep | M28ms | 11L + 17s | 1083.9 ¢ to 1100.0 ¢ | |
29-mosstep | Minor 29-mosstep | m29ms | 11L + 18s | 1100.0 ¢ to 1122.6 ¢ |
Major 29-mosstep | M29ms | 12L + 17s | 1122.6 ¢ to 1200.0 ¢ | |
30-mosstep | Minor 30-mosstep | m30ms | 11L + 19s | 1100.0 ¢ to 1161.3 ¢ |
Major 30-mosstep | M30ms | 12L + 18s | 1161.3 ¢ to 1200.0 ¢ | |
31-mosstep | Perfect 31-mosstep | P31ms | 12L + 19s | 1200.0 ¢ |
Generator chain
Bright gens | Scale degree | Abbrev. |
---|---|---|
42 | Augmented 12-mosdegree | A12md |
41 | Augmented 25-mosdegree | A25md |
40 | Augmented 7-mosdegree | A7md |
39 | Augmented 20-mosdegree | A20md |
38 | Augmented 2-mosdegree | A2md |
37 | Augmented 15-mosdegree | A15md |
36 | Augmented 28-mosdegree | A28md |
35 | Augmented 10-mosdegree | A10md |
34 | Augmented 23-mosdegree | A23md |
33 | Augmented 5-mosdegree | A5md |
32 | Augmented 18-mosdegree | A18md |
31 | Augmented 0-mosdegree | A0md |
30 | Augmented 13-mosdegree | A13md |
29 | Major 26-mosdegree | M26md |
28 | Major 8-mosdegree | M8md |
27 | Major 21-mosdegree | M21md |
26 | Major 3-mosdegree | M3md |
25 | Major 16-mosdegree | M16md |
24 | Major 29-mosdegree | M29md |
23 | Major 11-mosdegree | M11md |
22 | Major 24-mosdegree | M24md |
21 | Major 6-mosdegree | M6md |
20 | Major 19-mosdegree | M19md |
19 | Major 1-mosdegree | M1md |
18 | Major 14-mosdegree | M14md |
17 | Major 27-mosdegree | M27md |
16 | Major 9-mosdegree | M9md |
15 | Major 22-mosdegree | M22md |
14 | Major 4-mosdegree | M4md |
13 | Major 17-mosdegree | M17md |
12 | Major 30-mosdegree | M30md |
11 | Major 12-mosdegree | M12md |
10 | Major 25-mosdegree | M25md |
9 | Major 7-mosdegree | M7md |
8 | Major 20-mosdegree | M20md |
7 | Major 2-mosdegree | M2md |
6 | Major 15-mosdegree | M15md |
5 | Major 28-mosdegree | M28md |
4 | Major 10-mosdegree | M10md |
3 | Major 23-mosdegree | M23md |
2 | Major 5-mosdegree | M5md |
1 | Perfect 18-mosdegree | P18md |
0 | Perfect 0-mosdegree Perfect 31-mosdegree |
P0md P31md |
−1 | Perfect 13-mosdegree | P13md |
−2 | Minor 26-mosdegree | m26md |
−3 | Minor 8-mosdegree | m8md |
−4 | Minor 21-mosdegree | m21md |
−5 | Minor 3-mosdegree | m3md |
−6 | Minor 16-mosdegree | m16md |
−7 | Minor 29-mosdegree | m29md |
−8 | Minor 11-mosdegree | m11md |
−9 | Minor 24-mosdegree | m24md |
−10 | Minor 6-mosdegree | m6md |
−11 | Minor 19-mosdegree | m19md |
−12 | Minor 1-mosdegree | m1md |
−13 | Minor 14-mosdegree | m14md |
−14 | Minor 27-mosdegree | m27md |
−15 | Minor 9-mosdegree | m9md |
−16 | Minor 22-mosdegree | m22md |
−17 | Minor 4-mosdegree | m4md |
−18 | Minor 17-mosdegree | m17md |
−19 | Minor 30-mosdegree | m30md |
−20 | Minor 12-mosdegree | m12md |
−21 | Minor 25-mosdegree | m25md |
−22 | Minor 7-mosdegree | m7md |
−23 | Minor 20-mosdegree | m20md |
−24 | Minor 2-mosdegree | m2md |
−25 | Minor 15-mosdegree | m15md |
−26 | Minor 28-mosdegree | m28md |
−27 | Minor 10-mosdegree | m10md |
−28 | Minor 23-mosdegree | m23md |
−29 | Minor 5-mosdegree | m5md |
−30 | Diminished 18-mosdegree | d18md |
−31 | Diminished 31-mosdegree | d31md |
−32 | Diminished 13-mosdegree | d13md |
−33 | Diminished 26-mosdegree | d26md |
−34 | Diminished 8-mosdegree | d8md |
−35 | Diminished 21-mosdegree | d21md |
−36 | Diminished 3-mosdegree | d3md |
−37 | Diminished 16-mosdegree | d16md |
−38 | Diminished 29-mosdegree | d29md |
−39 | Diminished 11-mosdegree | d11md |
−40 | Diminished 24-mosdegree | d24md |
−41 | Diminished 6-mosdegree | d6md |
−42 | Diminished 19-mosdegree | d19md |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | |||
30|0 | 1 | LsLssLsLssLsLssLssLsLssLsLssLss | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Aug. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. |
29|1 | 19 | LsLssLsLssLssLsLssLsLssLsLssLss | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. |
28|2 | 6 | LsLssLsLssLssLsLssLsLssLssLsLss | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Perf. |
27|3 | 24 | LsLssLssLsLssLsLssLsLssLssLsLss | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Perf. |
26|4 | 11 | LsLssLssLsLssLsLssLssLsLssLsLss | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Perf. |
25|5 | 29 | LssLsLssLsLssLsLssLssLsLssLsLss | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Perf. |
24|6 | 16 | LssLsLssLsLssLssLsLssLsLssLsLss | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Perf. |
23|7 | 3 | LssLsLssLsLssLssLsLssLsLssLssLs | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Perf. |
22|8 | 21 | LssLsLssLssLsLssLsLssLsLssLssLs | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Perf. |
21|9 | 8 | LssLsLssLssLsLssLsLssLssLsLssLs | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Perf. |
20|10 | 26 | LssLssLsLssLsLssLsLssLssLsLssLs | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Perf. |
19|11 | 13 | LssLssLsLssLsLssLssLsLssLsLssLs | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Perf. |
18|12 | 31 | sLsLssLsLssLsLssLssLsLssLsLssLs | Perf. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Perf. |
17|13 | 18 | sLsLssLsLssLssLsLssLsLssLsLssLs | Perf. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Perf. |
16|14 | 5 | sLsLssLsLssLssLsLssLsLssLssLsLs | Perf. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Perf. |
15|15 | 23 | sLsLssLssLsLssLsLssLsLssLssLsLs | Perf. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Perf. |
14|16 | 10 | sLsLssLssLsLssLsLssLssLsLssLsLs | Perf. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Perf. |
13|17 | 28 | sLssLsLssLsLssLsLssLssLsLssLsLs | Perf. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Perf. |
12|18 | 15 | sLssLsLssLsLssLssLsLssLsLssLsLs | Perf. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Perf. |
11|19 | 2 | sLssLsLssLsLssLssLsLssLsLssLssL | Perf. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. |
10|20 | 20 | sLssLsLssLssLsLssLsLssLsLssLssL | Perf. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. |
9|21 | 7 | sLssLsLssLssLsLssLsLssLssLsLssL | Perf. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. |
8|22 | 25 | sLssLssLsLssLsLssLsLssLssLsLssL | Perf. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. |
7|23 | 12 | sLssLssLsLssLsLssLssLsLssLsLssL | Perf. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. |
6|24 | 30 | ssLsLssLsLssLsLssLssLsLssLsLssL | Perf. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. |
5|25 | 17 | ssLsLssLsLssLssLsLssLsLssLsLssL | Perf. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. |
4|26 | 4 | ssLsLssLsLssLssLsLssLsLssLssLsL | Perf. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
3|27 | 22 | ssLsLssLssLsLssLsLssLsLssLssLsL | Perf. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
2|28 | 9 | ssLsLssLssLsLssLsLssLssLsLssLsL | Perf. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
1|29 | 27 | ssLssLsLssLsLssLsLssLssLsLssLsL | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
0|30 | 14 | ssLssLsLssLsLssLssLsLssLsLssLsL | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Dim. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
18\31 | 696.774 | 503.226 | 1:1 | 1.000 | Equalized 12L 19s | |||||
97\167 | 697.006 | 502.994 | 6:5 | 1.200 | ||||||
79\136 | 697.059 | 502.941 | 5:4 | 1.250 | ||||||
140\241 | 697.095 | 502.905 | 9:7 | 1.286 | ||||||
61\105 | 697.143 | 502.857 | 4:3 | 1.333 | Supersoft 12L 19s | |||||
165\284 | 697.183 | 502.817 | 11:8 | 1.375 | ||||||
104\179 | 697.207 | 502.793 | 7:5 | 1.400 | ||||||
147\253 | 697.233 | 502.767 | 10:7 | 1.429 | ||||||
43\74 | 697.297 | 502.703 | 3:2 | 1.500 | Soft 12L 19s | |||||
154\265 | 697.358 | 502.642 | 11:7 | 1.571 | ||||||
111\191 | 697.382 | 502.618 | 8:5 | 1.600 | ||||||
179\308 | 697.403 | 502.597 | 13:8 | 1.625 | ||||||
68\117 | 697.436 | 502.564 | 5:3 | 1.667 | Semisoft 12L 19s | |||||
161\277 | 697.473 | 502.527 | 12:7 | 1.714 | ||||||
93\160 | 697.500 | 502.500 | 7:4 | 1.750 | ||||||
118\203 | 697.537 | 502.463 | 9:5 | 1.800 | ||||||
25\43 | 697.674 | 502.326 | 2:1 | 2.000 | Basic 12L 19s Scales with tunings softer than this are proper | |||||
107\184 | 697.826 | 502.174 | 9:4 | 2.250 | ||||||
82\141 | 697.872 | 502.128 | 7:3 | 2.333 | ||||||
139\239 | 697.908 | 502.092 | 12:5 | 2.400 | ||||||
57\98 | 697.959 | 502.041 | 5:2 | 2.500 | Semihard 12L 19s | |||||
146\251 | 698.008 | 501.992 | 13:5 | 2.600 | ||||||
89\153 | 698.039 | 501.961 | 8:3 | 2.667 | ||||||
121\208 | 698.077 | 501.923 | 11:4 | 2.750 | ||||||
32\55 | 698.182 | 501.818 | 3:1 | 3.000 | Hard 12L 19s | |||||
103\177 | 698.305 | 501.695 | 10:3 | 3.333 | ||||||
71\122 | 698.361 | 501.639 | 7:2 | 3.500 | ||||||
110\189 | 698.413 | 501.587 | 11:3 | 3.667 | ||||||
39\67 | 698.507 | 501.493 | 4:1 | 4.000 | Superhard 12L 19s | |||||
85\146 | 698.630 | 501.370 | 9:2 | 4.500 | ||||||
46\79 | 698.734 | 501.266 | 5:1 | 5.000 | ||||||
53\91 | 698.901 | 501.099 | 6:1 | 6.000 | ||||||
7\12 | 700.000 | 500.000 | 1:0 | → ∞ | Collapsed 12L 19s |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |