113edo
← 112edo | 113edo | 114edo → |
The 113 equal divisions of the octave (113edo), or the 113(-tone) equal temperament (113tet, 113et) when viewed from a regular temperament perspective, is the equal division of the octave into 113 parts of about 10.6 cents each.
Theory
113edo is distinctly consistent in the 13-odd-limit with a flat tendency. As a temperament, it tempers out the amity comma and the ampersand in the 5-limit; 225/224, 1029/1024 and 1071875/1062882 in the 7-limit; 243/242, 385/384, 441/440 and 540/539 in the 11-limit; 325/324, 364/363, 729/728, and 1625/1617 in the 13-limit. It notably supports the 5-limit amity temperament, 7-limit amicable temperament, 7- and 11-limit miracle temperament, and 13-limit manna temperament.
113edo is the 30th prime EDO.
Prime harmonics
Script error: No such module "primes_in_edo".
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-179 113⟩ | [⟨113 179]] | +0.338 | 0.338 | 3.18 |
2.3.5 | 1600000/1594323, 34171875/33554432 | [⟨113 179 262]] | +0.801 | 0.712 | 6.70 |
2.3.5.7 | 225/224, 1029/1024, 1071875/1062882 | [⟨113 179 262 317]] | +0.820 | 0.617 | 5.81 |
2.3.5.7.11 | 225/224, 243/242, 385/384, 980000/970299 | [⟨113 179 262 317 391]] | +0.604 | 0.700 | 6.59 |
2.3.5.7.11.13 | 225/224, 243/242, 325/324, 385/384, 1875/1859 | [⟨113 179 262 317 391 418]] | +0.575 | 0.643 | 6.05 |
Rank-2 temperaments
Periods per octave |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 4\113 | 42.48 | 40/39 | Humorous |
1 | 6\113 | 63.72 | 28/27 | Sycamore / betic |
1 | 8\113 | 84.96 | 21/20 | Amicable / pseudoamical / pseudoamorous |
1 | 11\113 | 116.81 | 15/14~16/15 | Miracle / manna |
1 | 13\113 | 138.05 | 27/25 | Quartemka |
1 | 22\113 | 233.63 | 8/7 | Slendric |
1 | 27\113 | 286.73 | 13/11 | Gamity |
1 | 29\113 | 307.96 | 3200/2673 | Familia |
1 | 32\113 | 339.82 | 243/200 | Amity / houborizic |
1 | 34\113 | 360.06 | 16/13 | Phicordial |
1 | 37\113 | 392.92 | 2744/2187 | Emmthird |
1 | 47\113 | 499.12 | 4/3 | Gracecordial |
Scales
Since 113edo has a step of 10.6195 cents, it also allows one to use its MOS scales as circulating temperaments[clarification needed]. It is the first edo which allows one to use an MOS scale of 90 tones or more as a circulating temperament.
Tones | Pattern | L:s |
---|---|---|
5 | 3L 2s | 23:22 |
6 | 5L 1s | 19:18 |
7 | 1L 6s | 17:16 |
8 | 1L 7s | 15:14 |
9 | 5L 4s | 13:12 |
10 | 3L 7s | 12:11 |
11 | 3L 8s | 11:10 |
12 | 5L 7s | 10:9 |
13 | 9L 4s | 9:8 |
14 | 1L 13s | |
15 | 7L 8s | 8:7 |
16 | 1L 15s | |
17 | 11L 6s | 7:6 |
18 | 5L 13s | |
19 | 18L 1s | 6:5 |
20 | 13L 7s | |
21 | 8L 13s | |
22 | 3L 19s | |
23 | 21L 2s | 5:4 |
24 | 17L 7s | |
25 | 13L 12s | |
26 | 9L 17s | |
27 | 5L 22s | |
28 | 1L 27s | |
29 | 26L 3s | 4:3 |
30 | 23L 7s | |
31 | 20L 11s | |
32 | 17L 15s | |
33 | 14L 19s | |
34 | 11L 23s | |
35 | 8L 27s | |
36 | 5L 31s | |
37 | 2L 35s | |
38 | 37L 1s | 3:2 |
39 | 35L 4s | |
40 | 33L 7s | |
41 | 31L 10s | |
42 | 29L 13s | |
43 | 27L 16s | |
44 | 25L 19s | |
45 | 23L 22s | |
46 | 21L 25s | |
47 | 19L 28s | |
48 | 17L 31s | |
49 | 15L 34s | |
50 | 13L 37s | |
51 | 11L 40s | |
52 | 9L 43s | |
53 | 7L 46s | |
54 | 5L 49s | |
55 | 3L 52s | |
56 | 1L 55s | |
57 | 56L 1s | 2:1 |
58 | 55L 3s | |
59 | 54L 5s | |
60 | 53L 7s | |
61 | 52L 9s | |
62 | 51L 11s | |
63 | 50L 13s | |
64 | 49L 15s | |
65 | 48L 17s | |
66 | 47L 19s | |
67 | 46L 21s | |
68 | 45L 23s | |
69 | 44L 25s | |
70 | 43L 27s | |
71 | 42L 29s | |
72 | 41L 31s | |
73 | 40L 33s | |
74 | 39L 35s | |
75 | 38L 37s | |
76 | 37L 39s | |
77 | 36L 41s | |
78 | 35L 43s | |
79 | 34L 45s | |
80 | 33L 47s | |
81 | 32L 49s | |
82 | 31L 51s | |
83 | 30L 53s | |
84 | 29L 55s | |
85 | 28L 57s | |
86 | 27L 59s | |
87 | 26L 61s | |
88 | 25L 63s | |
89 | 24L 65s | |
90 | 23L 67s |