User:FloraC/Sandbox

From Xenharmonic Wiki
Revision as of 13:57, 30 January 2021 by FloraC (talk | contribs)
Jump to navigation Jump to search

Test User:FloraC/Temperament data

Subgroup: missing ? 

Comma list: 81/80, 126/125

Mapping: missing ? 

mapping generators: ~2, ~3

Wedgie⟨⟨ 1 4 10 4 13 12 ]]

Minimax tuning: 7- and 9-odd-limit:

[[1 0 0 0, [1 0 1/4 0, [0 0 1 0, [-3 0 5/2 0]

Eigenmonzos: 2, 5

Tuning ranges: Valid range: [694.737, 700.000] (19 to 12)

Nice range: [694.786, 701.955]

Strict range: [694.786, 700.000]

Algebraic generator: Cybozem, the real root of 15x3 - 10x2 - 18, which comes to 503.4257 cents. The recurrence converges quickly.

Badness: 0.0137

Septimal meantone

Period: 1\1

Optimal (POTE) generator: ~3/2 = 696.495

EDO generators: 7\12, 11\19, 18\31, 25\43, 29\50

Scales: Meantone5, Meantone7, Meantone12

Interval table (12-note MOS, 2.3.5.7 POTE tuning)
# Cents[1] Approximate ratios[2]
0 0.0 1/1
1 696.5 3/2
2 193.0 9/8, 10/9
3 889.5 5/3
4 386.0 5/4
5 1082.5 15/8, 28/15
6 579.0 7/5
7 75.5 21/20, 25/24, 28/27
8 772.0 14/9, 25/16
9 268.5 7/6
10 965.0 7/4
11 461.4 21/16
  1. octave-reduced
  2. 2.3.5.7, odd limit ≤ 27
Technical data

Commas: 81/80, 126/125

Period-generator mapping: [1 0 -4 -13], 0 1 4 10]]

Mapping generator: ~3

7- and 9-odd-limit minimax

[[1 0 0 0, [1 0 1/4 0, [0 0 1 0, [-3 0 5/2 0]

Eigenmonzos: 2, 5

Valid range: [694.737, 700.000] (19 to 12)

Nice range: [694.786, 701.955]

Strict range: [694.786, 700.000]

Algebraic generator: Cybozem, the real root of 15x3 - 10x2 - 18, which comes to 503.4257 cents. The recurrence converges quickly.

Wedgie: ⟨⟨1 4 10 4 13 12]]

Vals: 5, 7, 12, 19, 26, 31, 43, 45, 50, 55, 67, 69, 74, 81, 88, 98, 105, 117, 131b, 212bb, 293bb

Badness: 0.0137

Commas

41edo tempers out the following commas using its patent val, 41 65 95 115 142 152 168 174 185 199 203].

Prime
limit
Ratio[1] Name(s)
3 [65 -41 41-comma
5 [-5 -10 9 Shibboleth
5 [-25 7 6 Ampersand
5 3125/3072 Magic comma
5 [5 -9 4 Tetracot comma
5 [20 -17 3 Roda
5 [-15 8 1 Schisma
7 [0 -7 6 -1 Great BP diesis
7 [-10 7 8 -7 Blackjackisma
7 875/864 Keema
7 3125/3087 Gariboh
7 [10 -11 2 1 Tolerma
7 [-15 3 2 2 Mirwomo comma
7 245/243 Sensamagic
7 4000/3969 Octagar
7 [-15 0 -2 7 Quince
7 1029/1024 Gamelisma
7 225/224 Marvel comma
7 [0 3 4 -5 Mirkwai
7 [5 -7 -1 3 Hemimage
7 5120/5103 Hemifamity
7 [25 -14 0 -1 Garischisma
7 2401/2400 Breedsma
11 [15 0 1 0 -5 Thuja comma
11 245/242 Cassacot
11 100/99 Ptolemisma
11 1344/1331 Hemimin
11 896/891 Pentacircle
11 [16 0 0 -2 -3 Orgonisma
11 243/242 Rastma
11 385/384 Keenanisma
11 441/440 Werckisma
11 1375/1372 Moctdel
11 540/539 Swetisma
11 3025/3024 Lehmerisma
11 [-1 2 -4 5 -2 Odiheim
13 343/338
13 105/104 Animist comma
13 [12 -7 0 1 0 -1 Secorian
13 275/273 Gassorma
13 144/143 Grossma
13 196/195 Mynucuma
13 640/637 Huntma
13 1188/1183 Kestrel comma
13 325/324 Marveltwin
13 352/351 Minthma
13 364/363 Gentle comma
13 847/845 Cuthbert
13 729/728 Squbema
13 4096/4095 Schismina
13 [3 -2 0 -1 3 -2 Harmonisma
17 2187/2176 Septendecimal schisma
17 256/255 Septendecimal kleisma
17 715/714 Septendecimal bridge comma
19 210/209 Spleen comma
19 361/360 Go comma
19 513/512 Undevicesimal comma
19 1216/1215 Eratosthenes' comma
23 736/729 Vicesimotertial comma
29 145/144 29th-partial chroma
  1. Ratios with more than 9 digits are presented in monzos