User:FloraC/Sandbox
Jump to navigation
Jump to search
♭♮♯
n
Template: Temperament data
Subgroup: 2.3.5.7
Comma list: 81/80, 126/125
Mapping: [⟨1 0 -4 -13], ⟨0 1 4 10]]
- mapping generators: ~2, ~3
Wedgie: ⟨⟨ 1 4 10 4 13 12 ]]
Optimal tuning (CTE): ~3/2 = 696.9521
Optimal ET sequence: 12, 19, 31, 81, 112b, 143b
Badness: 0.0137
5-limit rank-2 temperaments by TE simple badness
Breed's simple badness.
Junk temperaments
High-badness temperaments
Temperament | Complexity | Error (¢) | Badness (moct) | Mapping | Comma list |
---|---|---|---|---|---|
Yo | .367 | 26.0 | 7.95 | [⟨1 0 -1], ⟨0 1 -2]] | 10/9 |
Antitonic | .395 | 27.0 | 8.89 | [⟨2 3 0], ⟨0 0 1]] | 9/8 |
Father | .443 | 13.2 | 4.87 | [⟨1 0 4], ⟨0 1 -1]] | 16/15 |
Bug | .602 | 11.6 | 5.81 | [⟨1 0 0], ⟨0 2 3]] | 27/25 |
Supersharp | 1.06 | 7.94 | 7.01 | [⟨2 0 -5], ⟨0 1 3]] | 800/729 |
Laconic | 1.24 | 6.52 | 6.74 | [⟨1 1 1], ⟨0 3 7]] | 2187/2000 |
Lafayette | 1.30 | 7.00 | 7.60 | [⟨1 1 2], ⟨0 5 3]] | 3456/3125 |
Symbolic | 1.31 | 6.09 | 6.66 | [⟨1 3 4], ⟨0 -5 -6]] | 2048/1875 |
Sixix | 1.37 | 4.57 | 5.22 | [⟨1 3 2], ⟨0 -4 1]] | 3125/2916 |
Uncle | 1.40 | 7.53 | 8.80 | [⟨1 0 12], ⟨0 1 -6]] | 4096/3645 |
Whitewood | 1.42 | 4.20 | 4.95 | [⟨7 11 0], ⟨0 0 1]] | 2187/2048 |
1.66 | 4.13 | 5.72 | [⟨1 0 5], ⟨0 3 -5]] | 32768/30375 |
Main sequence
Temperament | Complexity | Error (¢) | Badness (moct) | Mapping | Comma list |
---|---|---|---|---|---|
Dicot | .521 | 7.09 | 3.08 | [⟨1 1 2], ⟨0 2 1]] | 25/24 |
Meantone | .711 | 1.58 | .937 | [⟨1 0 -4], ⟨0 1 4]] | 81/80 |
Mavila | .795 | 6.06 | 4.02 | [⟨1 0 7], ⟨0 1 -3]] | 135/128 |
Augmented | .894 | 2.40 | 1.79 | [⟨3 0 7], ⟨0 1 0]] | 128/125 |
Porcupine | .960 | 2.68 | 2.14 | [⟨1 2 3], ⟨0 -3 -5]] | 250/243 |
Blackwood | 1.02 | 4.63 | 3.93 | [⟨5 8 0], ⟨0 0 1]] | 256/243 |
Diminished | 1.05 | 3.10 | 2.73 | [⟨4 0 3], ⟨0 1 1]] | 648/625 |
Srutal | 1.22 | .835 | .852 | [⟨2 0 11], ⟨0 1 -2]] | 2048/2025 |
Magic | 1.40 | 1.11 | 1.29 | [⟨1 0 2], ⟨0 5 1]] | 3125/3072 |
Hanson | 1.55 | .274 | .353 | [⟨1 0 1], ⟨0 6 5]] | 15625/15552 |
Ripple | 1.56 | 2.82 | 3.66 | [⟨1 2 3], ⟨0 -5 -8]] | 6561/6250 |
Negri | 1.58 | 1.69 | 2.23 | [⟨1 2 2], ⟨0 -4 3]] | 16875/16384 |
Tetracot | 1.61 | .900 | 1.21 | [⟨1 1 1], ⟨0 4 9]] | 20000/19683 |
Superpyth | 1.70 | 2.11 | 2.99 | [⟨1 0 -12], ⟨0 1 9]] | 20480/19683 |
Helmholtz | 1.79 | .0570 | .0851 | [⟨1 0 15], ⟨0 1 -8]] | 32805/32768 |
Wesley | 1.91 | 2.75 | 4.37 | [⟨1 4 3], ⟨0 -7 -2]] | 78125/73728 |
Sensipent | 1.97 | .356 | .584 | [⟨1 6 8], ⟨0 7 9]] | 78732/78125 |
Stump | 2.02 | 1.88 | 3.16 | [⟨1 0 6], ⟨0 3 -7]] | 273375/262144 |
Passion | 2.02 | 1.57 | 2.64 | [⟨1 2 2], ⟨0 -5 4]] | 262144/253125 |
Doublewide | 2.06 | 2.00 | 3.43 | [⟨2 1 3], ⟨0 4 3]] | 390625/373248 |
Würschmidt | 2.29 | .262 | .499 | [⟨1 7 3], ⟨0 8 1]] | 393216/390625 |
Amity | 2.29 | .140 | .268 | [⟨1 3 6], ⟨0 -5 -13]] | 1600000/1594323 |
Valentine | 2.34 | .736 | 1.44 | [⟨1 1 2], ⟨0 9 5]] | 1990656/1953125 |
Immunity | 2.40 | 1.03 | 2.06 | [⟨1 0 -8], ⟨0 2 13]] | 1638400/1594323 |
Shibboleth | 2.42 | 1.24 | 2.50 | [⟨1 4 5], ⟨0 -9 -10]] | 1953125/1889568 |
Compton | 2.44 | .504 | 1.02 | [⟨12 19 0], ⟨0 0 1]] | 531441/524288 |
Orson | 2.44 | .215 | .438 | [⟨1 0 3], ⟨0 7 -3]] | 2109375/2097152 |
Unicorn | 2.52 | .725 | 1.52 | [⟨1 2 3], ⟨0 -8 -13]] | 1594323/1562500 |
Mynic | 2.60 | 1.10 | 2.37 | [⟨1 9 9], ⟨0 -10 -9]] | 10077696/9765625 |
Ampersand | 2.78 | .594 | 1.38 | [⟨1 1 3], ⟨0 6 -7]] | 34171875/33554432 |
Fifive | 2.91 | .643 | 1.56 | [⟨2 2 3], ⟨0 5 7]] | 9765625/9565938 |
Misty | 2.99 | .308 | .767 | [⟨3 0 26], ⟨0 1 -4]] | 67108864/66430125 |
Gravity | 2.99 | .269 | .669 | [⟨1 5 12], ⟨0 -6 -17]] | 129140163/128000000 |
Rodan | 3.10 | .433 | 1.12 | [⟨1 1 -1], ⟨0 3 17]] | [20 -17 3⟩ |
3.11 | .757 | 1.96 | [⟨1 0 -23], ⟨0 1 16]] | [-23 16 -1⟩ | |
Mabila | 3.32 | .488 | 1.35 | [⟨1 6 1], ⟨0 -10 3]] | [28 -3 -10⟩ |
Parakleismic | 3.47 | .0798 | .231 | [⟨1 5 6], ⟨0 -13 -14]] | [8 14 -13⟩ |
Quartonic | 3.48 | .214 | .621 | [⟨1 2 3], ⟨0 -11 -18]] | [3 -18 11⟩ |
Escapade | 3.60 | .138 | .414 | [⟨1 2 2], ⟨0 -9 7]] | [32 -7 -9⟩ |
Ditonic | 3.68 | .258 | .792 | [⟨1 6 3], ⟨0 -13 -2]] | [-27 -2 13⟩ |
Vishnuzmic | 3.71 | .0471 | .145 | [⟨2 4 5], ⟨0 -7 -3]] | [23 6 -14⟩ |
Vulture | 3.81 | .0576 | .183 | [⟨1 0 -6], ⟨0 4 21]] | [24 -21 4⟩ |
Trisedodge | 3.87 | .336 | 1.08 | [⟨5 1 7], ⟨0 3 2]] | [19 10 -15⟩ |
4.00 | .157 | .524 | [⟨1 4 -1], ⟨0 -8 11]] | [-36 11 8⟩ |
Tunings
Manhattan | Euclidean | Chebyshevian | ||
---|---|---|---|---|
Unskewed | Skewed | |||
Equilateral | CEOP: ~3/2 = 697.654¢ (1/5-comma) |
CEE: ~3/2 = 696.895¢ (4/17-comma) |
CSEE: ~3/2 = 696.453¢ (11/43-comma) |
CEC: ~3/2 = 696.578¢ (1/4-comma) |
Tenney | CTOP: ~3/2 = 698.020¢ | CTE: ~3/2 = 697.214¢ | CWE: ~3/2 = 696.651¢ | CTC: ~3/2 = 696.578¢ (1/4-comma) |
Benedetti, Wilson |
CBOP: ~3/2 = 698.160¢ (3/17-comma) |
CBE: ~3/2 = 697.374¢ (36/169-comma) |
CSBE: ~3/2 = 696.787¢ (31/129-comma) |
CBC: ~3/2 = 696.578¢ (1/4-comma) |
Manhattan | Euclidean | Chebyshevian | ||
---|---|---|---|---|
Unskewed | Skewed | |||
Equilateral | CEOP: ~3/2 = 697.344¢ | CEE: ~3/2 = 696.884¢ | CSEE: ~3/2 = 696.725¢ | CEC: ~3/2 = 696.883¢ |
Tenney | CTOP: ~3/2 = 696.646¢ | CTE: ~3/2 = 696.952¢ | CWE: ~3/2 = 696.656¢ | CTC: ~3/2 = 696.883¢ |
Benedetti, Wilson |
CBOP: ~3/2 = 697.842¢ | CBE: ~3/2 = 697.015¢ | CSBE: ~3/2 = 696.631¢ | CBC: ~3/2 = 696.883¢ |
Temperament pages
Note:
- Order: subgroup, comma list, (sval) mapping, (sval) mapping generators, gencom mapping, gencom, lattice basis, wedgie, optimal tunings (CTE, CWE/POTE), minimax tuning, tuning ranges, algebraic generator, optimal ET sequence, badness, complexity spectrum, and others.
- Comma list should show the simplest commas sufficient to define the temperament, stated in Normal lists #Normal interval list.
- Mapping generators should show all the ratios as used in the mapping, including the period.
- Since minimax tunings are based on tonality diamond, it should explicitly state the odd limit, or a diamond function of ratios.
- For subgroup temperaments, "mapping" becomes "sval mapping", add "gencom mapping" and "gencom". If TE is TE is TE (sic), simply show "CTE/CWE", otherwise show "subgroup/inharmonic CTE/CWE" instead.
Get a family for:
Ripple (3 different 7-limit extensions)doneSmate (2 different 7-limit extensions)donePassion (4 different 7-limit extensions, 3 strong and 1 weak)doneUndimdoneQuintaleapdoneQuindromedadone- Parakleismic (many reasonable but unnamed 7-limit extensions)
- Schismatic rank three family (perhaps)
Who's next?
Meantone familyDidymus rank three familyArchytas clanArchytas familyFather familyTrienstonic clanSeptisemi temperamentsSlendro clanSemiphore familyJubilismic clanJubilismic familyMint temperamentsMint familyRipple familySmate familyAugmented familyDimipent familyDicot familyBug familyPelogic familyMarvel temperamentsMarvel familyGamelismic clanGamelismic familyStarling temperamentsStarling familySensamagic clanSensamagic familyMagic familySensipent familyKeemic temperamentsKeemic familySengic familySchismatic familyKleismic familyKleismic rank three familyWürschmidt familyUnicorn familyShibboleth familyImmunity familyFifive familyTrisedodge familyQuintosec familyPental familySycamore familySemicomma familyOrwellismic temperamentsOrwellismic familyHemimean clanHemimean familyHemifamity temperamentsHemifamity familyPorwell temperamentsPorwell familyHemimage temperamentsHemimage familyPorcupine familyPorcupine rank three familyTetracot familyDiaschismic familyDiaschismic rank three familyCompton familyAmity familyMisty familyUndim familyLehmerismic temperamentsKalismic temperamentsRagismic microtemperamentsRagismic familyLandscape microtemperamentsLandscape familyDimcomp familyMirkwai clanMirkwai familyQuince clanBreedsmic temperamentsBreed familyEscapade familyGravity familyCataharry temperamentsCataharry familyVarunismic temperamentsRastmic rank three clanBiyatismic clanPtolemismic clanValinorsmic clanPentacircle clanKeenanismic temperamentsWerckismic temperamentsSwetismic temperamentsWizmic microtemperamentsMetric microtemperamentsHorwell temperamentsHorwell familyLuna familyVulture familyTricot familyMinortonic familyGammic familyVishnuzmic familyGarischismic clanCanousmic temperamentsCanou familySemicanousmic clanSemiporwellismic clanOlympic clanAlphaxenic rank three clanMirwomo temperamentsGariboh clanGariboh familyOctagar temperamentsOctagar familyWesley familyApotome family- Mabila family
- Maquila family
- Maja family
- Ditonmic family
Greenwoodmic temperamentsAvicennmic temperaments
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-49 31⟩ | [⟨31 49]] | +1.63 | 1.64 | 4.22 |
2.3.5 | 81/80, 393216/390625 | [⟨31 49 72]] | +0.98 | 1.63 | 4.20 |
2.3.5.7 | 81/80, 126/125, 1029/1024 | [⟨31 49 72 87]] | +0.83 | 1.43 | 3.70 |
2.3.5.7.11 | 81/80, 99/98, 121/120, 126/125 | [⟨31 49 72 87 107]] | +1.21 | 1.49 | 3.84 |
Scale tree
- 7-tone
1L 6s,2L 5s,3L 4s,4L 3s,5L 2s,6L 1s