Semaphoresmic clan: Difference between revisions
Units |
- CTE & POTE tunings |
||
Line 26: | Line 26: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~7/4 = 950.6890{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~7/4 = 950.6890{{c}} | ||
: error map: {{val| 0.000 -0.577 -18.137 }} | : error map: {{val| 0.000 -0.577 -18.137 }} | ||
{{Optimal ET sequence|legend=1| 5, 14, 19, 24, 67dd, 91dd, 115ddd }} | {{Optimal ET sequence|legend=1| 5, 14, 19, 24, 67dd, 91dd, 115ddd }} | ||
Line 88: | Line 83: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~7/4 = 947.8216{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~7/4 = 947.8216{{c}} | ||
: error map: {{val| 0.000 -6.312 -3.741 -21.004 }} | : error map: {{val| 0.000 -6.312 -3.741 -21.004 }} | ||
[[Tuning ranges]]: | [[Tuning ranges]]: | ||
* 7- and 9-odd-limit [[diamond monotone]]: ~7/4 = [942.857, 960.000] (11\14 to 4\5) | * 7- and 9-odd-limit [[diamond monotone]]: ~7/4 = [942.857, 960.000] (11\14 to 4\5) | ||
Line 112: | Line 102: | ||
* WE: ~2 = 1204.4129{{c}}, ~7/4 = 949.4513{{c}} | * WE: ~2 = 1204.4129{{c}}, ~7/4 = 949.4513{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 946.4361{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~7/4 = 946.4361{{c}} | ||
Tuning ranges: | Tuning ranges: | ||
* 11-odd-limit diamond monotone: ~7/4 = [942.857, 947.368] (11\14 to 15\19) | * 11-odd-limit diamond monotone: ~7/4 = [942.857, 947.368] (11\14 to 15\19) | ||
Line 134: | Line 121: | ||
* WE: ~2 = 1203.7164{{c}}, ~7/4 = 949.2061{{c}} | * WE: ~2 = 1203.7164{{c}}, ~7/4 = 949.2061{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 946.4131{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~7/4 = 946.4131{{c}} | ||
Tuning ranges: | Tuning ranges: | ||
* 13- and 15-odd-limit diamond monotone: ~7/4 = 947.368 (15\19) | * 13- and 15-odd-limit diamond monotone: ~7/4 = 947.368 (15\19) | ||
Line 156: | Line 140: | ||
* WE: ~2 = 1206.9595{{c}}, ~7/4 = 951.4440{{c}} | * WE: ~2 = 1206.9595{{c}}, ~7/4 = 951.4440{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 946.4472{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~7/4 = 946.4472{{c}} | ||
{{Optimal ET sequence|legend=0| 14c, 19e, 33cdee, 52cdeee }} | {{Optimal ET sequence|legend=0| 14c, 19e, 33cdee, 52cdeee }} | ||
Line 174: | Line 155: | ||
* WE: ~2 = 1202.5842{{c}}, ~7/4 = 950.9647{{c}} | * WE: ~2 = 1202.5842{{c}}, ~7/4 = 950.9647{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 949.1239{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~7/4 = 949.1239{{c}} | ||
{{Optimal ET sequence|legend=0| 19e, 24, 43de }} | {{Optimal ET sequence|legend=0| 19e, 24, 43de }} | ||
Line 192: | Line 170: | ||
* WE: ~2 = 1202.4367{{c}}, ~7/4 = 950.7615{{c}} | * WE: ~2 = 1202.4367{{c}}, ~7/4 = 950.7615{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 949.0338{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~7/4 = 949.0338{{c}} | ||
{{Optimal ET sequence|legend=0| 19e, 24, 43de }} | {{Optimal ET sequence|legend=0| 19e, 24, 43de }} | ||
Line 210: | Line 185: | ||
* WE: ~2 = 1201.1412{{c}}, ~7/4 = 949.7291{{c}} | * WE: ~2 = 1201.1412{{c}}, ~7/4 = 949.7291{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 948.8625{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~7/4 = 948.8625{{c}} | ||
{{Optimal ET sequence|legend=0| 5, 19, 24 }} | {{Optimal ET sequence|legend=0| 5, 19, 24 }} | ||
Line 228: | Line 200: | ||
* WE: ~2 = 1201.1228{{c}}, ~7/4 = 949.6894{{c}} | * WE: ~2 = 1201.1228{{c}}, ~7/4 = 949.6894{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 948.8468{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~7/4 = 948.8468{{c}} | ||
{{Optimal ET sequence|legend=0| 5, 19, 24 }} | {{Optimal ET sequence|legend=0| 5, 19, 24 }} | ||
Line 252: | Line 221: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~7/4 = 947.5047{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~7/4 = 947.5047{{c}} | ||
: error map: {{val| 0.000 -6.946 -8.866 -21.321 }} | : error map: {{val| 0.000 -6.946 -8.866 -21.321 }} | ||
{{Optimal ET sequence|legend=1| 5c, 14, 19 }} | {{Optimal ET sequence|legend=1| 5c, 14, 19 }} | ||
Line 277: | Line 243: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~7/4 = 939.8419{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~7/4 = 939.8419{{c}} | ||
: error map: {{val| 0.000 -22.271 -25.365 -28.984 }} | : error map: {{val| 0.000 -22.271 -25.365 -28.984 }} | ||
{{Optimal ET sequence|legend=1| 9, 14c, 23d, 37bcd, 60bbccdd }} | {{Optimal ET sequence|legend=1| 9, 14c, 23d, 37bcd, 60bbccdd }} | ||
Line 297: | Line 258: | ||
* WE: ~2 = 1208.8663{{c}}, ~7/4 = 946.9861{{c}} | * WE: ~2 = 1208.8663{{c}}, ~7/4 = 946.9861{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 939.7687{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~7/4 = 939.7687{{c}} | ||
{{Optimal ET sequence|legend=0| 9, 14c, 23de, 37bcde, 60bbccddeee }} | {{Optimal ET sequence|legend=0| 9, 14c, 23de, 37bcde, 60bbccddeee }} | ||
Line 322: | Line 280: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~7/4 = 972.2994{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~7/4 = 972.2994{{c}} | ||
: error map: {{val| 0.000 +42.644 +69.088 +3.473 }} | : error map: {{val| 0.000 +42.644 +69.088 +3.473 }} | ||
{{Optimal ET sequence|legend=1| 5, 11b, 16bc }} | {{Optimal ET sequence|legend=1| 5, 11b, 16bc }} | ||
Line 342: | Line 295: | ||
* WE: ~2 = 1187.4876{{c}}, ~7/4 = 967.9643{{c}} | * WE: ~2 = 1187.4876{{c}}, ~7/4 = 967.9643{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~7/4 = 976.9298{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~7/4 = 976.9298{{c}} | ||
{{Optimal ET sequence|legend=0| 5, 11b }} | {{Optimal ET sequence|legend=0| 5, 11b }} | ||
Line 368: | Line 318: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~16/15 = 125.6610{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~16/15 = 125.6610{{c}} | ||
: error map: {{val| 0.000 -4.599 -9.331 }} | : error map: {{val| 0.000 -4.599 -9.331 }} | ||
{{Optimal ET sequence|legend=1| 9, 10, 19, 67c, 86c, 105c }} | {{Optimal ET sequence|legend=1| 9, 10, 19, 67c, 86c, 105c }} | ||
Line 390: | Line 335: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~15/14 = 125.4347{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~15/14 = 125.4347{{c}} | ||
: error map: {{val| 0.000 -3.694 -10.009 -19.695 }} | : error map: {{val| 0.000 -3.694 -10.009 -19.695 }} | ||
{{Optimal ET sequence|legend=1| 9, 10, 19, 48d, 67cdd, 86cdd }} | {{Optimal ET sequence|legend=1| 9, 10, 19, 48d, 67cdd, 86cdd }} | ||
Line 414: | Line 354: | ||
* WE: ~2 = 1203.6981{{c}}, ~14/13 = 125.9545{{c}} | * WE: ~2 = 1203.6981{{c}}, ~14/13 = 125.9545{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~14/13 = 125.3543{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~14/13 = 125.3543{{c}} | ||
{{Optimal ET sequence|legend=0| 9, 10, 19, 48df, 67cddf, 86cddff }} | {{Optimal ET sequence|legend=0| 9, 10, 19, 48df, 67cddf, 86cddff }} | ||
Line 432: | Line 369: | ||
* WE: ~2 = 1202.1045{{c}}, ~15/14 = 126.6961{{c}} | * WE: ~2 = 1202.1045{{c}}, ~15/14 = 126.6961{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~15/14 = 126.3382{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~15/14 = 126.3382{{c}} | ||
{{Optimal ET sequence|legend=0| 9, 10, 19 }} | {{Optimal ET sequence|legend=0| 9, 10, 19 }} | ||
Line 450: | Line 384: | ||
* WE: ~2 = 1202.6035{{c}}, ~14/13 = 126.7054{{c}} | * WE: ~2 = 1202.6035{{c}}, ~14/13 = 126.7054{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~14/13 = 126.2534{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~14/13 = 126.2534{{c}} | ||
{{Optimal ET sequence|legend=0| 9, 10, 19 }} | {{Optimal ET sequence|legend=0| 9, 10, 19 }} | ||
Line 468: | Line 399: | ||
* WE: ~2 = 1202.7081{{c}}, ~15/14 = 125.0491{{c}} | * WE: ~2 = 1202.7081{{c}}, ~15/14 = 125.0491{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~15/14 = 124.8066{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~15/14 = 124.8066{{c}} | ||
{{Optimal ET sequence|legend=0| 10e, 19, 29, 48d, 77cdd }} | {{Optimal ET sequence|legend=0| 10e, 19, 29, 48d, 77cdd }} | ||
Line 486: | Line 414: | ||
* WE: ~2 = 1202.9319{{c}}, ~14/13 = 125.0204{{c}} | * WE: ~2 = 1202.9319{{c}}, ~14/13 = 125.0204{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~14/13 = 124.7374{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~14/13 = 124.7374{{c}} | ||
{{Optimal ET sequence|legend=0| 10e, 19, 29, 48df, 77cddf }} | {{Optimal ET sequence|legend=0| 10e, 19, 29, 48df, 77cddf }} | ||
Line 504: | Line 429: | ||
* WE: ~2 = 1205.7810{{c}}, ~15/14 = 127.6513{{c}} | * WE: ~2 = 1205.7810{{c}}, ~15/14 = 127.6513{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~15/14 = 126.9620{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~15/14 = 126.9620{{c}} | ||
{{Optimal ET sequence|legend=0| 9, 19e }} | {{Optimal ET sequence|legend=0| 9, 19e }} | ||
Line 522: | Line 444: | ||
* WE: ~2 = 1205.7833{{c}}, ~14/13 = 127.6507{{c}} | * WE: ~2 = 1205.7833{{c}}, ~14/13 = 127.6507{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~14/13 = 126.9093{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~14/13 = 126.9093{{c}} | ||
{{Optimal ET sequence|legend=0| 9, 19e }} | {{Optimal ET sequence|legend=0| 9, 19e }} | ||
Line 540: | Line 459: | ||
* WE: ~2 = 1203.4738{{c}}, ~15/14 = 124.8992{{c}} | * WE: ~2 = 1203.4738{{c}}, ~15/14 = 124.8992{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~15/14 = 124.3642{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~15/14 = 124.3642{{c}} | ||
{{Optimal ET sequence|legend=0| 10, 19e, 29, 77cddee }} | {{Optimal ET sequence|legend=0| 10, 19e, 29, 77cddee }} | ||
Line 558: | Line 474: | ||
* WE: ~2 = 1203.5354{{c}}, ~14/13 = 124.9118{{c}} | * WE: ~2 = 1203.5354{{c}}, ~14/13 = 124.9118{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~14/13 = 124.3733{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~14/13 = 124.3733{{c}} | ||
{{Optimal ET sequence|legend=0| 10, 19e, 29, 77cddeef }} | {{Optimal ET sequence|legend=0| 10, 19e, 29, 77cddeef }} | ||
Line 578: | Line 491: | ||
* WE: ~2 = 1203.6080{{c}}, ~11/8 = 538.8007{{c}} | * WE: ~2 = 1203.6080{{c}}, ~11/8 = 538.8007{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/8 = 537.2654{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/8 = 537.2654{{c}} | ||
{{Optimal ET sequence|legend=0| 9, 20, 29, 38d, 67cdde, 105cdddee }} | {{Optimal ET sequence|legend=0| 9, 20, 29, 38d, 67cdde, 105cdddee }} | ||
Line 596: | Line 506: | ||
* WE: ~2 = 1203.7672{{c}}, ~11/8 = 538.8948{{c}} | * WE: ~2 = 1203.7672{{c}}, ~11/8 = 538.8948{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/8 = 537.3053{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/8 = 537.3053{{c}} | ||
{{Optimal ET sequence|legend=0| 9, 20, 29, 38df, 67cddef, 105cdddeefff }} | {{Optimal ET sequence|legend=0| 9, 20, 29, 38df, 67cddef, 105cdddeefff }} | ||
Line 614: | Line 521: | ||
* WE: ~2 = 1203.7154{{c}}, ~11/8 = 538.8932{{c}} | * WE: ~2 = 1203.7154{{c}}, ~11/8 = 538.8932{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/8 = 537.2633{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/8 = 537.2633{{c}} | ||
{{Optimal ET sequence|legend=0| 9, 20g, 29g, 38df, 67cddefg }} | {{Optimal ET sequence|legend=0| 9, 20g, 29g, 38df, 67cddefg }} | ||
Line 632: | Line 536: | ||
* WE: ~2 = 1203.5906{{c}}, ~11/8 = 538.8216{{c}} | * WE: ~2 = 1203.5906{{c}}, ~11/8 = 538.8216{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/8 = 537.2534{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/8 = 537.2534{{c}} | ||
{{Optimal ET sequence|legend=0| 9, 20g, 29g, 38df, 67cddefgh }} | {{Optimal ET sequence|legend=0| 9, 20g, 29g, 38df, 67cddefgh }} | ||
Line 654: | Line 555: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~16/15 = 81.0408{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~16/15 = 81.0408{{c}} | ||
: error map: {{val| 0.000 +11.800 +18.890 -11.948 }} | : error map: {{val| 0.000 +11.800 +18.890 -11.948 }} | ||
{{Optimal ET sequence|legend=1| 14, 15 }} | {{Optimal ET sequence|legend=1| 14, 15 }} | ||
Line 674: | Line 570: | ||
* WE: ~2 = 1196.6821{{c}}, ~16/15 = 80.5936{{c}} | * WE: ~2 = 1196.6821{{c}}, ~16/15 = 80.5936{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~16/15 = 80.8326{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~16/15 = 80.8326{{c}} | ||
{{Optimal ET sequence|legend=0| 14e, 15 }} | {{Optimal ET sequence|legend=0| 14e, 15 }} | ||
Line 692: | Line 585: | ||
* WE: ~2 = 1195.6248{{c}}, ~16/15 = 80.7288{{c}} | * WE: ~2 = 1195.6248{{c}}, ~16/15 = 80.7288{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~16/15 = 81.0685{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~16/15 = 81.0685{{c}} | ||
{{Optimal ET sequence|legend=0| 14e, 15 }} | {{Optimal ET sequence|legend=0| 14e, 15 }} | ||
Revision as of 17:45, 13 July 2025
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
The semaphoresmic clan (or semaphore family) of temperaments tempers out the large septimal diesis, or semaphoresma, 49/48, a triprime comma with factors of 2, 3 and 7.
This article focuses on rank-2 temperaments. See Semaphoresmic family for the rank-3 temperament resulting from tempering out 49/48 alone in the full 7-limit.
Semaphore
Semaphore tempers out 49/48, and splits a perfect twelfth into two halfs of 7/4~12/7, and a perfect fourth into two halfs of 7/6~8/7, hence the name semaphore, which sounds like semifourth; its ploidacot is alpha-dicot. 19edo and 24edo are among the possible edo tunings.
Subgroup: 2.3.7
Comma list: 49/48
Subgroup-val mapping: [⟨1 0 2], ⟨0 2 1]]
- sval mapping generators: ~2, ~7/4
Gencom mapping: [⟨1 0 0 2], ⟨0 2 0 1]]
- gencom: [2 7/4; 49/48]
- WE: ~2 = 1202.8324 ¢, ~7/4 = 951.8567 ¢
- error map: ⟨+2.832 +1.758 -11.304]
- CWE: ~2 = 1200.0000 ¢, ~7/4 = 950.6890 ¢
- error map: ⟨0.000 -0.577 -18.137]
Optimal ET sequence: 5, 14, 19, 24, 67dd, 91dd, 115ddd
Badness (Sintel): 0.193
Scales: semaphore5, semaphore9, semaphore14
Overview to extensions
The second comma of the comma list defines which 7-limit family member we are looking at:
- Beep adds 21/20, for a tuning flat of 9edo;
- Superpelog adds 135/128, for a tuning between 9edo and 14c-edo;
- Godzilla adds 81/80, for a tuning between 14c-edo and 24edo;
- Helayo adds 3645/3584, for a tuning between 14edo and 24c-edo;
- Immunity adds 2240/2187, for a tuning sharp of 29edo;
- Baba adds 16/15, for a niche exotemperament well tuned around 11b-edo.
These all use the same nominal generator as semaphore, though some of them are of very low accuracy.
Decimal adds 25/24. Anguirus adds 2048/2025. Those split the octave in two. Negri adds 225/224, splitting the hemifourth in two. Triforce adds 128/125, splitting the octave in three. Keemun adds 126/125, splitting the hemitwelfth in three. Nautilus adds 250/243, splitting the hemifourth in three. Nuke is like nautilus, but adds 3584/3375 instead. Hemidim adds 648/625 with a 1/4-octave period. Blacksmith adds 28/27, splitting the octave in five. Spell adds 3125/3072, splitting the hemitwelfth in five. Hemiripple adds 6561/6250, splitting the hemifourth in five. Finally, semabila adds 28672/28125 and splits an interval of two octaves plus a hemifourth in five.
Discussed elsewhere are
- Beep (+21/20) → Bug family
- Immunity (+2240/2187) → Immunity family
- Nessus (+10/9) → Very low accuracy temperaments
- Malacoda (+15/14) → Very low accuracy temperaments
- Decimal (+25/24) → Dicot family
- Anguirus (+2048/2025) → Diaschismic family
- Triforce (+128/125) → Augmented family
- Keemun (+126/125) → Kleismic family
- Nautilus (+250/243) → Porcupine family
- Hemidim (+648/625) → Dimipent family
- Blackwood (+28/27) → Limmic temperaments
- Spell (+3125/3072) → Hemimean clan
- Hemiripple (+6561/6250) → Ripple family
- Semabila (+28672/28125) → Mabila family
Considered below are godzilla, helayo, superpelog, baba, negri, and nuke.
Godzilla
Godzilla tempers out 81/80, equating 9/8 and 10/9, so it finds the prime 5 at a stack of four fifths, as does any temperament in the meantone family. 19edo is close to being the optimal generator tuning; hence it can be more or less equated with taking 4\19 as a generator. Mos scales are of 5, 9, or 14 notes.
Subgroup: 2.3.5.7
Comma list: 49/48, 81/80
Mapping: [⟨1 0 -4 2], ⟨0 2 8 1]]
- mapping generators: ~2, ~7/4
- WE: ~2 = 1203.8275 ¢, ~7/4 = 950.3867 ¢
- error map: ⟨+3.827 -1.182 +1.470 -10.784]
- CWE: ~2 = 1200.0000 ¢, ~7/4 = 947.8216 ¢
- error map: ⟨0.000 -6.312 -3.741 -21.004]
- 7- and 9-odd-limit diamond monotone: ~7/4 = [942.857, 960.000] (11\14 to 4\5)
- 7- and 9-odd-limit diamond tradeoff: ~7/4 = [933.129, 968.826]
Optimal ET sequence: 5, 14c, 19
Badness (Sintel): 0.677
11-limit
Subgroup: 2.3.5.7.11
Comma list: 45/44, 49/48, 81/80
Mapping: [⟨1 0 -4 2 -6], ⟨0 2 8 1 12]]
Optimal tunings:
- WE: ~2 = 1204.4129 ¢, ~7/4 = 949.4513 ¢
- CWE: ~2 = 1200.0000 ¢, ~7/4 = 946.4361 ¢
Tuning ranges:
- 11-odd-limit diamond monotone: ~7/4 = [942.857, 947.368] (11\14 to 15\19)
- 11-odd-limit diamond tradeoff: ~7/4 = [933.129, 968.826]
Optimal ET sequence: 14c, 19, 33cd
Badness (Sintel): 0.957
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 49/48, 78/77, 81/80
Mapping: [⟨1 0 -4 2 -6 -5], ⟨0 2 8 1 12 11]]
Optimal tunings:
- WE: ~2 = 1203.7164 ¢, ~7/4 = 949.2061 ¢
- CWE: ~2 = 1200.0000 ¢, ~7/4 = 946.4131 ¢
Tuning ranges:
- 13- and 15-odd-limit diamond monotone: ~7/4 = 947.368 (15\19)
- 13- and 15-odd-limit diamond tradeoff: ~7/4 = [910.890, 968.826]
Optimal ET sequence: 14cf, 19, 33cdff
Badness (Sintel): 0.930
Semafour
Subgroup: 2.3.5.7.11
Comma list: 33/32, 49/48, 55/54
Mapping: [⟨1 0 -4 2 5], ⟨0 2 8 1 -2]]
Optimal tunings:
- WE: ~2 = 1206.9595 ¢, ~7/4 = 951.4440 ¢
- CWE: ~2 = 1200.0000 ¢, ~7/4 = 946.4472 ¢
Optimal ET sequence: 14c, 19e, 33cdee, 52cdeee
Badness (Sintel): 0.943
Varan
Subgroup: 2.3.5.7.11
Comma list: 49/48, 77/75, 81/80
Mapping: [⟨1 0 -4 2 -10], ⟨0 2 8 1 17]]
Optimal tunings:
- WE: ~2 = 1202.5842 ¢, ~7/4 = 950.9647 ¢
- CWE: ~2 = 1200.0000 ¢, ~7/4 = 949.1239 ¢
Optimal ET sequence: 19e, 24, 43de
Badness (Sintel): 1.31
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 66/65, 77/75, 81/80
Mapping: [⟨1 0 -4 2 -10 -5], ⟨0 2 8 1 17 11]]
Optimal tunings:
- WE: ~2 = 1202.4367 ¢, ~7/4 = 950.7615 ¢
- CWE: ~2 = 1200.0000 ¢, ~7/4 = 949.0338 ¢
Optimal ET sequence: 19e, 24, 43de
Badness (Sintel): 1.06
Baragon
Subgroup: 2.3.5.7.11
Comma list: 49/48, 56/55, 81/80
Mapping: [⟨1 0 -4 2 9], ⟨0 2 8 1 -7]]
Optimal tunings:
- WE: ~2 = 1201.1412 ¢, ~7/4 = 949.7291 ¢
- CWE: ~2 = 1200.0000 ¢, ~7/4 = 948.8625 ¢
Optimal ET sequence: 5, 19, 24
Badness (Sintel): 1.18
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 56/55, 81/80, 91/90
Mapping: [⟨1 0 -4 2 9 -5], ⟨0 2 8 1 -7 11]]
Optimal tunings:
- WE: ~2 = 1201.1228 ¢, ~7/4 = 949.6894 ¢
- CWE: ~2 = 1200.0000 ¢, ~7/4 = 948.8468 ¢
Optimal ET sequence: 5, 19, 24
Badness (Sintel): 1.10
Helayo
- For the 5-limit version of this temperament see Miscellaneous 5-limit temperaments #Hogzilla.
Helayo tempers out 3645/3584 and may be thought of as the opposite of godzilla with respect to 19edo. Like godzilla, 19edo's generator is close to the optimum.
Subgroup: 2.3.5.7
Comma list: 49/48, 3645/3584
Mapping: [⟨1 0 11 2], ⟨0 2 -11 1]]
- WE: ~2 = 1204.0199 ¢, ~7/4 = 950.7917 ¢
- error map: ⟨+4.020 -0.372 -0.804 -9.995]
- CWE: ~2 = 1200.0000 ¢, ~7/4 = 947.5047 ¢
- error map: ⟨0.000 -6.946 -8.866 -21.321]
Optimal ET sequence: 5c, 14, 19
Badness (Sintel): 2.00
- Music
Superpelog
Superpelog tempers out 135/128 and finds the prime 5 at a stack of three fourths, as does any temperament in the mavila family. It may be described as 9 & 14c, with 23edo (23d val) giving a tuning close to the optimum.
Subgroup: 2.3.5.7
Comma list: 49/48, 135/128
Mapping: [⟨1 0 7 2], ⟨0 2 -6 1]]
- WE: ~2 = 1208.8222 ¢, ~7/4 = 946.9590 ¢
- error map: ⟨+8.822 -8.037 -6.313 -4.223]
- CWE: ~2 = 1200.0000 ¢, ~7/4 = 939.8419 ¢
- error map: ⟨0.000 -22.271 -25.365 -28.984]
Optimal ET sequence: 9, 14c, 23d, 37bcd, 60bbccdd
Badness (Sintel): 1.47
11-limit
Subgroup: 2.3.5.7.11
Comma list: 33/32, 45/44, 49/48
Mapping: [⟨1 0 7 2 5], ⟨0 2 -6 1 -2]]
Optimal tunings:
- WE: ~2 = 1208.8663 ¢, ~7/4 = 946.9861 ¢
- CWE: ~2 = 1200.0000 ¢, ~7/4 = 939.7687 ¢
Optimal ET sequence: 9, 14c, 23de, 37bcde, 60bbccddeee
Badness (Sintel): 0.943
- Music
- Mindaugas Rex Lithuaniae (2012) by Chris Vaisvil – listen | blog – in Superpelog[9], 23edo tuning
Baba
This low-accuracy extension tempers out 16/15, so the perfect fifth stands in for ~8/5 as in father.
Subgroup: 2.3.5.7
Comma list: 16/15, 49/45
Mapping: [⟨1 0 4 2], ⟨0 2 -2 1]]
- WE: ~2 = 1184.7407 ¢, ~7/4 = 960.9196 ¢
- error map: ⟨-15.259 +19.884 +30.810 -38.425]
- CWE: ~2 = 1200.0000 ¢, ~7/4 = 972.2994 ¢
- error map: ⟨0.000 +42.644 +69.088 +3.473]
Optimal ET sequence: 5, 11b, 16bc
Badness (Sintel): 1.12
11-limit
Subgroup: 2.3.5.7.11
Comma list: 16/15, 22/21, 49/45
Mapping: [⟨1 0 4 2 1], ⟨0 2 -2 1 3]]
Optimal tunings:
- WE: ~2 = 1187.4876 ¢, ~7/4 = 967.9643 ¢
- CWE: ~2 = 1200.0000 ¢, ~7/4 = 976.9298 ¢
Badness (Sintel): 1.21
Negri
Negri tempers out the negri comma in the 5-limit, 49/48 and 225/224 in the 7-limit. It may be described as 9 & 10; its ploidacot is omega-tetracot. It can be extended naturally to the 2.3.5.7.13 subgroup by adding 91/90 to the comma list; this will be discussed below under the title of negra.
Subgroup: 2.3.5
Comma list: 16875/16384
Mapping: [⟨1 2 2], ⟨0 -4 3]]
- mapping generators: ~2, ~16/15
- WE: ~2 = 1202.3403 ¢, ~16/15 = 126.0002 ¢
- error map: ⟨+2.340 -1.275 -3.633]
- CWE: ~2 = 1200.0000 ¢, ~16/15 = 125.6610 ¢
- error map: ⟨0.000 -4.599 -9.331]
Optimal ET sequence: 9, 10, 19, 67c, 86c, 105c
Badness (Sintel): 2.04
7-limit
Subgroup: 2.3.5.7
Comma list: 49/48, 225/224
Mapping: [⟨1 2 2 3], ⟨0 -4 3 -2]]
- WE: ~2 = 1203.4810 ¢, ~15/14 = 125.9724 ¢
- error map: ⟨+3.481 +1.118 -1.435 -10.328]
- CWE: ~2 = 1200.0000 ¢, ~15/14 = 125.4347 ¢
- error map: ⟨0.000 -3.694 -10.009 -19.695]
Optimal ET sequence: 9, 10, 19, 48d, 67cdd, 86cdd
Badness (Sintel): 0.670
2.3.5.7.13 subgroup (negra)
Subgroup: 2.3.5.7.13
Comma list: 49/48, 65/64, 91/90
Sval mapping: [⟨1 2 2 3 4], ⟨0 -4 3 -2 -3]]
Gencom mapping: [⟨1 2 2 3 0 4], ⟨0 -4 3 -2 0 -3]]
- gencom: [2 14/13; 49/48 65/64 91/90]
Optimal tunings:
- WE: ~2 = 1203.6981 ¢, ~14/13 = 125.9545 ¢
- CWE: ~2 = 1200.0000 ¢, ~14/13 = 125.3543 ¢
Optimal ET sequence: 9, 10, 19, 48df, 67cddf, 86cddff
Badness (Sintel): 0.463
11-limit
Subgroup: 2.3.5.7.11
Comma list: 45/44, 49/48, 56/55
Mapping: [⟨1 2 2 3 4], ⟨0 -4 3 -2 -5]]
Optimal tunings:
- WE: ~2 = 1202.1045 ¢, ~15/14 = 126.6961 ¢
- CWE: ~2 = 1200.0000 ¢, ~15/14 = 126.3382 ¢
Optimal ET sequence: 9, 10, 19
Badness (Sintel): 0.866
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 49/48, 56/55, 78/77
Mapping: [⟨1 2 2 3 4 4], ⟨0 -4 3 -2 -5 -3]]
Optimal tunings:
- WE: ~2 = 1202.6035 ¢, ~14/13 = 126.7054 ¢
- CWE: ~2 = 1200.0000 ¢, ~14/13 = 126.2534 ¢
Optimal ET sequence: 9, 10, 19
Badness (Sintel): 0.737
Negril
Subgroup: 2.3.5.7.11
Comma list: 49/48, 100/99, 225/224
Mapping: [⟨1 2 2 3 2], ⟨0 -4 3 -2 14]]
Optimal tunings:
- WE: ~2 = 1202.7081 ¢, ~15/14 = 125.0491 ¢
- CWE: ~2 = 1200.0000 ¢, ~15/14 = 124.8066 ¢
Optimal ET sequence: 10e, 19, 29, 48d, 77cdd
Badness (Sintel): 1.28
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 65/64, 91/90, 875/858
Mapping: [⟨1 2 2 3 2 4], ⟨0 -4 3 -2 14 -3]]
Optimal tunings:
- WE: ~2 = 1202.9319 ¢, ~14/13 = 125.0204 ¢
- CWE: ~2 = 1200.0000 ¢, ~14/13 = 124.7374 ¢
Optimal ET sequence: 10e, 19, 29, 48df, 77cddf
Badness (Sintel): 1.01
Negric
Subgroup: 2.3.5.7.11
Comma list: 33/32, 49/48, 77/75
Mapping: [⟨1 2 2 3 3], ⟨0 -4 3 -2 4]]
Optimal tunings:
- WE: ~2 = 1205.7810 ¢, ~15/14 = 127.6513 ¢
- CWE: ~2 = 1200.0000 ¢, ~15/14 = 126.9620 ¢
Badness (Sintel): 1.01
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 33/32, 49/48, 65/64, 91/90
Mapping: [⟨1 2 2 3 3 4], ⟨0 -4 3 -2 4 -3]]
Optimal tunings:
- WE: ~2 = 1205.7833 ¢, ~14/13 = 127.6507 ¢
- CWE: ~2 = 1200.0000 ¢, ~14/13 = 126.9093 ¢
Badness (Sintel): 0.835
Negroni
Subgroup: 2.3.5.7.11
Comma list: 49/48, 55/54, 225/224
Mapping: [⟨1 2 2 3 5], ⟨0 -4 3 -2 -15]]
Optimal tunings:
- WE: ~2 = 1203.4738 ¢, ~15/14 = 124.8992 ¢
- CWE: ~2 = 1200.0000 ¢, ~15/14 = 124.3642 ¢
Optimal ET sequence: 10, 19e, 29, 77cddee
Badness (Sintel): 1.17
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 55/54, 65/64, 91/90
Mapping: [⟨1 2 2 3 5 4], ⟨0 -4 3 -2 -15 -3]]
Optimal tunings:
- WE: ~2 = 1203.5354 ¢, ~14/13 = 124.9118 ¢
- CWE: ~2 = 1200.0000 ¢, ~14/13 = 124.3733 ¢
Optimal ET sequence: 10, 19e, 29, 77cddeef
Badness (Sintel): 0.890
Wilsec
Subgroup: 2.3.5.7.11
Comma list: 49/48, 121/120, 225/224
Mapping: [⟨1 6 -1 5 4], ⟨0 -8 6 -4 -1]]
- mapping generators: ~2, ~16/11
Optimal tunings:
- WE: ~2 = 1203.6080 ¢, ~11/8 = 538.8007 ¢
- CWE: ~2 = 1200.0000 ¢, ~11/8 = 537.2654 ¢
Optimal ET sequence: 9, 20, 29, 38d, 67cdde, 105cdddee
Badness (Sintel): 1.38
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 65/64, 91/90, 121/120
Mapping: [⟨1 6 -1 5 4 7], ⟨0 -8 6 -4 -1 -6]]
Optimal tunings:
- WE: ~2 = 1203.7672 ¢, ~11/8 = 538.8948 ¢
- CWE: ~2 = 1200.0000 ¢, ~11/8 = 537.3053 ¢
Optimal ET sequence: 9, 20, 29, 38df, 67cddef, 105cdddeefff
Badness (Sintel): 1.04
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 49/48, 65/64, 91/90, 121/120, 154/153
Mapping: [⟨1 6 -1 5 4 7 -2], ⟨0 -8 6 -4 -1 -6 11]]
Optimal tunings:
- WE: ~2 = 1203.7154 ¢, ~11/8 = 538.8932 ¢
- CWE: ~2 = 1200.0000 ¢, ~11/8 = 537.2633 ¢
Optimal ET sequence: 9, 20g, 29g, 38df, 67cddefg
Badness (Sintel): 1.11
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 49/48, 65/64, 77/76, 91/90, 121/120, 154/153
Mapping: [⟨1 6 -1 5 4 7 -2 7], ⟨0 -8 6 -4 -1 -6 11 -5]]
Optimal tunings:
- WE: ~2 = 1203.5906 ¢, ~11/8 = 538.8216 ¢
- CWE: ~2 = 1200.0000 ¢, ~11/8 = 537.2534 ¢
Optimal ET sequence: 9, 20g, 29g, 38df, 67cddefgh
Badness (Sintel): 1.02
Nuke
Nuke tempers out 3584/3375 and is the 14 & 15 temperament. It splits the hemifourth into three generators of ~16/15. Its ploidacot is omega-hexacot. 15edo is about as accurate as it can be tuned.
Subgroup: 2.3.5.7
Comma list: 49/48, 3584/3375
Mapping: [⟨1 2 2 3], ⟨0 -6 5 -3]]
- WE: ~2 = 1197.0059 ¢, ~16/15 = 80.7519 ¢
- error map: ⟨-2.994 +7.546 +11.457 -20.064]
- CWE: ~2 = 1200.0000 ¢, ~16/15 = 81.0408 ¢
- error map: ⟨0.000 +11.800 +18.890 -11.948]
Badness (Sintel): 3.27
11-limit
Subgroup: 2.3.5.7.11
Comma list: 49/48, 77/75, 512/495
Mapping: [⟨1 2 2 3 3], ⟨0 -6 5 -3 7]]
Optimal tunings:
- WE: ~2 = 1196.6821 ¢, ~16/15 = 80.5936 ¢
- CWE: ~2 = 1200.0000 ¢, ~16/15 = 80.8326 ¢
Badness (Sintel): 2.29
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 66/65, 77/75, 448/429
Mapping: [⟨1 2 2 3 3 4], ⟨0 -6 5 -3 7 -4]]
Optimal tunings:
- WE: ~2 = 1195.6248 ¢, ~16/15 = 80.7288 ¢
- CWE: ~2 = 1200.0000 ¢, ~16/15 = 81.0685 ¢
Badness (Sintel): 2.01