List of superparticular intervals: Difference between revisions
No edit summary |
No edit summary |
||
Line 263: | Line 263: | ||
| [[9801/9800]] | | [[9801/9800]] | ||
| 0.17665 | | 0.17665 | ||
| | | (11/(5*7))<sup>2</sup>*3<sup>4</sup>/2<sup>3</sup> | ||
| {{Monzo|-3 4 -2 -2 2}} | | {{Monzo|-3 4 -2 -2 2}} | ||
| Gauss comma, kalisma | | Gauss comma, kalisma | ||
Line 385: | Line 385: | ||
| [[729/728]] | | [[729/728]] | ||
| 2.3764 | | 2.3764 | ||
| | | (3<sup>2</sup>/2)<sup>3</sup>/(7*13) | ||
| {{Monzo|-3 6 0 -1 0 -1}} | | {{Monzo|-3 6 0 -1 0 -1}} | ||
| squbema | | squbema | ||
Line 397: | Line 397: | ||
| [[1716/1715]] | | [[1716/1715]] | ||
| 1.0092 | | 1.0092 | ||
| | | 2<sup>2</sup>*3*11*13/(5*7<sup>3</sup>) | ||
| {{Monzo|2 1 -1 -3 1 1}} | | {{Monzo|2 1 -1 -3 1 1}} | ||
| lummic comma | | lummic comma | ||
Line 403: | Line 403: | ||
| [[2080/2079]] | | [[2080/2079]] | ||
| 0.83252 | | 0.83252 | ||
| | | 2<sup>5</sup>*5*13/(3<sup>3</sup>*7*11) | ||
| {{Monzo|5 -3 1 -1 -1 1}} | | {{Monzo|5 -3 1 -1 -1 1}} | ||
| ibnsinma | | ibnsinma | ||
Line 409: | Line 409: | ||
| [[4096/4095]] | | [[4096/4095]] | ||
| 0.42272 | | 0.42272 | ||
| | | (2<sup>6</sup>/3)<sup>2</sup>/(5*7*13) | ||
| {{Monzo|12 -2 -1 -1 0 -1}} | | {{Monzo|12 -2 -1 -1 0 -1}} | ||
| tridecimal schisma, Sagittal schismina | | tridecimal schisma, Sagittal schismina | ||
Line 415: | Line 415: | ||
| [[4225/4224]] | | [[4225/4224]] | ||
| 0.40981 | | 0.40981 | ||
| | | (5*13)<sup>2</sup>/(2<sup>7</sup>*3*11) | ||
| {{Monzo|-7 -1 2 0 -1 2}} | | {{Monzo|-7 -1 2 0 -1 2}} | ||
| leprechaun comma | | leprechaun comma | ||
Line 421: | Line 421: | ||
| [[6656/6655]] | | [[6656/6655]] | ||
| 0.26012 | | 0.26012 | ||
| | | (2<sup>3</sup>/11)<sup>3</sup>*13/5 | ||
| {{Monzo|9 0 -1 0 -3 1}} | | {{Monzo|9 0 -1 0 -3 1}} | ||
| jacobin comma | | jacobin comma | ||
Line 427: | Line 427: | ||
| [[10648/10647]] | | [[10648/10647]] | ||
| 0.16260 | | 0.16260 | ||
| | | (2*11)<sup>3</sup>/((3*13)<sup>2</sup>*7) | ||
| {{Monzo|3 -2 0 -1 3 -2}} | | {{Monzo|3 -2 0 -1 3 -2}} | ||
| harmonisma | | harmonisma | ||
Line 433: | Line 433: | ||
| [[123201/123200]] | | [[123201/123200]] | ||
| 0.014052 | | 0.014052 | ||
| | | (3/2)<sup>6</sup>*(13/5)<sup>2</sup>/(7*11) | ||
| {{Monzo|-6 6 -2 -1 -1 2}} | | {{Monzo|-6 6 -2 -1 -1 2}} | ||
| chalmersia | | chalmersia | ||
Line 697: | Line 697: | ||
| (3*13)/(2*19) | | (3*13)/(2*19) | ||
| {{Monzo|-1 1 0 0 0 1 0 -1}} | | {{Monzo|-1 1 0 0 0 1 0 -1}} | ||
| | | undevicesimal 2/9-tone | ||
|- | |- | ||
| [[57/56]] | | [[57/56]] | ||
Line 812: | Line 812: | ||
| {{Monzo|-9 3 0 0 0 0 0 1}} | | {{Monzo|-9 3 0 0 0 0 0 1}} | ||
| 513th harmonic | | 513th harmonic | ||
|- | |||
| 969/968 | |||
| 1.7875 | |||
| (3*17*19)/(2<sup>3</sup>*11<sup>2</sup>) | |||
| {{Monzo|-3 1 0 0 -2 0 1 1}} | |||
| | |||
|- | |||
| 1216/1215 | |||
| 1.4243 | |||
| (2<sup>6</sup>*19)/(3<sup>5</sup>*5) | |||
| {{Monzo|6 -5 -1 0 0 0 0 1}} | |||
| | |||
|- | |||
| 1331/1330 | |||
| 1.3012 | |||
| 11<sup>3</sup>/(2*5*7*19) | |||
| {{Monzo|-1 0 -1 -1 3 0 0 -1}} | |||
| | |||
|- | |||
| 1445/1444 | |||
| 1.1985 | |||
| 5*(17/(2*19))<sup>2</sup> | |||
| {{Monzo|-2 0 1 0 0 0 2 -2}} | |||
| | |||
|- | |||
| 1521/1520 | |||
| 1.1386 | |||
| (3*13)<sup>2</sup>/(2<sup>4</sup>*5*19) | |||
| {{Monzo|-4 2 -1 0 0 2 0 -1}} | |||
| | |||
|- | |||
| 1540/1539 | |||
| 1.1245 | |||
| (2<sup>2</sup>*5*7*11)/(3<sup>4</sup>*19) | |||
| {{Monzo|2 -4 1 1 1 0 0 -1}} | |||
| | |||
|- | |||
| 1729/1728 | |||
| 1.0016 | |||
| (7*13*19)/(2<sup>6</sup>*3<sup>3</sup>) | |||
| {{Monzo|-6 -3 0 1 0 1 0 1}} | |||
| | |||
|- | |- | ||
! colspan="5" | 23-limit (incomplete) | ! colspan="5" | 23-limit (incomplete) | ||
Line 819: | Line 861: | ||
| 23/(2*11) | | 23/(2*11) | ||
| | | | ||
| | | greater vicesimotertial semitone | ||
|- | |- | ||
| [[24/23]] | | [[24/23]] | ||
Line 825: | Line 867: | ||
| (2<sup>3</sup>*3)/23 | | (2<sup>3</sup>*3)/23 | ||
| | | | ||
| | | small vicesimotertial semitone | ||
|- | |- | ||
| [[46/45]] | | [[46/45]] |
Revision as of 01:20, 16 November 2018
This list of superparticular intervals ordered by prime limit. It reaches to the 101-limit and is complete up to the 17-limit.
Superparticular numbers are ratios of the form (n+1)/n, or 1+1/n, where n is a whole number other than 1. They appear frequently in just intonation and Harmonic Series music. Adjacent tones in the harmonic series are separated by superparticular intervals: for instance, the 20th and 21st by the superparticular ratio 21/20. As the overtones get closer together, the superparticular intervals get smaller and smaller. Thus, an examination of the superparticular intervals is an examination of some of the simplest small intervals in rational tuning systems. Indeed, many but not all common commas are superparticular ratios.
The list below is ordered by harmonic limit, or the largest prime involved in the prime factorization. 36/35, for instance, is an interval of the 7-limit, as it factors to (22*32)/(5*7), while 37/36 would belong to the 37-limit.
Størmer's theorem guarantees that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than 2/1, 3/2, 4/3, and 9/8. A002071 -- OEIS gives the number of superparticular ratios in each prime limit, A145604 - OEIS shows the increment from limit to limit, and A117581 the largest numerator for each prime limit (with some exceptions, such as the 23-limit, where the largest value is smaller than that of a smaller prime limit, in this case the 19-limit).
See also gallery of just intervals. Many of the names below come from here.
Ratio | Cents | Factorization | Monzo | Name(s) |
---|---|---|---|---|
2-limit (complete) | ||||
2/1 | 1200.000 | 2/1 | [1⟩ | octave, duple; after octave reduction: (perfect) unison, unity, perfect prime, tonic |
3-limit (complete) | ||||
3/2 | 701.995 | 3/2 | [-1 1⟩ | perfect fifth, 3rd harmonic (octave reduced), diapente |
4/3 | 498.045 | 22/3 | [2 -1⟩ | perfect fourth, 3rd subharmonic (octave reduced), diatessaron |
9/8 | 203.910 | 32/23 | [-3 2⟩ | (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, 9th harmonic or harmonic ninth (octave reduced) |
5-limit (complete) | ||||
5/4 | 386.314 | 5/22 | [-2 0 1⟩ | (classic) (5-limit) major third, 5th harmonic (octave reduced) |
6/5 | 315.641 | (2*3)/5 | [1 1 -1⟩ | (classic) (5-limit) minor third |
10/9 | 182.404 | (2*5)/32 | [1 -2 1⟩ | classic (whole) tone, classic major second, minor whole tone |
16/15 | 111.713 | 24/(3*5) | [4 -1 -1⟩ | minor diatonic semitone, 15th subharmonic |
25/24 | 70.672 | 52/(23*3) | [-3 -1 2⟩ | chroma, (classic) chromatic semitone, Zarlinian semitone |
81/80 | 21.506 | (3/2)4/5 | [-4 4 -1⟩ | syntonic comma, Didymus comma |
7-limit (complete) | ||||
7/6 | 266.871 | 7/(2*3) | [-1 -1 0 1⟩ | (septimal) subminor third, septimal minor third, augmented second |
8/7 | 231.174 | 23/7 | [3 0 0 -1⟩ | (septimal) supermajor second, septimal whole tone, diminished third, 7th subharmonic |
15/14 | 119.443 | (3*5)/(2*7) | [-1 1 1 -1⟩ | septimal diatonic semitone |
21/20 | 84.467 | (3*7)/(22*5) | [-2 1 -1 1⟩ | minor semitone, large septimal chromatic semitone |
28/27 | 62.961 | (22*7)/33 | [2 -3 0 1⟩ | septimal chroma, small septimal chromatic semitone, Archytas' 1/3-tone |
36/35 | 48.770 | (22*33)/(5*7) | [2 2 -1 -1⟩ | septimal quarter tone, septimal diesis |
49/48 | 35.697 | 72/(24*3) | [-4 -1 0 2⟩ | large septimal diesis, slendro diesis, septimal 1/6-tone |
50/49 | 34.976 | 2*(5/7)2 | [1 0 2 -2⟩ | septimal sixth-tone, jubilisma, small septimal diesis, tritonic diesis, Erlich's decatonic comma |
64/63 | 27.264 | 26/(32*7) | [6 -2 0 -1⟩ | septimal comma, Archytas' comma |
126/125 | 13.795 | (2*32*7)/53 | [1 2 -3 1⟩ | starling comma, septimal semicomma |
225/224 | 7.7115 | (3*5)2/(25*7) | [-5 2 2 -1⟩ | marvel comma, septimal kleisma |
2401/2400 | 0.72120 | 74/(25*3*52) | [-5 -1 -2 4⟩ | breedsma |
4375/4374 | 0.39576 | (54*7)/(2*37) | [-1 -7 4 1⟩ | ragisma |
11-limit (complete) | ||||
11/10 | 165.004 | 11/(2*5) | [-1 0 -1 0 1⟩ | (large) (undecimal) neutral second, 4/5-tone, Ptolemy's second |
12/11 | 150.637 | (22*3)/11 | [2 1 0 0 -1⟩ | (small) (undecimal) neutral second, 3/4-tone |
22/21 | 80.537 | (2*11)/(3*7) | [1 -1 0 -1 1⟩ | undecimal minor semitone |
33/32 | 53.273 | (3*11)/25 | [-5 1 0 0 1⟩ | undecimal quarter tone, undecimal diesis, al-Farabi's 1/4-tone, 33rd harmonic (octave reduced) |
45/44 | 38.906 | (3/2)2*(5/11) | [-2 2 1 0 -1⟩ | 1/5-tone |
55/54 | 31.767 | (5*11)/(2*33) | [-1 -3 1 0 1⟩ | undecimal diasecundal comma, eleventyfive comma |
56/55 | 31.194 | (23*7)/(5*11) | [3 0 -1 1 -1⟩ | undecimal tritonic comma, konbini comma |
99/98 | 17.576 | (3/7)2*(11/2) | [-1 2 0 -2 1⟩ | small undecimal comma, mothwellsma |
100/99 | 17.399 | (2*5/3)2/11) | [2 -2 2 0 -1⟩ | Ptolemy's comma, ptolemisma |
121/120 | 14.376 | 112/(23*3*5) | [-3 -1 -1 0 2⟩ | undecimal seconds comma, biyatisma |
176/175 | 9.8646 | (24*11)/(52*7) | [4 0 -2 -1 1⟩ | valinorsma |
243/242 | 7.1391 | 35/(2*112) | [-1 5 0 0 -2⟩ | neutral third comma, rastma |
385/384 | 4.5026 | (5*7*11)/(27*3) | [-7 -1 1 1 1⟩ | keenanisma |
441/440 | 3.9302 | (3*7)2/(23*5*11) | [-3 2 -1 2 -1⟩ | Werckmeister's undecimal septenarian schisma, werckisma |
540/539 | 3.2090 | (2/7)2*33*5/11 | [2 3 1 -2 -1⟩ | Swets' comma, swetisma |
3025/3024 | 0.57240 | (5*11)2/(24*32*7) | [-4 -3 2 -1 2⟩ | Lehmerisma |
9801/9800 | 0.17665 | (11/(5*7))2*34/23 | [-3 4 -2 -2 2⟩ | Gauss comma, kalisma |
13-limit (complete) | ||||
13/12 | 138.573 | 13/(22*3) | [-2 -1 0 0 0 1⟩ | tridecimal 2/3-tone |
14/13 | 128.298 | (2*7)/13 | [1 0 0 1 0 -1⟩ | 2/3-tone, trienthird |
26/25 | 67.900 | (2*13)/52 | [1 0 -2 0 0 1⟩ | tridecimal 1/3-tone |
27/26 | 65.337 | 33/(2*13) | [-1 3 0 0 0 -1⟩ | tridecimal comma |
40/39 | 43.831 | (23*5)/(3*13) | [3 -1 1 0 0 -1⟩ | tridecimal minor diesis |
65/64 | 26.841 | (5*13)/26 | [-6 0 1 0 0 1⟩ | wilsorma, 13th-partial chroma |
66/65 | 26.432 | (2*3*11)/(5*13) | [1 1 -1 0 1 -1⟩ | winmeanma |
78/77 | 22.339 | (2*3*13)/(7*11) | [1 1 0 -1 -1 1⟩ | negustma |
91/90 | 19.130 | (7*13)/(2*32*5) | [-1 -2 -1 1 0 1⟩ | Biome comma, superleap comma |
105/104 | 16.567 | (3*5*7)/(23*13) | [-3 1 1 1 0 -1⟩ | small tridecimal comma, animist comma |
144/143 | 12.064 | (22*3)2/(11*13) | [4 2 0 0 -1 -1⟩ | grossma |
169/168 | 10.274 | 132/(23*3*7) | [-3 -1 0 -1 0 2⟩ | buzurgisma, dhanvantarisma |
196/195 | 8.8554 | (2*7)2/(3*5*13) | [2 -1 -1 2 0 -1⟩ | mynucuma |
325/324 | 5.3351 | (52*13)/(22*34) | [-2 -4 2 0 0 1⟩ | marveltwin comma |
351/350 | 4.9393 | (3/5)2*13/(2*7) | [-1 3 -2 -1 0 1⟩ | ratwolfsma |
352/351 | 4.9253 | (25*11)/(32*13) | [5 -3 0 0 1 -1⟩ | minthma |
364/363 | 4.7627 | (2/11)2*7*13/3 | [2 -1 0 1 -2 1⟩ | gentle comma |
625/624 | 2.7722 | (5/2)4/(3*13) | [-4 -1 4 0 0 -1⟩ | tunbarsma |
676/675 | 2.5629 | (2*13/5)2/33 | [2 -3 -2 0 0 2⟩ | island comma |
729/728 | 2.3764 | (32/2)3/(7*13) | [-3 6 0 -1 0 -1⟩ | squbema |
1001/1000 | 1.7304 | 7*11*13/(2*5)3 | [-3 0 -3 1 1 1⟩ | sinbadma |
1716/1715 | 1.0092 | 22*3*11*13/(5*73) | [2 1 -1 -3 1 1⟩ | lummic comma |
2080/2079 | 0.83252 | 25*5*13/(33*7*11) | [5 -3 1 -1 -1 1⟩ | ibnsinma |
4096/4095 | 0.42272 | (26/3)2/(5*7*13) | [12 -2 -1 -1 0 -1⟩ | tridecimal schisma, Sagittal schismina |
4225/4224 | 0.40981 | (5*13)2/(27*3*11) | [-7 -1 2 0 -1 2⟩ | leprechaun comma |
6656/6655 | 0.26012 | (23/11)3*13/5 | [9 0 -1 0 -3 1⟩ | jacobin comma |
10648/10647 | 0.16260 | (2*11)3/((3*13)2*7) | [3 -2 0 -1 3 -2⟩ | harmonisma |
123201/123200 | 0.014052 | (3/2)6*(13/5)2/(7*11) | [-6 6 -2 -1 -1 2⟩ | chalmersia |
17-limit (complete) | ||||
17/16 | 104.955 | 17/24 | [-4 0 0 0 0 0 1⟩ | 17th harmonic (octave reduced) |
18/17 | 98.955 | (2*32)/17 | [1 2 0 0 0 0 -1⟩ | Arabic lute index finger |
34/33 | 51.682 | (2*17)/(3*11) | [1 -1 0 0 -1 0 1⟩ | septendecimal 1/4-tone (greater) |
35/34 | 50.184 | (5*7)/(2*17) | [-1 0 1 1 0 0 -1⟩ | septendecimal 1/4-tone (lesser) |
51/50 | 34.283 | (3*17)/(2*52) | [-1 1 -2 0 0 0 1⟩ | septendecimal 1/6-tone (greater) |
52/51 | 33.617 | (22*13)/(3*17) | [2 -1 0 0 0 1 -1⟩ | septendecimal 1/6-tone (lesser) |
85/84 | 20.488 | (5*17)/(22*3*7) | [-2 -1 1 -1 0 0 1⟩ | septendecimal comma |
120/119 | 14.487 | (23*3*5)/(7*17) | [3 1 1 -1 0 0 -1⟩ | |
136/135 | 12.777 | (2/3)3*17/5 | [3 -3 -1 0 0 0 1⟩ | |
154/153 | 11.278 | (2*7*11)/(32*17) | [1 -2 0 1 1 0 -1⟩ | |
170/169 | 10.214 | (2*5*17)/132 | [1 0 1 0 0 -2 1⟩ | |
221/220 | 7.8514 | (13*17)/(22*5*11) | [-2 0 -1 0 -1 1 1⟩ | |
256/255 | 6.7759 | (28)/(3*5*17) | [8 -1 -1 0 0 0 -1⟩ | 255th subharmonic |
273/272 | 6.3532 | (3*7*13)/(24*17) | [-4 1 0 1 0 1 -1⟩ | |
289/288 | 6.0008 | (17/3)2/25 | [-5 -2 0 0 0 0 2⟩ | |
375/374 | 4.6228 | (3*53)/(2*11*17) | [-1 1 3 0 -1 0 -1⟩ | |
442/441 | 3.9213 | (2*13*17)/(3*7)2 | [1 -2 0 -2 0 1 1⟩ | |
561/560 | 3.0887 | (3*11*17)/(24*5*7) | [-4 1 -1 -1 1 0 1⟩ | |
595/594 | 2.9121 | (5*7*17)/(2*33*11) | [-1 -3 1 1 -1 0 1⟩ | |
715/714 | 2.4230 | (5*11*13)/(2*3*7*17) | [-1 -1 1 -1 1 1 -1⟩ | |
833/832 | 2.0796 | (72*17)/(26*13) | [-6 0 0 2 0 -1 1⟩ | |
936/935 | 1.8506 | (23*32*13)/(5*11*17) | [3 2 -1 0 -1 1 -1⟩ | |
1089/1088 | 1.5905 | (32*112)/(26*17) | [-6 2 0 0 2 0 -1⟩ | twosquare comma |
1156/1155 | 1.4983 | (22*172)/(3*5*7*11) | [2 -1 -1 -1 -1 0 2⟩ | |
1225/1224 | 1.4138 | (52*72)/(23*32*17) | [-3 -2 2 2 0 0 -1⟩ | |
1275/1274 | 1.3584 | (3*52*17)/(2*72*13) | [-1 1 2 -2 0 -1 1⟩ | |
1701/1700 | 1.0181 | (35*7)/[(2*5)2*17] | [-2 5 -2 1 0 0 -1⟩ | |
2058/2057 | 0.8414 | (2*3*73)/(112*17) | [1 1 0 3 -2 0 -1⟩ | xenisma |
2431/2430 | 0.7123 | (11*13*17)/(2*35*5) | [-1 -5 -1 0 1 1 1⟩ | |
2500/2499 | 0.6926 | (22*54)/(3*72*17) | [2 -1 4 -2 0 0 -1⟩ | |
2601/2600 | 0.6657 | (32*172)/(23*52*13) | [-3 2 -2 0 0 -1 2⟩ | |
4914/4913 | 0.3523 | (2*33*7*13)/(173) | [1 3 0 1 0 1 -3⟩ | |
5832/5831 | 0.2969 | (23*36)/(73*17) | [3 6 0 -3 0 0 -1⟩ | |
12376/12375 | 0.1399 | (23*7*13*17)/(32*53*11) | [3 -2 -3 1 -1 1 1⟩ | |
14400/14399 | 0.1202 | (26*32*52)/(7*112*17) | [6 2 2 -1 -2 0 -1⟩ | |
28561/28560 | 0.0606 | (134)/(24*3*5*7*17) | [-4 -1 -1 -1 0 4 -1⟩ | |
31213/31212 | 0.0555 | (74*13)/(22*33*172) | [-2 -3 0 4 0 1 -2⟩ | |
37180/37179 | 0.0466 | (22*5*11*132)/(37*17) | [2 -7 1 0 1 2 -1⟩ | |
194481/194480 | 0.0089 | (34*74)/(24*5*11*13*17) | [-4 4 -1 4 -1 -1 -1⟩ | scintillisma |
336141/336140 | 0.0052 | (32*133*17)/(22*5*75) | [-2 2 -1 -5 0 3 1⟩ | |
19-limit (incomplete) | ||||
19/18 | 93.603 | 19/(2*32) | [-1 -2 0 0 0 0 0 1⟩ | undevicesimal semitone |
20/19 | 88.801 | (22*5)/19 | [2 0 1 0 0 0 0 -1⟩ | small undevicesimal semitone |
39/38 | 44.970 | (3*13)/(2*19) | [-1 1 0 0 0 1 0 -1⟩ | undevicesimal 2/9-tone |
57/56 | 30.642 | (3*19)/(23*7) | [-3 1 0 -1 0 0 0 1⟩ | |
76/75 | 22.931 | (22*19)/(3*52) | [2 -1 -2 0 0 0 0 1⟩ | |
77/76 | 22.631 | (7*11)/(22*19) | [-2 0 0 1 1 0 0 -1⟩ | |
96/95 | 18.128 | (25*3)/(5*19) | [5 1 -1 0 0 0 0 -1⟩ | |
133/132 | 13.066 | (19*7)/(22*3*11) | [-2 -1 0 1 -1 0 0 1⟩ | |
153/152 | 11.352 | (32*17)/(23*19) | [-3 2 0 0 0 0 1 -1⟩ | |
171/170 | 10.154 | (32*19)/(2*5*17) | [-1 2 -1 0 0 0 -1 1⟩ | |
190/189 | 9.1358 | (2*5*19)/(33*7) | [1 -3 1 -1 0 0 0 1⟩ | |
209/208 | 8.3033 | (11*19)/(24*13) | [-4 0 0 0 1 -1 0 1⟩ | |
210/209 | 8.2637 | (2*3*5*7)/(11*19) | [1 1 1 1 -1 0 0 -1⟩ | |
286/285 | 6.0639 | (2*11*13)/(3*5*19) | [1 -1 -1 0 1 1 0 -1⟩ | |
324/323 | 5.3516 | (22*34)/(17*19) | [2 4 0 0 0 0 -1 -1⟩ | |
343/342 | 5.0547 | 74/(2*33*19) | [-1 -2 0 3 0 0 0 -1⟩ | |
361/360 | 4.8023 | 192/(23*32*5) | [-3 -2 -1 0 0 0 0 2⟩ | |
400/399 | 4.3335 | (24*52)/(3*7*19) | [4 -1 2 -1 0 0 0 -1⟩ | |
456/455 | 3.8007 | (23*3*19)/(5*7*13) | [3 1 -1 -1 0 -1 0 1⟩ | |
476/475 | 3.6409 | (22*7*17)/(52*19) | [2 0 -2 1 0 0 1 -1⟩ | |
495/494 | 3.501 | (32*5*11)/(2*13*19) | [-1 2 1 0 1 -1 0 -1⟩ | |
513/512 | 3.378 | (33*19)/29 | [-9 3 0 0 0 0 0 1⟩ | 513th harmonic |
969/968 | 1.7875 | (3*17*19)/(23*112) | [-3 1 0 0 -2 0 1 1⟩ | |
1216/1215 | 1.4243 | (26*19)/(35*5) | [6 -5 -1 0 0 0 0 1⟩ | |
1331/1330 | 1.3012 | 113/(2*5*7*19) | [-1 0 -1 -1 3 0 0 -1⟩ | |
1445/1444 | 1.1985 | 5*(17/(2*19))2 | [-2 0 1 0 0 0 2 -2⟩ | |
1521/1520 | 1.1386 | (3*13)2/(24*5*19) | [-4 2 -1 0 0 2 0 -1⟩ | |
1540/1539 | 1.1245 | (22*5*7*11)/(34*19) | [2 -4 1 1 1 0 0 -1⟩ | |
1729/1728 | 1.0016 | (7*13*19)/(26*33) | [-6 -3 0 1 0 1 0 1⟩ | |
23-limit (incomplete) | ||||
23/22 | 76.956 | 23/(2*11) | greater vicesimotertial semitone | |
24/23 | 73.681 | (23*3)/23 | small vicesimotertial semitone | |
46/45 | 38.051 | (2*23)/(32*5) | ||
69/68 | 25.274 | (3*23)/(22*17) | ||
70/69 | 24.910 | (2*5*7)/(3*23) | ||
92/91 | 18.921 | (22*23)/(7*13) | ||
115/114 | 15.120 | (5*23)/(2*3*19) | ||
161/160 | 10.7865 | (7*23)/(25*5) | ||
162/161 | 10.720 | (2*34)/(7*23) | ||
208/207 | 8.343 | (24*13)/(23*9) | ||
576/575 | 3.008 | (26*32)/(23*25) | ||
29-limit (incomplete) | ||||
29/28 | 60.751 | 29/(22*7) | ||
30/29 | 58.692 | (2*3*5)/29 | ||
58/57 | 30.109 | (2*29)/(3*19) | ||
88/87 | 19.786 | (23*11)/(3*29) | ||
31-limit (incomplete) | ||||
31/30 | 56.767 | 31/(2*3*5) | ||
32/31 | 54.964 | 25/31 | 31st subharmonic | |
63/62 | 27.700 | (32*7)/(2*31) | ||
93/92 | 18.716 | (3*31)/(22*23) | ||
37-limit (incomplete) | ||||
37/36 | 47.434 | 37/(22*32) | ||
38/37 | 46.169 | (2*19)/37 | ||
75/74 | 23.238 | (3*52)/(2*37) | ||
41-limit (incomplete) | ||||
41/40 | 42.749 | 41/(23*5) | ||
42/41 | 41.719 | (2*3*7)/41 | ||
82/81 | 21.242 | (2*41)/34 | ||
43-limit (incomplete) | ||||
43/42 | 40.737 | 43/(2*3*7) | ||
44/43 | 39.800 | (22*11)/43 | ||
86/85 | 20.249 | (2*43)/(5*17) | ||
87/86 | 20.014 | (3*29)/(2*43) | ||
47-limit (incomplete) | ||||
47/46 | 37.232 | 47/(2*23) | ||
48/47 | 36.448 | (24*3)/47 | ||
94/93 | 18.516 | (2*47)/(3*31) | ||
95/94 | 18.320 | (5*19)/(2*47) | ||
53-limit (incomplete) | ||||
53/52 | 32.977 | 53/(22*13) | ||
54/53 | 32.360 | (2*33)/53 | ||
59-limit (incomplete) | ||||
59/58 | 29.594 | 59/(2*29) | ||
60/59 | 29.097 | (22*3*5)/59 | ||
61-limit (incomplete) | ||||
61/60 | 28.616 | 61/(22*3*5) | ||
62/61 | 28.151 | (2*31)/61 | ||
67-limit (incomplete) | ||||
67/66 | 26.034 | 67/(2*3*11) | ||
68/67 | 25.648 | (22*17)/67 | ||
71-limit (incomplete) | ||||
71/70 | 24.557 | 71/(2*5*7) | ||
72/71 | 24.213 | (23*32)/71 | ||
73-limit (incomplete) | ||||
73/72 | 23.879 | 73/(23*32) | ||
74/73 | 23.555 | (2*37)/73 | ||
79-limit (incomplete) | ||||
79/78 | 22.054 | 79/(2*3*13) | ||
80/79 | 21.777 | (24*5)/79 | ||
83-limit (incomplete) | ||||
83/82 | 20.985 | 83/(2*41) | ||
84/83 | 20.734 | (22*3*7)/83 | ||
89-limit (incomplete) | ||||
89/88 | 19.562 | 89/(23*11) | ||
90/89 | 19.344 | (2*32*5)/89 | ||
97-limit (incomplete) | ||||
97/96 | 17.940 | 97/(25*3) | ||
98/97 | 17.756 | (2*72)/97 | ||
101-limit (incomplete) | ||||
101/100 | 17.226 | 101/(22*52) | ||
102/101 | 17.057 | (2*3*17)/101 |