|
|
(19 intermediate revisions by 10 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox MOS |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | | Name = |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-11-09 12:00:00 UTC</tt>.<br>
| | | Periods = 1 |
| : The original revision id was <tt>565735451</tt>.<br>
| | | nLargeSteps = 2 |
| : The revision comment was: <tt></tt><br>
| | | nSmallSteps = 9 |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| | | Equalized = 5 |
| <h4>Original Wikitext content:</h4>
| | | Collapsed = 1 |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This MOS, with a generator between 5/11edo (545.4545 cents) and 1/2edo (600), reaches a harmonic entropy minimum when the generator is 7/5. It represents temperaments like Tritonic, Triton, Heinz and Liese.
| | | Pattern = LssssLsssss |
| || 5/11 || || || || || 545.4545 || | | }} |
| || || || || || 21/46 || 547.826 || | | {{MOS intro}} |
| || || || || 16/35 || || 548.571 || | |
| || || || || || 27/59 || 549.1525 ||
| |
| || || || 11/24 || || || 550 ||
| |
| || || || || || || 550.583 ||
| |
| || || || || || 28/61 || 550.82 ||
| |
| || || || || || || 550.965 ||
| |
| || || || || 17/37 || || 551.351 ||
| |
| || || || || || || 551.862 ||
| |
| || || || || || 23/50 || 552 ||
| |
| || || 6/13 || || || || 553.846 ||
| |
| || || || || || 19/41 || 556.976 ||
| |
| || || || || 13/28 || || 557.143 ||
| |
| || || || || || || 557.8535 ||
| |
| || || || || || 20/43 || 558.1395 ||
| |
| || || || || || || 558.439 ||
| |
| || || || 7/15 || || || 560 ||
| |
| || || || || || || 560.741 ||
| |
| || || || || || 15/32 || 562.5 ||
| |
| || || || || 8/17 || || 564.706 || | |
| || || || || || 9/19 || 568.421 || | |
| || 1/2 || || || || || 600 ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>2L 9s</title></head><body>This MOS, with a generator between 5/11edo (545.4545 cents) and 1/2edo (600), reaches a harmonic entropy minimum when the generator is 7/5. It represents temperaments like Tritonic, Triton, Heinz and Liese.<br />
| |
|
| |
|
| | This MOS reaches a [[harmonic entropy]] minimum when the generator is [[7/5]]. It represents temperaments like [[Tritonic]], [[Triton]], [[Heinz]] and [[Liese]]. |
|
| |
|
| <table class="wiki_table">
| | == Scale properties == |
| <tr>
| | {{TAMNAMS use}} |
| <td>5/11<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>545.4545<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>21/46<br />
| |
| </td>
| |
| <td>547.826<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>16/35<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>548.571<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>27/59<br />
| |
| </td>
| |
| <td>549.1525<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11/24<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>550<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>550.583<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>28/61<br />
| |
| </td>
| |
| <td>550.82<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>550.965<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>17/37<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>551.351<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>551.862<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>23/50<br />
| |
| </td>
| |
| <td>552<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>6/13<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>553.846<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>19/41<br />
| |
| </td>
| |
| <td>556.976<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13/28<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>557.143<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>557.8535<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>20/43<br />
| |
| </td>
| |
| <td>558.1395<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>558.439<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7/15<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>560<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>560.741<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>15/32<br />
| |
| </td>
| |
| <td>562.5<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8/17<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>564.706<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9/19<br />
| |
| </td>
| |
| <td>568.421<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1/2<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>600<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | === Intervals === |
| | {{MOS intervals}} |
| | |
| | === Generator chain === |
| | {{MOS genchain}} |
| | |
| | === Modes === |
| | {{MOS mode degrees}} |
| | |
| | == Scale tree == |
| | {{MOS tuning spectrum |
| | | 6/1 = [[Tritonic]] ↓ |
| | | 5/1 = [[Triton]] / [[liese]] |
| | | 5/4 = [[Heinz]] |
| | }} |
| | |
| | {{todo|expand}} |
| | |
| | [[Category:11-tone scales]] |
2L 9s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 2 large steps and 9 small steps, repeating every octave. 2L 9s is a child scale of 2L 7s, expanding it by 2 tones. Generators that produce this scale range from 545.5 ¢ to 600 ¢, or from 600 ¢ to 654.5 ¢.
This MOS reaches a harmonic entropy minimum when the generator is 7/5. It represents temperaments like Tritonic, Triton, Heinz and Liese.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals of 2L 9s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-mosstep
|
Perfect 0-mosstep
|
P0ms
|
0
|
0.0 ¢
|
1-mosstep
|
Minor 1-mosstep
|
m1ms
|
s
|
0.0 ¢ to 109.1 ¢
|
Major 1-mosstep
|
M1ms
|
L
|
109.1 ¢ to 600.0 ¢
|
2-mosstep
|
Minor 2-mosstep
|
m2ms
|
2s
|
0.0 ¢ to 218.2 ¢
|
Major 2-mosstep
|
M2ms
|
L + s
|
218.2 ¢ to 600.0 ¢
|
3-mosstep
|
Minor 3-mosstep
|
m3ms
|
3s
|
0.0 ¢ to 327.3 ¢
|
Major 3-mosstep
|
M3ms
|
L + 2s
|
327.3 ¢ to 600.0 ¢
|
4-mosstep
|
Minor 4-mosstep
|
m4ms
|
4s
|
0.0 ¢ to 436.4 ¢
|
Major 4-mosstep
|
M4ms
|
L + 3s
|
436.4 ¢ to 600.0 ¢
|
5-mosstep
|
Diminished 5-mosstep
|
d5ms
|
5s
|
0.0 ¢ to 545.5 ¢
|
Perfect 5-mosstep
|
P5ms
|
L + 4s
|
545.5 ¢ to 600.0 ¢
|
6-mosstep
|
Perfect 6-mosstep
|
P6ms
|
L + 5s
|
600.0 ¢ to 654.5 ¢
|
Augmented 6-mosstep
|
A6ms
|
2L + 4s
|
654.5 ¢ to 1200.0 ¢
|
7-mosstep
|
Minor 7-mosstep
|
m7ms
|
L + 6s
|
600.0 ¢ to 763.6 ¢
|
Major 7-mosstep
|
M7ms
|
2L + 5s
|
763.6 ¢ to 1200.0 ¢
|
8-mosstep
|
Minor 8-mosstep
|
m8ms
|
L + 7s
|
600.0 ¢ to 872.7 ¢
|
Major 8-mosstep
|
M8ms
|
2L + 6s
|
872.7 ¢ to 1200.0 ¢
|
9-mosstep
|
Minor 9-mosstep
|
m9ms
|
L + 8s
|
600.0 ¢ to 981.8 ¢
|
Major 9-mosstep
|
M9ms
|
2L + 7s
|
981.8 ¢ to 1200.0 ¢
|
10-mosstep
|
Minor 10-mosstep
|
m10ms
|
L + 9s
|
600.0 ¢ to 1090.9 ¢
|
Major 10-mosstep
|
M10ms
|
2L + 8s
|
1090.9 ¢ to 1200.0 ¢
|
11-mosstep
|
Perfect 11-mosstep
|
P11ms
|
2L + 9s
|
1200.0 ¢
|
Generator chain
Generator chain of 2L 9s
Bright gens |
Scale degree |
Abbrev.
|
12 |
Augmented 5-mosdegree |
A5md
|
11 |
Augmented 0-mosdegree |
A0md
|
10 |
Augmented 6-mosdegree |
A6md
|
9 |
Major 1-mosdegree |
M1md
|
8 |
Major 7-mosdegree |
M7md
|
7 |
Major 2-mosdegree |
M2md
|
6 |
Major 8-mosdegree |
M8md
|
5 |
Major 3-mosdegree |
M3md
|
4 |
Major 9-mosdegree |
M9md
|
3 |
Major 4-mosdegree |
M4md
|
2 |
Major 10-mosdegree |
M10md
|
1 |
Perfect 5-mosdegree |
P5md
|
0 |
Perfect 0-mosdegree Perfect 11-mosdegree |
P0md P11md
|
−1 |
Perfect 6-mosdegree |
P6md
|
−2 |
Minor 1-mosdegree |
m1md
|
−3 |
Minor 7-mosdegree |
m7md
|
−4 |
Minor 2-mosdegree |
m2md
|
−5 |
Minor 8-mosdegree |
m8md
|
−6 |
Minor 3-mosdegree |
m3md
|
−7 |
Minor 9-mosdegree |
m9md
|
−8 |
Minor 4-mosdegree |
m4md
|
−9 |
Minor 10-mosdegree |
m10md
|
−10 |
Diminished 5-mosdegree |
d5md
|
−11 |
Diminished 11-mosdegree |
d11md
|
−12 |
Diminished 6-mosdegree |
d6md
|
Modes
Scale degrees of the modes of 2L 9s
UDP
|
Cyclic order
|
Step pattern
|
Scale degree (mosdegree)
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
10|0
|
1
|
LssssLsssss
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Aug.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
9|1
|
6
|
LsssssLssss
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
8|2
|
11
|
sLssssLssss
|
Perf.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
7|3
|
5
|
sLsssssLsss
|
Perf.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
6|4
|
10
|
ssLssssLsss
|
Perf.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
5|5
|
4
|
ssLsssssLss
|
Perf.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Perf.
|
4|6
|
9
|
sssLssssLss
|
Perf.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Perf.
|
3|7
|
3
|
sssLsssssLs
|
Perf.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Perf.
|
2|8
|
8
|
ssssLssssLs
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Perf.
|
1|9
|
2
|
ssssLsssssL
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
0|10
|
7
|
sssssLssssL
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Dim.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Scale tree
Scale tree and tuning spectrum of 2L 9s
Generator(edo)
|
Cents
|
Step ratio
|
Comments
|
Bright
|
Dark
|
L:s
|
Hardness
|
5\11
|
|
|
|
|
|
545.455
|
654.545
|
1:1
|
1.000
|
Equalized 2L 9s
|
|
|
|
|
|
26\57
|
547.368
|
652.632
|
6:5
|
1.200
|
|
|
|
|
|
21\46
|
|
547.826
|
652.174
|
5:4
|
1.250
|
Heinz
|
|
|
|
|
|
37\81
|
548.148
|
651.852
|
9:7
|
1.286
|
|
|
|
|
16\35
|
|
|
548.571
|
651.429
|
4:3
|
1.333
|
Supersoft 2L 9s
|
|
|
|
|
|
43\94
|
548.936
|
651.064
|
11:8
|
1.375
|
|
|
|
|
|
27\59
|
|
549.153
|
650.847
|
7:5
|
1.400
|
|
|
|
|
|
|
38\83
|
549.398
|
650.602
|
10:7
|
1.429
|
|
|
|
11\24
|
|
|
|
550.000
|
650.000
|
3:2
|
1.500
|
Soft 2L 9s
|
|
|
|
|
|
39\85
|
550.588
|
649.412
|
11:7
|
1.571
|
|
|
|
|
|
28\61
|
|
550.820
|
649.180
|
8:5
|
1.600
|
|
|
|
|
|
|
45\98
|
551.020
|
648.980
|
13:8
|
1.625
|
|
|
|
|
17\37
|
|
|
551.351
|
648.649
|
5:3
|
1.667
|
Semisoft 2L 9s
|
|
|
|
|
|
40\87
|
551.724
|
648.276
|
12:7
|
1.714
|
|
|
|
|
|
23\50
|
|
552.000
|
648.000
|
7:4
|
1.750
|
|
|
|
|
|
|
29\63
|
552.381
|
647.619
|
9:5
|
1.800
|
|
|
6\13
|
|
|
|
|
553.846
|
646.154
|
2:1
|
2.000
|
Basic 2L 9s Scales with tunings softer than this are proper
|
|
|
|
|
|
25\54
|
555.556
|
644.444
|
9:4
|
2.250
|
|
|
|
|
|
19\41
|
|
556.098
|
643.902
|
7:3
|
2.333
|
|
|
|
|
|
|
32\69
|
556.522
|
643.478
|
12:5
|
2.400
|
|
|
|
|
13\28
|
|
|
557.143
|
642.857
|
5:2
|
2.500
|
Semihard 2L 9s
|
|
|
|
|
|
33\71
|
557.746
|
642.254
|
13:5
|
2.600
|
|
|
|
|
|
20\43
|
|
558.140
|
641.860
|
8:3
|
2.667
|
|
|
|
|
|
|
27\58
|
558.621
|
641.379
|
11:4
|
2.750
|
|
|
|
7\15
|
|
|
|
560.000
|
640.000
|
3:1
|
3.000
|
Hard 2L 9s
|
|
|
|
|
|
22\47
|
561.702
|
638.298
|
10:3
|
3.333
|
|
|
|
|
|
15\32
|
|
562.500
|
637.500
|
7:2
|
3.500
|
|
|
|
|
|
|
23\49
|
563.265
|
636.735
|
11:3
|
3.667
|
|
|
|
|
8\17
|
|
|
564.706
|
635.294
|
4:1
|
4.000
|
Superhard 2L 9s
|
|
|
|
|
|
17\36
|
566.667
|
633.333
|
9:2
|
4.500
|
|
|
|
|
|
9\19
|
|
568.421
|
631.579
|
5:1
|
5.000
|
Triton / liese
|
|
|
|
|
|
10\21
|
571.429
|
628.571
|
6:1
|
6.000
|
Tritonic ↓
|
1\2
|
|
|
|
|
|
600.000
|
600.000
|
1:0
|
→ ∞
|
Collapsed 2L 9s
|