|
|
(18 intermediate revisions by 10 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox MOS}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{MOS intro}} |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-11-09 11:49:39 UTC</tt>.<br>
| |
| : The original revision id was <tt>565733327</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This MOS, generated by any interval up to a diatonic semitone of 1/11edo (109.091 cents), achieves its simplest harmonic entropy minimum where two generators equal 9/8. The temperament which occupies this harmonic entropy minimum is called Ripple, but there are several lower (and more complex) harmonic entropy minima of note including (in descending order of generator height): Passion (6/5=+3 generators), Octacot (3/2=+8 generators), Nautilus (3/2=-6 generators) and Valentine (7/4=-3 generators).
| |
| || 0/1 || || || || || 0 ||
| |
| || || || || || 1/15 || 80 ||
| |
| || || || || 1/14 || || 85.714 ||
| |
| || || || || || 2/27 || 88.889 ||
| |
| || || || || || || 1200/(10+pi) ||
| |
| || || || 1/13 || || || 92.308 ||
| |
| || || || || || || 1200/(10+e) ||
| |
| || || || || || 3/38 || 94.737 ||
| |
| || || || || || || 1200/(11+phi) ||
| |
| || || || || 2/25 || || 96 ||
| |
| || || || || || 3/37 || 97.297 ||
| |
| || || 1/12 || || || || 100 ||
| |
| || || || || || || 1200/(10+sqrt(3)) ||
| |
| || || || || || 4/47 || 102.128 ||
| |
| || || || || 3/35 || || 102.857 ||
| |
| || || || || || || 1200/(10+phi) ||
| |
| || || || || || 5/58 || 103.448 ||
| |
| || || || || || || 1200/(10+pi/2) ||
| |
| || || || 2/23 || || || 104.348 ||
| |
| || || || || || 5/57 || 105.263 ||
| |
| || || || || 3/34 || || 105.882 ||
| |
| || || || || || 4/45 || 106.667 ||
| |
| || 1/11 || || || || || 109.091 ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>1L 10s</title></head><body>This MOS, generated by any interval up to a diatonic semitone of 1/11edo (109.091 cents), achieves its simplest harmonic entropy minimum where two generators equal 9/8. The temperament which occupies this harmonic entropy minimum is called Ripple, but there are several lower (and more complex) harmonic entropy minima of note including (in descending order of generator height): Passion (6/5=+3 generators), Octacot (3/2=+8 generators), Nautilus (3/2=-6 generators) and Valentine (7/4=-3 generators).<br />
| |
|
| |
|
| | This MOS achieves its simplest harmonic entropy minimum where two generators equal 9/8. The temperament which occupies this harmonic entropy minimum is called Ripple, but there are several lower (and more complex) harmonic entropy minima of note including (in descending order of generator height): Passion (6/5 = +3 generators), Octacot (3/2 = +8 generators), Nautilus (3/2 = -6 generators) and Valentine (7/4 = -3 generators). |
|
| |
|
| <table class="wiki_table">
| | == Scale properties == |
| <tr>
| | {{TAMNAMS use}} |
| <td>0/1<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1/15<br />
| |
| </td>
| |
| <td>80<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1/14<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>85.714<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>2/27<br />
| |
| </td>
| |
| <td>88.889<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1200/(10+pi)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1/13<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>92.308<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1200/(10+e)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3/38<br />
| |
| </td>
| |
| <td>94.737<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1200/(11+phi)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>2/25<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>96<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3/37<br />
| |
| </td>
| |
| <td>97.297<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>1/12<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>100<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1200/(10+sqrt(3))<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4/47<br />
| |
| </td>
| |
| <td>102.128<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3/35<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>102.857<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1200/(10+phi)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5/58<br />
| |
| </td>
| |
| <td>103.448<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1200/(10+pi/2)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>2/23<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>104.348<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5/57<br />
| |
| </td>
| |
| <td>105.263<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3/34<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>105.882<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4/45<br />
| |
| </td>
| |
| <td>106.667<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1/11<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>109.091<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | === Intervals === |
| | {{MOS intervals}} |
| | |
| | === Generator chain === |
| | {{MOS genchain}} |
| | |
| | === Modes === |
| | {{MOS mode degrees}} |
| | |
| | == Scale tree == |
| | {{MOS tuning spectrum |
| | | 10/7 = [[Septendesemi]] |
| | | 13/8 = Golden [[ripple]] (103.288{{c}}) |
| | | 9/4 = [[Passion]] |
| | | 13/5 = Unnamed golden tuning |
| | | 11/3 = [[Octacot]] |
| | | 4/1 = [[Nuke]] |
| | | 9/2 = [[Nautilus]] |
| | | 5/1 = [[Valentine]] |
| | | 6/1 = ↓ [[Slurpee]] |
| | }} |
| | |
| | [[Category:11-tone scales]] |
1L 10s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 1 large step and 10 small steps, repeating every octave. 1L 10s is a child scale of 1L 9s, expanding it by 1 tones. Generators that produce this scale range from 1090.9 ¢ to 1200 ¢, or from 0 ¢ to 109.1 ¢.
This MOS achieves its simplest harmonic entropy minimum where two generators equal 9/8. The temperament which occupies this harmonic entropy minimum is called Ripple, but there are several lower (and more complex) harmonic entropy minima of note including (in descending order of generator height): Passion (6/5 = +3 generators), Octacot (3/2 = +8 generators), Nautilus (3/2 = -6 generators) and Valentine (7/4 = -3 generators).
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals of 1L 10s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-mosstep
|
Perfect 0-mosstep
|
P0ms
|
0
|
0.0 ¢
|
1-mosstep
|
Perfect 1-mosstep
|
P1ms
|
s
|
0.0 ¢ to 109.1 ¢
|
Augmented 1-mosstep
|
A1ms
|
L
|
109.1 ¢ to 1200.0 ¢
|
2-mosstep
|
Minor 2-mosstep
|
m2ms
|
2s
|
0.0 ¢ to 218.2 ¢
|
Major 2-mosstep
|
M2ms
|
L + s
|
218.2 ¢ to 1200.0 ¢
|
3-mosstep
|
Minor 3-mosstep
|
m3ms
|
3s
|
0.0 ¢ to 327.3 ¢
|
Major 3-mosstep
|
M3ms
|
L + 2s
|
327.3 ¢ to 1200.0 ¢
|
4-mosstep
|
Minor 4-mosstep
|
m4ms
|
4s
|
0.0 ¢ to 436.4 ¢
|
Major 4-mosstep
|
M4ms
|
L + 3s
|
436.4 ¢ to 1200.0 ¢
|
5-mosstep
|
Minor 5-mosstep
|
m5ms
|
5s
|
0.0 ¢ to 545.5 ¢
|
Major 5-mosstep
|
M5ms
|
L + 4s
|
545.5 ¢ to 1200.0 ¢
|
6-mosstep
|
Minor 6-mosstep
|
m6ms
|
6s
|
0.0 ¢ to 654.5 ¢
|
Major 6-mosstep
|
M6ms
|
L + 5s
|
654.5 ¢ to 1200.0 ¢
|
7-mosstep
|
Minor 7-mosstep
|
m7ms
|
7s
|
0.0 ¢ to 763.6 ¢
|
Major 7-mosstep
|
M7ms
|
L + 6s
|
763.6 ¢ to 1200.0 ¢
|
8-mosstep
|
Minor 8-mosstep
|
m8ms
|
8s
|
0.0 ¢ to 872.7 ¢
|
Major 8-mosstep
|
M8ms
|
L + 7s
|
872.7 ¢ to 1200.0 ¢
|
9-mosstep
|
Minor 9-mosstep
|
m9ms
|
9s
|
0.0 ¢ to 981.8 ¢
|
Major 9-mosstep
|
M9ms
|
L + 8s
|
981.8 ¢ to 1200.0 ¢
|
10-mosstep
|
Diminished 10-mosstep
|
d10ms
|
10s
|
0.0 ¢ to 1090.9 ¢
|
Perfect 10-mosstep
|
P10ms
|
L + 9s
|
1090.9 ¢ to 1200.0 ¢
|
11-mosstep
|
Perfect 11-mosstep
|
P11ms
|
L + 10s
|
1200.0 ¢
|
Generator chain
Generator chain of 1L 10s
Bright gens |
Scale degree |
Abbrev.
|
11 |
Augmented 0-mosdegree |
A0md
|
10 |
Augmented 1-mosdegree |
A1md
|
9 |
Major 2-mosdegree |
M2md
|
8 |
Major 3-mosdegree |
M3md
|
7 |
Major 4-mosdegree |
M4md
|
6 |
Major 5-mosdegree |
M5md
|
5 |
Major 6-mosdegree |
M6md
|
4 |
Major 7-mosdegree |
M7md
|
3 |
Major 8-mosdegree |
M8md
|
2 |
Major 9-mosdegree |
M9md
|
1 |
Perfect 10-mosdegree |
P10md
|
0 |
Perfect 0-mosdegree Perfect 11-mosdegree |
P0md P11md
|
−1 |
Perfect 1-mosdegree |
P1md
|
−2 |
Minor 2-mosdegree |
m2md
|
−3 |
Minor 3-mosdegree |
m3md
|
−4 |
Minor 4-mosdegree |
m4md
|
−5 |
Minor 5-mosdegree |
m5md
|
−6 |
Minor 6-mosdegree |
m6md
|
−7 |
Minor 7-mosdegree |
m7md
|
−8 |
Minor 8-mosdegree |
m8md
|
−9 |
Minor 9-mosdegree |
m9md
|
−10 |
Diminished 10-mosdegree |
d10md
|
−11 |
Diminished 11-mosdegree |
d11md
|
Modes
Scale degrees of the modes of 1L 10s
UDP
|
Cyclic order
|
Step pattern
|
Scale degree (mosdegree)
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
10|0
|
1
|
Lssssssssss
|
Perf.
|
Aug.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
9|1
|
11
|
sLsssssssss
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
8|2
|
10
|
ssLssssssss
|
Perf.
|
Perf.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
7|3
|
9
|
sssLsssssss
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
6|4
|
8
|
ssssLssssss
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
5|5
|
7
|
sssssLsssss
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
4|6
|
6
|
ssssssLssss
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
3|7
|
5
|
sssssssLsss
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
2|8
|
4
|
ssssssssLss
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Maj.
|
Perf.
|
Perf.
|
1|9
|
3
|
sssssssssLs
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
0|10
|
2
|
ssssssssssL
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Min.
|
Dim.
|
Perf.
|
Scale tree
Scale tree and tuning spectrum of 1L 10s
Generator(edo)
|
Cents
|
Step ratio
|
Comments
|
Bright
|
Dark
|
L:s
|
Hardness
|
10\11
|
|
|
|
|
|
1090.909
|
109.091
|
1:1
|
1.000
|
Equalized 1L 10s
|
|
|
|
|
|
51\56
|
1092.857
|
107.143
|
6:5
|
1.200
|
|
|
|
|
|
41\45
|
|
1093.333
|
106.667
|
5:4
|
1.250
|
|
|
|
|
|
|
72\79
|
1093.671
|
106.329
|
9:7
|
1.286
|
|
|
|
|
31\34
|
|
|
1094.118
|
105.882
|
4:3
|
1.333
|
Supersoft 1L 10s
|
|
|
|
|
|
83\91
|
1094.505
|
105.495
|
11:8
|
1.375
|
|
|
|
|
|
52\57
|
|
1094.737
|
105.263
|
7:5
|
1.400
|
|
|
|
|
|
|
73\80
|
1095.000
|
105.000
|
10:7
|
1.429
|
Septendesemi
|
|
|
21\23
|
|
|
|
1095.652
|
104.348
|
3:2
|
1.500
|
Soft 1L 10s
|
|
|
|
|
|
74\81
|
1096.296
|
103.704
|
11:7
|
1.571
|
|
|
|
|
|
53\58
|
|
1096.552
|
103.448
|
8:5
|
1.600
|
|
|
|
|
|
|
85\93
|
1096.774
|
103.226
|
13:8
|
1.625
|
Golden ripple (103.288 ¢)
|
|
|
|
32\35
|
|
|
1097.143
|
102.857
|
5:3
|
1.667
|
Semisoft 1L 10s
|
|
|
|
|
|
75\82
|
1097.561
|
102.439
|
12:7
|
1.714
|
|
|
|
|
|
43\47
|
|
1097.872
|
102.128
|
7:4
|
1.750
|
|
|
|
|
|
|
54\59
|
1098.305
|
101.695
|
9:5
|
1.800
|
|
|
11\12
|
|
|
|
|
1100.000
|
100.000
|
2:1
|
2.000
|
Basic 1L 10s Scales with tunings softer than this are proper
|
|
|
|
|
|
45\49
|
1102.041
|
97.959
|
9:4
|
2.250
|
Passion
|
|
|
|
|
34\37
|
|
1102.703
|
97.297
|
7:3
|
2.333
|
|
|
|
|
|
|
57\62
|
1103.226
|
96.774
|
12:5
|
2.400
|
|
|
|
|
23\25
|
|
|
1104.000
|
96.000
|
5:2
|
2.500
|
Semihard 1L 10s
|
|
|
|
|
|
58\63
|
1104.762
|
95.238
|
13:5
|
2.600
|
Unnamed golden tuning
|
|
|
|
|
35\38
|
|
1105.263
|
94.737
|
8:3
|
2.667
|
|
|
|
|
|
|
47\51
|
1105.882
|
94.118
|
11:4
|
2.750
|
|
|
|
12\13
|
|
|
|
1107.692
|
92.308
|
3:1
|
3.000
|
Hard 1L 10s
|
|
|
|
|
|
37\40
|
1110.000
|
90.000
|
10:3
|
3.333
|
|
|
|
|
|
25\27
|
|
1111.111
|
88.889
|
7:2
|
3.500
|
|
|
|
|
|
|
38\41
|
1112.195
|
87.805
|
11:3
|
3.667
|
Octacot
|
|
|
|
13\14
|
|
|
1114.286
|
85.714
|
4:1
|
4.000
|
Superhard 1L 10s Nuke
|
|
|
|
|
|
27\29
|
1117.241
|
82.759
|
9:2
|
4.500
|
Nautilus
|
|
|
|
|
14\15
|
|
1120.000
|
80.000
|
5:1
|
5.000
|
Valentine
|
|
|
|
|
|
15\16
|
1125.000
|
75.000
|
6:1
|
6.000
|
↓ Slurpee
|
1\1
|
|
|
|
|
|
1200.000
|
0.000
|
1:0
|
→ ∞
|
Collapsed 1L 10s
|