Proposed names for rank-2 temperaments: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>TallKite
**Imported revision 627986983 - Original comment: **
m Text replacement - "[[Helmholtz temperament|" to "[[Helmholtz (temperament)|"
 
(20 intermediate revisions by 11 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
Here is a list of some names that have been proposed for rank-2 [[regular temperament|temperaments]]. The name or names of the temperament is followed by the generator mapping, which represents the number of periods and [[generator]]s of the temperament for each of the [[prime interval]]s (2 3 5 etc.)
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-03-25 05:31:14 UTC</tt>.<br>
: The original revision id was <tt>627986983</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Here is a list of some names that have been proposed for rank 2 [[temperaments]]. The name or names of the temperament is followed by the generator mapping, which represents the number of periods and [[generator]]s of the temperament for each of the [[prime interval]]s (2, 3, 5 etc.)
See also [[pergen|pergen names]].


=One period per octave=
{{Todo|inline=1| update }}
father [&lt;1, 2, 2], &lt;0, -1, 1]&gt;
* mother [&lt;1, 2, 2, 2], &lt;0, -1, 1, 2]&gt;
* father [&lt;1, 2, 2, 4], &lt;0, -1, 1, -3]&gt;
mavila [&lt;1, 2, 1], &lt;0, -1, 3]&gt;
* pelogic [&lt;1, 2, 1, 1], &lt;0, -1, 3, 4]&gt;
* armodue [&lt;1, 2, 1, 5], &lt;0, -1, 3, -5]&gt;
* mavila [&lt;1, 2, 1, -2], &lt;0, -1, 3, 11]&gt;
* hornbostel [&lt;1, 2, 1, 8], &lt;0, -1, 3, -12]&gt;
[[Meantone family|meantone]] [&lt;1, 2, 4], &lt;0, -1, -4]&gt;
* dominant [&lt;1, 2, 4, 2], &lt;0, -1, -4, 2]&gt;
** arnold [&lt;1, 2, 4, 2, 3], &lt;0, -1, -4, 2, 1]&gt;
** dominant [&lt;1, 2, 4, 2, 1], &lt;0, -1, -4, 2, 6]&gt;
** domineering [&lt;1, 2, 4, 2, 6], &lt;0, -1, -4, 2, -6]&gt;
*** dominatrix [&lt;1, 2, 4, 2, 6, 5], &lt;0, -1, -4, 2, -6, -3]&gt;
* sharptone [&lt;1, 2, 4, 4], &lt;0, -1, -4, -3]&gt;
** meanertone [&lt;1, 2, 4, 4, 3], &lt;0, -1, -4, -3, 1]&gt;
* flattone [&lt;1, 2, 4, -1], &lt;0, -1, -4, 9]&gt;
** flattone &lt;span style="background-color: #ffffff;"&gt;[&lt;1, 2, 4, -1, 6], &lt;0, -1, -4, 9, -6]&gt;&lt;/span&gt;
* meantone [&lt;1, 2, 4, 7], &lt;0, -1, -4, -10]&gt;
** meanenneadecal [&lt;1, 2, 4, 7, 6], &lt;0, -1, -4, -10, -6]&gt;
** meanpop [&lt;1, 2, 4, 7, -2], &lt;0, -1, -4, -10, 13]&gt;
** meantone [&lt;1, 2, 4, 7, 11], &lt;0, -1, -4, -10, -18]&gt;
[[Schismatic family|helmholtz]] [&lt;1, 2, -1], &lt;0, -1, 8]&gt;
* schism [&lt;1, 2, -1, 2], &lt;0, -1, 8, 2]&gt;
* garibaldi [&lt;1, 2, -1, -3], &lt;0, -1, 8, 14]&gt;
** garibaldi [&lt;1, 2, -1, -3, 13], &lt;0, -1, 8, 14, -23]&gt;
*** garibaldi [&lt;1, 2, -1, -3, 13, 12], &lt;0, -1, 8, 14, -23, -20]&gt;
** cassandra [&lt;1, 2, -1, -3, -4], &lt;0, -1, 8, 14, 18]&gt;
*** cassandra [&lt;1, 2, -1, -3, -4, -5], &lt;0, -1, 8, 14, 18, 21]&gt;
* grackle [&lt;1, 2, -1, -8], &lt;0, -1, 8, 26]&gt;
* pontiac, infraschismic [&lt;1, 2, -1, 19], &lt;0, -1, 8, -39]&gt;
superpyth [&lt;1, 2, 6], &lt;0, -1, -9]&gt;
* superpyth [&lt;1, 2, 6, 2], &lt;0, -1, -9, 2]&gt;
* superpyth [&lt;1, 2, 6, 2, 10], &lt;0, -1, -9, 2, -16]&gt;
* suprapyth [&lt;1, 2, 6, 2, 1], &lt;0, -1, -9, 2, 6]&gt;
quasisuper [&lt;1, 2, -3, 2], &lt;0, -1, 13, 2]&gt;
leapday [&lt;1, 2, 11, 9, 8, 7], &lt;0, -1, -21, -15, -11, -8]&gt;
kwai [&lt;1, 2, 16, 14], &lt;0, -1, -33, -27]&gt;
* kwai [&lt;1, 2, 16, 14, -4], &lt;0, -1, -33, -27, 18]&gt;
undecental [&lt;1, 2, -13, -15], &lt;0, -1, 37, 43]&gt;
counterschismic [&lt;1, 2, 21], &lt;0, -1, -45]&gt;
[[Dicot family|dicot]] [&lt;1, 1, 2], &lt;0, 2, 1]&gt;
* dicot [&lt;1, 1, 2, 2], &lt;0, 2, 1, 3]&gt;
* sharp [&lt;1, 1, 2, 1], &lt;0, 2, 1, 6]&gt;
[[Meantone family#Mohajira|mohajira]] semififths[&lt;1, 1, 0, 6], &lt;0, 2, 8, -11]&gt;
* mohajira &lt;1, 1, 0, 6, 2], &lt;0, 2, 8, -11, 5]&gt;
[[Meantone family|maqamic]] [&lt;1, 1, 0, 4, 2], &lt;0, 2, 8, -4, 5]&gt;
* maqamic &lt;1, 1, 0, 4, 2, 4], &lt;0, 2, 8, -4, 5, -1]&gt;
beatles [&lt;1, 1, 5, 4], &lt;0, 2, -9, -4]&gt;
[[Turkish maqam music temperaments|karadeniz]] [&lt;1, 1, 7, 11, 2], &lt;0, 2, -16, -28, 5]&gt;
[[Breedsmic temperaments#Hemififths|hemififths]] [&lt;1, 1, -5, -1], &lt;0, 2, 25, 13]&gt;
[[Bug family|bug]] [&lt;1, 2, 3], &lt;0, -2, -3]&gt;
* beep [&lt;1, 2, 3, 3], &lt;0, -2, -3, -1]&gt;
** pentoid [&lt;1, 2, 3, 3, 3], &lt;0, -2, -3, -1, 2]&gt;
superpelog [&lt;1, 2, 1, 3], &lt;0, -2, 6, -1]&gt;
[[Meantone family#Godzilla|godzilla]] [&lt;1, 2, 4, 3], &lt;0, -2, -8, -1]&gt;
monzismic [&lt;1, 2, 10], &lt;0, -2, -37]&gt;
[[Gamelismic clan#Gidorah|gidorah]] [&lt;1, 1, 2, 3], &lt;0, 3, 2, -1]&gt;
penta [&lt;1, 1, 2, 2], &lt;0, 3, 2, 4]&gt;
[[Laconic Family|laconic]] [&lt;1, 1, 1], &lt;0, 3, 7]&gt;
[[Gamelismic clan#Gorgo|gorgo]] [&lt;1, 1, 1, 3], &lt;0, 3, 7, -1]
* gorgo [&lt;1 1 1 3 1|, &lt;0 3 7 -1 13|&gt;
** gorgo [&lt;1 1 1 3 1 2|, &lt;0 3 7 -1 13 9|&gt;
* spartan [&lt;1 1 1 3 5|, &lt;0 3 7 -1 -8|&gt;
[[Meantone family#Mothra|mothra]], cynder [&lt;1, 1, 0, 3], &lt;0, 3, 12, -1]&gt;
* mothra, cynder [&lt;1, 1, 0, 3, 5], &lt;0, 3, 12, -1, -8]&gt;
[[Gamelismic clan#Rodan|rodan]] [&lt;1, 1, -1, 3], &lt;0, 3, 17, -1]&gt;
* [[Gamelismic clan#Rodan|rodan]][&lt;1, 1, -1, 3, 6], &lt;0, 3, 17, -1, -13]&gt;
** [[Gamelismic clan#Rodan|rodan]] [&lt;1, 1, -1, 3, 6, 8], &lt;0, 3, 17, -1, -13, -22]&gt;
** [[Gamelismic clan#Rodan|aerodactyl]] [&lt;1, 1, -1, 3, 6, -1], &lt;0, 3, 17, -1, -13, 24]&gt;
[[Schismatic family#Guiron|guiron]] [&lt;1, 1, 7, 3], &lt;0, 3, -24, -1]&gt;
[[Porcupine family|porcupine]] [&lt;1, 2, 3], &lt;0, -3, -5]&gt;
* hystrix [&lt;1, 2, 3, 3], &lt;0, -3, -5, -1]&gt;
* porcupine [&lt;1, 2, 3, 2], &lt;0, -3, -5, 6]&gt;
** porcupine [&lt;1, 2, 3, 2, 4], &lt;0, -3, -5, 6, -4]&gt;
* opossum, pentadecimal [&lt;1, 2, 3, 4], &lt;0, -3, -5, -9]&gt;
** opossum [&lt;1, 2, 3, 4, 4], &lt;0, -3, -5, -9, -4]&gt;
* coendou [&lt;1, 2, 3, 1, 4, 3], &lt;0, -3, -5, 13, -4, 5]&gt;
* ammonite [&lt;1, 5, 8, 10], &lt;0, -9, -15, -19]&gt;
* porcupinefish [&lt;1, 2, 3, 2, 4, 6], &lt;0, -3, -5, 6, -4, -17]&gt;
triton [&lt;1, 3, -1, -1], &lt;0, -3, 7, 8]&gt;
[[Meantone family#liese|liese]], gawel [&lt;1, 3, 8, 8], &lt;0, -3, -12, -11]&gt;
tricot [&lt;1, 3, 16], &lt;0, -3, -29]&gt;
[[Tetracot family|tetracot]] [&lt;1, 1, 1], &lt;0, 4, 9]&gt;
* monkey [&lt;1, 1, 1, 5], &lt;0, 4, 9, -15]&gt;
* bunya [&lt;1, 1, 1, -1], &lt;0, 4, 9, 26]&gt;
vulture [&lt;1, 0, -6], &lt;0, 4, 21]&gt;
* buzzard [&lt;1, 0, -6, 4], &lt;0, 4, 21, -3]&gt;
** buzzard [&lt;1, 0, -6, 4, -12, -7], &lt;0, 4, 21, -3, 39, 27]&gt;
[[Schismatic family|sesquiquartififths]] [&lt;1, 1, 7, 5], &lt;0, 4, -32, -15]&gt;
semihemififths [&lt;1, 1, -5, -1, 8], &lt;0, 4, 50, 26, -31]&gt;
[[Dicot family|sidi]] [&lt;1, 3, 3, 6], &lt;0, -4, -2, -9]&gt;
negri [&lt;1, 2, 2], &lt;0, -4, 3]&gt;
* negri [&lt;1, 2, 2, 3], &lt;0, -4, 3, -2]&gt;
** negri [&lt;1 2 2 3 4|, &lt;0 -4 3 -2 -5|]
*** negri [&lt;1 2 2 3 4 4|, &lt;0 -4 3 -2 -5 -3|]
** negril [&lt;1 2 2 3 2|, &lt;0 -4 3 -2 14|]
*** negril [&lt;1, 2, 2, 3, 2, 4], &lt;0, -4, 3, -2, 14, -3]&gt;
sentinel [&lt;1, 3, -3, 6], &lt;0, -4, 15, -9]&gt;
[[Meantone family#Squares|squares]] [&lt;1, 3, 8, 6], &lt;0, -4, -16, -9]&gt;
[[Magic family|magic]] [&lt;1, 0, 2], &lt;0, 5, 1]&gt;
* muggles [&lt;1, 0, 2, 5], &lt;0, 5, 1, -7]&gt;
* magic [&lt;1, 0, 2, -1], &lt;0, 5, 1, 12]&gt;
** magic [&lt;1, 0, 2, -1, 6], &lt;0, 5, 1, 12, -8]&gt;
passion [&lt;1, 2, 2], &lt;0, -5, 4]&gt;
* passion [&lt;1, 2, 2, 2], &lt;0, -5, 4, 10]&gt;
ripple [&lt;1, 2, 3], &lt;0, -5, -8]&gt;
* ripple [&lt;1, 2, 3, 3], &lt;0, -5, -8, -2]&gt;
tritonic [&lt;1, 4, -3, -3], &lt;0, -5, 11, 12]&gt;
* tritonic [&lt;1, 4, -3, -3, 2], &lt;0, -5, 11, 12, 3]&gt;
[[Ragismic microtemperaments|amity]] [&lt;1, 3, 6], &lt;0, -5, -13]&gt;
* amity [&lt;1, 3, 6, -2], &lt;0, -5, -13, 17]&gt;
** hitchcock, amity [&lt;1, 3, 6, -2, 6], &lt;0, -5, -13, 17, -9]&gt;
*** hitchcock [&lt;1, 3, 6, -2, 6, 2], &lt;0, -5, -13, 17, -9, 6]&gt;
gravity [&lt;1, 5, 12], &lt;0, -6, -17]&gt;
[[Kleismic family|hanson]] [&lt;1, 0, 1], &lt;0, 6, 5]&gt;
* keemun [&lt;1, 0, 1, 2], &lt;0, 6, 5, 3]&gt;
** keemun [&lt;1, 0, 1, 2, 4], &lt;0, 6, 5, 3, -2]&gt;
* catakleismic [&lt;1, 0, 1, -3], &lt;0, 6, 5, 22]&gt;
** catakleismic [&lt;1, 0, 1, -3, 9], &lt;0, 6, 5, 22, -21]&gt;
*** catakleismic [&lt;1, 0, 1, -3, 9, 0], &lt;0, 6, 5, 22, -21, 14]&gt;
* countercata [&lt;1, 0, 1, 11], &lt;0, 6, 5, -31]&gt;
ampersand [&lt;1, 1, 3], &lt;0, 6, -7]&gt;
* [[Gamelismic clan#Miracle|miracle]][&lt;1, 1, 3, 3], &lt;0, 6, -7, -2]&gt;
** miracle [&lt;1, 1, 3, 3, 2], &lt;0, 6, -7, -2, 15]&gt;
marvo [&lt;1, -1, -5, -17], &lt;0, 6, 17, 46]&gt;
[[Porcupine family|nautilus]] [&lt;1, 2, 3, 3], &lt;0, -6, -10, -3]&gt;
[[Semicomma family|orson]] [&lt;1, 0, 3], &lt;0, 7, -3]&gt;
* orwell [&lt;1, 0, 3, 1], &lt;0, 7, -3, 8]&gt;
** orwell [&lt;1, 0, 3, 1, 3], &lt;0, 7, -3, 8, 2]&gt;
*** orwell [&lt;1, 0, 3, 1, 3, 8], &lt;0, 7, -3, 8, 2, -19]&gt;
*** blair [&lt;1, 0, 3, 1, 3, 3], &lt;0, 7, -3, 8, 2, 3]&gt;
*** winston [&lt;1, 0, 3, 1, 3, 1], &lt;0, 7, -3, 8, 2, 12]&gt;
*** doublethink [&lt;1, 0, 3, 1, 3, 2], &lt;0, 14, -6, 16, 4, 15]&gt;
sensi [&lt;1, -1, -1], &lt;0, 7, 9]&gt;
* [[Starling temperaments#Sensi%20temperament|sensi]] [&lt;1, -1, -1, -2], &lt;0, 7, 9, 13]&gt;
[[Starling temperaments#Sensi%20temperament-Sensor|sensor]] [&lt;1, -1, -1, -2, 9], &lt;0, 7, 9, 13, -15]&gt;
* sensor [&lt;1, -1, -1, -2, 9, 0], &lt;0, 7, 9, 13, -15, 10]&gt;
[[Starling temperaments#Sensi%20temperament-Sensis|sensis]] [&lt;1 6 8 11 6|, &lt;0 -7 -9 -13 -4|]
* sensis [&lt;1 6 8 11 6 10|, &lt;0 -7 -9 -13 -4 -10|]
[[Starling temperaments#Sensi%20temperament-Sensus|sensus]] [&lt;1 6 8 11 23|, &lt;0 -7 -9 -13 -31|]
* sensus [&lt;1 6 8 11 23 10|, &lt;0 -7 -9 -13 -31 -10|]
roman [&lt;1, 4, 3, -1, 0, 3], &lt;0, -7, -2, 11, 10, 2]&gt;
[[Tetracot family#Octacot|octacot]] [&lt;1, 1, 1, 2], &lt;0, 8, 18, 11]&gt;
[[Würschmidt family|würschmidt]] [&lt;1, -1, 2], &lt;0, 8, 1]&gt;
* worschmidt [&lt;1, -1, 2, 7], &lt;0, 8, 1, -13]&gt;
* wurschmidt [&lt;1, -1, 2, -3], &lt;0, 8, 1, 18]&gt;
* whirrschmidt [&lt;1, 7, 3, 38], &lt;0, -8, -1, -52]&gt;
valentine [&lt;1, 1, 2], &lt;0, 9, 5]&gt;
* [[Starling temperaments#Valentine%20temperament|valentine]][&lt;1, 1, 2, 3], &lt;0, 9, 5, -3]&gt;
** valentine [&lt;1, 1, 2, 3, 3], &lt;0, 9, 5, -3, 7]&gt;
*** [[Starling temperaments#Valentine%20temperament-Valentino|valentino]] [&lt;1, 1, 2, 3, 3, 5], &lt;0, 9, 5, -3, 7, -20]&gt;
*** [[Starling temperaments#Valentine%20temperament-Dwynwen|dwynwen]] [&lt;1, 1, 2, 3, 3, 2], &lt;0, 9, 5, -3, 7, 26]&gt;
*** [[Starling temperaments#Valentine%20temperament-Lupercalia|lupercalia]] [&lt;1 1 2 3 3 3|, &lt;0 9 5 -3 7 11|]
escapade [&lt;1, 2, 2], &lt;0, -9, 7]&gt;
* escapade [&lt;1, 2, 2, 3], &lt;0, -9, 7, -4]&gt;
* escaped [&lt;1, 2, 2, 4], &lt;0, -9, 7, -26]&gt;
[[Gamelismic clan#Superkleismic|superkleismic]] [&lt;1, 4, 5, 2], &lt;0, -9, -10, 3]&gt;
* superkleismic [&lt;1, 4, 5, 2, 4], &lt;0, -9, -10, 3, -2]&gt;
[[Starling temperaments#Myna%20temperament|myna]] [&lt;1, -1, 0, 1], &lt;0, 10, 9, 7]&gt;
* myna [&lt;1, -1, 0, 1, -3], &lt;0, 10, 9, 7, 25]&gt;
** myna [&lt;1, -1, 0, 1, -3, 5], &lt;0, 10, 9, 7, 25, -5]&gt;
[[Sycamore family|sycamore]] [&lt;1, 1, 2], &lt;0, 11, 6]&gt;
* sycamore [&lt;1, 1, 2, 2], &lt;0, 11, 6, 15]&gt;
septimin [&lt;1, 4, 1, 5], &lt;0, -11, 6, -10]&gt;
[[Starling temperaments#Nusecond%20temperament|nusecond]] [&lt;1, 3, 4, 5], &lt;0, -11, -13, -17]&gt;
quartonic [&lt;1, 2, 3, 3], &lt;0, -11, -18, -5]&gt;
[[Kleismic family|hemikleismic]] [&lt;1, 0, 1, 4], &lt;0, 12, 10, -9]&gt;
[[Kleismic family|clyde]] [&lt;1, 6, 6, 12], &lt;0, -12, -10, -25]&gt;
bohpier [&lt;1, 0, 0, 0], &lt;0, 13, 19, 23]&gt;
[[Gammic family|gammic]] [&lt;1, 1, 2], &lt;0, 20, 11]&gt;
* gammic [&lt;1, 1, 2, 0], &lt;0, 20, 11, 96]&gt;
[[Gammic family|neptune]] [&lt;1, 21, 13, 13], &lt;0, -40, -22, -21]&gt;
pluto [&lt;1, 5, 15, 15, 2], &lt;0, 7, 26, 25, -3]&gt;
twothirdtonic [&lt;1, 3, 2, 4, 4], &lt;0, -13, 3, -11, -5]&gt;
* twothirdtonic [&lt;1, 3, 2, 4, 4, 5], &lt;0, -13, 3, -11, -5, -12]&gt;
slender [&lt;1, 2, 2, 3], &lt;0, -13, 10, -6]&gt;
* slender [&lt;1, 2, 2, 3, 4], &lt;0, -13, 10, -6, -17]&gt;
[[Ragismic microtemperaments|parakleismic]] [&lt;1, 5, 6], &lt;0, -13, -14]&gt;
* parakleismic [&lt;1, 5, 6, 12], &lt;0, -13, -14, -35]&gt;
fortune [&lt;1, -1, 11], &lt;0, 14, -47]&gt;
hemithirds, luna [&lt;1, 4, 2], &lt;0, -15, 2]&gt;
* [[Gamelismic clan#Hemithirds|hemithirds]][&lt;1, 4, 2, 2], &lt;0, -15, 2, 5]&gt;
** [[Gamelismic clan#Hemithirds|hemithirds]] [&lt;1, 4, 2, 2, 7], &lt;0, -15, 2, 5, -22]&gt;
[[Wuerschmidt family|hemiwürschmidt]] [&lt;1, -1, 2, 2], &lt;0, 16, 2, 5]&gt;
* hemiwürschmidt [&lt;1, -1, 2, 2, -3], &lt;0, 16, 2, 5, 40]&gt;
semisept [&lt;1, -5, 0, -3], &lt;0, 17, 6, 15]&gt;
vavoom [&lt;1, 0, 4], &lt;0, 17, -18]&gt;
[[Minortonic family|minortone]] [&lt;1, -1, -3], &lt;0, 17, 35]&gt;
* [[Minortonic family#Mitonic|mitonic]] [&lt;1, -1, -3, 6], &lt;0, 17, 35, -21]&gt;
[[Starling temperaments|casablanca]] [&lt;1, -7, -4, 1], &lt;0, 19, 14, 4]&gt;
* [[Starling temperaments#Casablanca%20temperament|casablanca]] [&lt;1, -7, -4, 1, 3], &lt;0, 19, 14, 4, 1]&gt;
[[Breedsmic temperaments|tertiaseptal]] [&lt;1, 3, 2, 3], &lt;0, -22, 5, -3]&gt;
grendel, voodoo [&lt;1, 9, 2, 7], &lt;0, -23, 1, -13]&gt;
gamera [&lt;1, 6, 10, 3], &lt;0, -23, -40, -1]&gt;
astro [&lt;1, 5, 1], &lt;0, -31, 12]&gt;
semihemiwürschmidt [&lt;1, 15, 4, 7, 24], &lt;0, -32, -4, -10, -49]&gt;
whoosh [&lt;1, 17, 14], &lt;0, -33, -25]&gt;
[[Turkish maqam music temperaments|yarman]] [&lt;1, 2, 3, 4, 4], &lt;0, -33, -54, -95, -43]&gt;
senior [&lt;1, 11, 19], &lt;0, -35, -62]&gt;
raider [&lt;1, -9, -26], &lt;0, 37, 99]&gt;
supermajor [&lt;1, 15, 19, 30], &lt;0, -37, -46, -75]&gt;
[[Breedsmic temperaments|quasiorwell]] [&lt;1, -7, 3, 1], &lt;0, 38, -3, 8]&gt;
semigamera [&lt;1, 6, 10, 3, 12], &lt;0, -46, -80, -2, -89]&gt;
gross [&lt;1, -2, 4], &lt;0, 47, -22]&gt;
pirate [&lt;1, -6, 0], &lt;0, 49, 15]&gt;
egads [&lt;1, 15, 16], &lt;0, -51, -52]&gt;
avila [&lt;1, 1, -1], &lt;0, 1, 6]&gt;
mabila [&lt;1, 6, 1], &lt;0, -10, 3]&gt;
pycnic [&lt;1, 3, -1, 8], &lt;0, -3, 7, -11]&gt;
enipucrop [&lt;1, 2, 2], &lt;0, -3, 2]&gt;


=Two periods per octave=
== One period per octave ==
[[Diaschismic family|srutal]] [&lt;2, 3, 5], &lt;0, 1, -2]&gt;
* [[father]] [{{val| 1 0 4 }}, {{val| 0 1 -1}}];
* pajara [&lt;2, 3, 5, 6], &lt;0, 1, -2, -2]&gt;
** mother [{{val| 1 0 4 6 }}, {{val| 0 1 -1 -2}}];
** pajaric [&lt;2, 3, 5, 6, 7], &lt;0, 1, -2, -2, 0]&gt;
** father [{{val| 1 0 4 -2 }}, {{val| 0 1 -1 3}}];
** pajarous [&lt;2, 3, 5, 6, 6], &lt;0, 1, -2, -2, 5]&gt;
* [[mavila]] [{{val| 1 0 7 }}, {{val| 0 1 -3}}];
** pajara [&lt;2, 3, 5, 6, 8], &lt;0, 1, -2, -2, -6]&gt;
** [[pelogic]] [{{val| 1 0 7 9 }}, {{val| 0 1 -3 -4}}];
* diaschismic [&lt;2, 3, 5, 7], &lt;0, 1, -2, -8]&gt;
** [[armodue]] [{{val| 1 0 7 -5 }}, {{val| 0 1 -3 5}}];
** diaschismic [&lt;2, 3, 5, 7, 9, 10], &lt;0, 1, -2, -
** mavila [{{val| 1 0 7 20 }}, {{val| 0 1 -3 -11}}];
** hornbostel [{{val| 1 0 7 -16 }}, {{val| 0 1 -3 12}}];
* [[meantone]] [{{val| 1 0 -4 }}, {{val| 0 1 4}}];
** [[dominant (temperament)|dominant]] [{{val| 1 0 -4 6 }},

Latest revision as of 02:29, 17 April 2025

Here is a list of some names that have been proposed for rank-2 temperaments. The name or names of the temperament is followed by the generator mapping, which represents the number of periods and generators of the temperament for each of the prime intervals (2 3 5 etc.)

Todo: update

One period per octave

  • father [1 0 4], 0 1 -1]];
    • mother [1 0 4 6], 0 1 -1 -2]];
    • father [1 0 4 -2], 0 1 -1 3]];
  • mavila [1 0 7], 0 1 -3]];
    • pelogic [1 0 7 9], 0 1 -3 -4]];
    • armodue [1 0 7 -5], 0 1 -3 5]];
    • mavila [1 0 7 20], 0 1 -3 -11]];
    • hornbostel [1 0 7 -16], 0 1 -3 12]];
  • meantone [1 0 -4], 0 1 4]];
    • dominant [1 0 -4 6], 0 1 4 -2]];
      • arnold [1 0 -4 6 5], 0 1 4 -2 -1]];
      • dominant [1 0 -4 6 13], 0 1 4 -2 -6]];
      • domineering [1 0 -4 6 -6], 0 1 4 -2 6]];
        • dominatrix [1 0 -4 6 -6 -1], 0 1 4 -2 6 3]];
    • sharptone [1 0 -4 -2], 0 1 4 3]];
      • meanertone [1 0 -4 -2 5], 0 1 4 3 -1]];
    • flattone [1 0 -4 17], 0 1 4 -9]];
      • flattone [1 0 -4 17 -6], 0 1 4 -9 6]];
    • meantone [1 0 -4 -13], 0 1 4 10]];
      • meanenneadecal [1 0 -4 -13 -6], 0 1 4 10 6]];
      • meanpop [1 0 -4 -13 24], 0 1 4 10 -13]];
      • meantone [1 0 -4 -13 -25], 0 1 4 10 18]];
  • avila [1 0 -7], 0 1 6]];
  • helmholtz [1 0 15], 0 1 -8]];
    • schism [1 0 15 6], 0 1 -8 -2]];
    • garibaldi [1 0 15 25], 0 1 -8 -14]];
      • cassandra [1 0 15 25 -33], 0 1 -8 -14 23]];
        • cassandra [1 0 15 25 -33 -28], 0 1 -8 -14 23 20]];
      • andromeda [1 0 15 25 32], 0 1 -8 -14 -18]];
        • andromeda [1 0 15 25 32 37], 0 1 -8 -14 -18 -21]];
    • grackle [1 0 15 44], 0 1 -8 -26]];
    • pontiac, infraschismic [1 0 15 -59], 0 1 -8 39]];
  • superpyth [1 0 -12], 0 1 9]];
    • superpyth [1 0 -12 6], 0 1 9 -2]];
      • superpyth [1 0 -12 6 -22], 0 1 9 -2 16]];
      • suprapyth [1 0 -12 6 13], 0 1 9 -2 -6]];
  • quasisuper [1 0 23 6], 0 1 -13 -2]];
  • leapday [1 0 -31 -21 -14 -9], 0 1 21 15 11 8]];
  • kwai [1 0 -50 -40], 0 1 33 27]];
    • kwai [1 0 -50 -40 32], 0 1 33 27 -18]];
  • undecental [1 0 61 71], 0 1 -37 -43]];
  • counterschismic [1 0 -69], 0 1 45]];
  • dicot [1 1 2], 0 2 1]];
    • dicot [1 1 2 2], 0 2 1 3]];
    • sharp [1 1 2 1], 0 2 1 6]];
  • mohajira, semififths [1 1 0 6], 0 2 8 -11]];
    • mohajira [1 1 0 6 2], 0 2 8 -11 5]];
    • neutrominant [1 1 0 4 2], 0 2 8 -4 5]];
      • neutrominant [1 1 0 4 2 4], 0 2 8 -4 5 -1]];
  • beatles [1 1 5 4], 0 2 -9 -4]];
  • karadeniz [1 1 7 11 2], 0 2 -16 -28 5]];
  • hemififths [1 1 -5 -1], 0 2 25 13]];
  • bug [1 0 0], 0 2 3]];
    • beep [1 0 0 2], 0 2 3 1]];
      • pentoid [1 0 0 2 5], 0 2 3 1 -2]];
  • superpelog [1 0 7 2], 0 2 -6 1]];
  • godzilla [1 0 -4 2], 0 2 8 1]];
  • monzismic [1 0 -27], 0 2 37]];
  • gidorah [1 1 2 3], 0 3 2 -1]];
  • enipucrop [1 2 2], 0 3 -2]];
  • penta [1 1 2 2], 0 3 2 4]];
  • laconic [1 1 1], 0 3 7]];
    • gorgo [1 1 1 3], 0 3 7 -1]];
      • gorgo [1 1 1 3 1], 0 3 7 -1 13]];
        • gorgo [1 1 1 3 1 2], 0 3 7 -1 13 9]];
      • spartan [1 1 1 3 5], 0 3 7 -1 -8]];
  • pycnic [1 0 6 -3], 0 3 -7 11]];
  • mothra, cynder [1 1 0 3], 0 3 12 -1]];
    • mothra, cynder [1 1 0 3 5], 0 3 12 -1 -8]];
  • rodan [1 1 -1 3], 0 3 17 -1]];
    • rodan [1 1 -1 3 6], 0 3 17 -1 -13]];
      • rodan [1 1 -1 3 6 8], 0 3 17 -1 -13 -22]];
      • aerodactyl [1 1 -1 3 6 -1], 0 3 17 -1 -13 24]];
  • guiron [1 1 7 3], 0 3 -24 -1]];
  • porcupine [1 2 3], 0 3 5]];
    • hystrix [1 2 3 3], 0 3 5 1]];
    • porcupine [1 2 3 2], 0 3 5 -6]];
      • porcupine [1 2 3 2 4], 0 3 5 -6 4]];
    • opossum, pentadecimal [1 2 3 4], 0 3 5 9]];
      • opossum [1 2 3 4 4], 0 3 5 9 4]];
      • coendou [1 2 3 1 4 3], 0 3 5 -13 4 -5]];
      • porcupinefish [1 2 3 2 4 6], 0 3 5 -6 4 17]];
  • ammonite [1 5 8 10], 0 9 15 19]];
  • triton [1 0 6 7], 0 3 -7 -8]];
  • liese, gawel [1 0 -4 -3], 0 3 12 11]];
  • alphatricot [1 0 -13], 0 3 29]];
  • tetracot [1 1 1], 0 4 9]];
    • monkey [1 1 1 5], 0 4 9 -15]];
    • bunya [1 1 1 -1], 0 4 9 26]];
  • vulture [1 0 -6], 0 4 21]];
    • buzzard [1 0 -6 4], 0 4 21 -3]];
      • buzzard [1 0 -6 4 -12 -7], 0 4 21 -3 39 27]];
  • sesquiquartififths [1 1 7 5], 0 4 -32 -15]];
  • semihemififths [1 1 -5 -1 8], 0 4 50 26 -31]];
  • sidi [1 3 3 6], 0 4 2 9]];
  • negri [1 2 2], 0 4 -3]];
    • negri [1 2 2 3], 0 4 -3 2]];
      • negri [1 2 2 3 4], 0 4 -3 2 5]];
        • negri [1 2 2 3 4 4], 0 4 -3 2 5 3]];
      • negril [1 2 2 3 2], 0 4 -3 2 -14]];
        • negril [1 2 2 3 2 4], 0 4 -3 2 -14 3]];
  • sentinel [1 3 -3 6], 0 4 -15 9]];
  • squares [1 3 8 6], 0 4 16 9]];
  • magic [1 0 2], 0 5 1]];
    • muggles [1 0 2 5], 0 5 1 -7]];
    • magic [1 0 2 -1], 0 5 1 12]];
      • magic [1 0 2 -1 6], 0 5 1 12 -8]];
  • passion [1 2 2], 0 5 -4]];
    • passion [1 2 2 2], 0 5 -4 -10]];
  • ripple [1 2 3], 0 5 8]];
    • ripple [1 2 3 3], 0 5 8 2]];
  • tritonic [1 4 -3 -3], 0 5 -11 -12]];
    • tritonic [1 4 -3 -3 2], 0 5 -11 -12 -3]];
  • amity [1 3 6], 0 5 13]];
    • amity [1 3 6 -2], 0 5 13 -17]];
      • hitchcock, amity [1 3 6 -2 6], 0 5 13 -17 9]];
        • hitchcock [1 3 6 -2 6 2], 0 5 13 -17 9 -6]];
  • gravity [1 5 12], 0 6 17]];
    • marvo [1 5 12 29], 0 6 17 46]];
  • hanson [1 0 1], 0 6 5]];
    • keemun [1 0 1 2], 0 6 5 3]];
      • keemun [1 0 1 2 4], 0 6 5 3 -2]];
    • catakleismic [1 0 1 -3], 0 6 5 22]];
      • catakleismic [1 0 1 -3 9], 0 6 5 22 -21]];
        • catakleismic [1 0 1 -3 9 0], 0 6 5 22 -21 14]];
    • countercata [1 0 1 11], 0 6 5 -31]];
  • ampersand [1 1 3], 0 6 -7]];
    • miracle [1 1 3 3], 0 6 -7 -2]];
      • miracle [1 1 3 3 2], 0 6 -7 -2 15]];
  • nautilus [1 2 3 3], 0 6 10 3]];
  • orson [1 0 3], 0 7 -3]];
    • orwell [1 0 3 1], 0 7 -3 8]];
      • orwell [1 0 3 1 3], 0 7 -3 8 2]];
        • orwell [1 0 3 1 3 8], 0 7 -3 8 2 -19]];
        • blair [1 0 3 1 3 3], 0 7 -3 8 2 3]];
        • winston [1 0 3 1 3 1], 0 7 -3 8 2 12]];
  • sensi [1 6 8], 0 7 9]];
    • sensi [1 6 8 11], 0 7 9 13]];
      • sensor [1 6 8 11 -6], 0 7 9 13 -15]];
        • sensor [1 6 8 11 -6 10], 0 7 9 13 -15 10]];
      • sensis [1 6 8 11 6], 0 7 9 13 4]];
        • sensis [1 6 8 11 6 10], 0 7 9 13 4 10]];
      • sensus [1 6 8 11 23], 0 7 9 13 31]];
        • sensus [1 6 8 11 23 10], 0 7 9 13 31 10]];
  • roman [1 4 3 -1 0 3], 0 7 2 -11 -10 -2]];
  • octacot [1 1 1 2], 0 8 18 11]];
  • würschmidt [1 7 3], 0 8 1]];
  • valentine [1 1 2], 0 9 5]];
    • valentine [1 1 2 3], 0 9 5 -3]];
      • valentine [1 1 2 3 3], 0 9 5 -3 7]];
        • valentino [1 1 2 3 3 5], 0 9 5 -3 7 -20]];
        • dwynwen [1 1 2 3 3 2], 0 9 5 -3 7 26]];
        • lupercalia [1 1 2 3 3 3], 0 9 5 -3 7 11]];
  • escapade [1 2 2], 0 9 -7]];
    • escapade [1 2 2 3], 0 9 -7 4]];
    • escaped [1 2 2 4], 0 9 -7 26]];
  • superkleismic [1 4 5 2], 0 9 10 -3]];
    • superkleismic [1 4 5 2 4], 0 9 10 -3 2]];
  • mabila [1 6 1], 0 10 -3]];
  • myna [1 9 9 8], 0 10 9 7]];
    • myna [1 9 9 8 22], 0 10 9 7 25]];
      • myna [1 9 9 8 22 0], 0 10 9 7 25 -5]];
  • sycamore [1 1 2], 0 11 6]];
    • sycamore [1 1 2 2], 0 11 6 15]];
  • septimin [1 4 1 5], 0 11 -6 10]];
  • nusecond [1 3 4 5], 0 11 13 17]];
  • quartonic [1 2 3 3], 0 11 18 5]];
  • hemikleismic [1 0 1 4], 0 12 10 -9]];
  • clyde [1 6 6 12], 0 12 10 25]];
  • bohpier [1 0 0 0], 0 13 19 23]];
  • doublethink [1 0 3 1 3 2], 0 14 -6 16 4 15]];
  • gammic [1 1 2], 0 20 11]];
    • gammic [1 1 2 0], 0 20 11 96]];
  • neptune [1 21 13 13], 0 40 22 21]];
  • pluto [1 5 15 15 2], 0 7 26 25 -3]];
  • twothirdtonic [1 3 2 4 4], 0 13 -3 11 5]];
    • twothirdtonic [1 3 2 4 4 5], 0 13 -3 11 5 12]];
  • slender [1 2 2 3], 0 13 -10 6]];
    • slender [1 2 2 3 4], 0 13 -10 6 17]];
  • parakleismic [1 5 6], 0 13 14]];
    • parakleismic [1 5 6 12], 0 13 14 35]];
  • fortune [1 13 -36], 0 14 -47]];
  • hemithirds, luna [1 4 2], 0 15 -2]];
    • hemithirds [1 4 2 2], 0 15 -2 -5]];
      • hemithirds [1 4 2 2 7], 0 15 -2 -5 22]];
  • hemiwürschmidt [1 15 4 7], 0 16 2 5]];
    • hemiwürschmidt [1 15 4 7 37], 0 16 2 5 40]];
  • semisept [1 12 6 12], 0 17 6 15]];
  • vavoom [1 0 4], 0 17 -18]];
  • minortone [1 16 32], 0 17 35]];
    • mitonic [1 16 32 -15], 0 17 35 -21]];
  • casablanca [1 12 10 5], 0 19 14 4]];
    • casablanca [1 12 10 5 4], 0 19 14 4 1]];
  • tertiaseptal [1 3 2 3], 0 22 -5 3]];
  • grendel, voodoo [1 9 2 7], 0 23 -1 13]];
  • gamera [1 6 10 3], 0 23 40 1]];
  • astro [1 5 1], 0 31 -12]];
  • semihemiwürschmidt [1 15 4 7 24], 0 32 4 10 49]];
  • whoosh [1 17 14], 0 33 25]];
  • yarman [1 2 3 4 4], 0 33 54 95 43]];
  • senior [1 11 19], 0 35 62]];
  • raider [1 28 73], 0 37 99]];
  • supermajor [1 15 19 30], 0 37 46 75]];
  • quasiorwell [1 31 0 9], 0 38 -3 8]];
  • semigamera [1 6 10 3 12], 0 46 80 2 89]];
  • gross [1 45 -18], 0 47 -22]];
  • pirate [1 43 15], 0 49 15]];
  • egads [1 15 16], 0 51 52]];

Two periods per octave

  • srutal [2 0 11], 0 1 -2]];
    • pajara [2 0 11 12], 0 1 -2 -2]];
      • pajaric [2 0 11 12 7], 0 1 -2 -2 0]];
      • pajarous [2 0 11 12 -9], 0 1 -2 -2 5]];
      • pajara [2 0 11 12 26], 0 1 -2 -2 -6]];
    • diaschismic [2 0 11 31], 0 1 -2 -8]];
      • diaschismic [2 0 11 31 45 55], 0 1 -2 -8 -12 -15]];
    • keen [2 0 11 -23], 0 1 -2 9]];
  • supersharp [2 0 -5], 0 1 3]];
  • bipelog [2 0 14 15], 0 1 -3 -3]];
  • injera [2 0 -8 -7], 0 1 4 4]];
    • injera [2 0 -8 -7 -12], 0 1 4 4 6]];
  • bischismic [2 0 30 69], 0 1 -8 -20]];
  • shrutar [2 1 9 -2], 0 2 -4 7]];
    • shrutar [2 1 9 -2 8], 0 2 -4 7 -1]];
      • srutar [2 1 9 -2 8 15], 0 2 -4 7 -1 -7]];
      • shrutar [2 1 9 -2 8 -10], 0 2 -4 7 -1 16]];
  • echidna [2 1 9 2], 0 3 -6 5]];
    • echidna [2 1 9 2 12], 0 3 -6 5 -7]];
  • decimal [2 0 3 4], 0 2 1 1]];
  • semihemi [2 0 -35 -15 -47], 0 2 25 13 34]];
  • lemba [2 2 5 6], 0 3 -1 -1]];
  • hedgehog [2 1 1 2], 0 3 5 5]];
  • doublewide [2 1 3], 0 4 3]];
    • doublewide [2 1 3 4], 0 4 3 3]];
      • doublewide [2 1 3 4 8], 0 4 3 3 -2]];
  • sesquiquartififths [1 1 7 5], 0 4 -32 -15]];
  • hemiamity [2 1 -1 13 13], 0 5 13 -17 -14]];
  • wizard [2 1 5 2], 0 6 -1 10]];
    • wizard [2 1 5 2 8], 0 6 -1 10 -3]];
  • unidec [2 5 8 5], 0 6 11 -2]];
    • unidec [2 5 8 5 6], 0 6 11 -2 -3]];
      • hendec [2 5 8 5 6 8], 0 6 11 -2 -3 2]];
  • harry [2 4 7 7], 0 6 17 10]];
  • vishnu [2 4 5], 0 7 3]];
    • vishnu [2 4 5 10], 0 7 3 37]];
  • kwazy [2 1 6], 0 8 -5]];
  • abigail [2 7 13 -1 1 -2], 0 11 24 -19 -17 -27]];
  • semiparakleismic [2 10 12 24 19], 0 13 14 35 23]];
  • hemigamera [2 12 20 6 5], 0 23 40 1 -5]];

Three periods per octave

  • augmented [3 0 7], 0 1 0]];
    • augene, tripletone [3 0 7 18], 0 1 0 -2]];
      • augene, tripletone [3 0 7 18 20], 0 1 0 -2 -2]];
    • august [3 0 7 -1], 0 1 0 2]];
  • misty [3 0 26], 0 1 -4]];
    • misty [3 0 26 56], 0 1 -4 -10]];
  • term [3 0 45 94], 0 1 -8 -18]];
  • semiaug [3 1 7 -1], 0 2 0 5]];
  • tritikleismic [3 0 3 10], 0 6 5 -2]];
  • mutt [3 5 7 8], 0 7 1 -12]];
  • ternary [3 5 7 0], 0 0 0 1]];

Four or more periods per octave

  • diminished [4 0 3], 0 1 1]];
    • diminished [4 0 3 5], 0 1 1 1]];
      • diminished [4 0 3 5 14], 0 1 1 1 0]];
      • demolished [4 0 3 5 -5], 0 1 1 1 3]];
  • blackwood [5 8 0], 0 0 1]];
  • hexe [6 0 14 17], 0 1 0 0]];
  • jamesbond [7 11 16 0], 0 0 0 1]];
    • jamesbond [7 11 16 0 24], 0 0 0 1 0]];
  • whitewood [7 11 0], 0 0 1]];
  • octoid [8 1 3 3 16], 0 3 4 5 3]];
  • ennealimmal [9 1 1], 0 2 3]];
    • ennealimmal [9 1 1 12], 0 2 3 2]];
      • ennealimmal [9 1 1 12 -75], 0 2 3 2 16]];
  • decoid [10 0 47 36], 0 2 -3 -1]];
    • decoid [10 0 47 36 98], 0 2 -3 -1 -8]];
      • decoid [10 0 47 36 98 37], 0 2 -3 -1 -8 0]];
  • hendecatonic [11 0 43 -4], 0 1 -1 2]];
  • catler [12 19 28 0], 0 0 0 1]];
  • compton [12 19 0], 0 0 1]];
    • compton, waage [12 19 0 -22], 0 0 1 2]];
      • compton, duodecimal [12 19 0 -22 -42], 0 0 1 2 3]];
  • duodecim [12 19 28 34 0], 0 0 0 0 1]];
  • atomic [12 0 161], 0 1 -7]];
  • hemiennealimmal [18 0 -1 22 48], 0 2 3 2 1]];
  • enneadecal [19 0 14], 0 1 1]];
    • enneadecal [19 0 14 -37], 0 1 1 3]];
  • undevigintone [19 30 44 53 0], 0 0 0 0 1]];
  • icosidillic [22 0 86 -8 111], 0 1 -1 2 -1]];
  • vigintiduo [22 35 51 62 0], 0 0 0 0 1]];
  • mystery [29 46 0 14 33 40], 0 0 1 1 1 1]];
  • hemienneadecal [38 0 28 -74 11], 0 1 1 3 2]];

See also