(53 intermediate revisions by 15 users not shown) Line 1:
Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Interwiki
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| en = Augmented family
: This revision was by author [[User:hstraub|hstraub]] and made on <tt>2017-11-23 15:46:12 UTC</tt>.<br>
| de = Übermässige Temperaturen
: The original revision id was <tt>622276421</tt>.<br>
}}
: The revision comment was: <tt></tt><br>
{{Technical data page}}
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The '''augmented family''' of [[regular temperament|temperaments ]] [[tempering out |tempers out ]] the diesis a.k.a. augmented comma, [[ 128/125]] , the amount by which three [[5/4 ]] major thirds fall short of an [[2/1|octave ]], and so identifies the major third with the 1/3- octave. Hence it has the same 400-cent 5/4-approximations as [[12edo]].
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html"><span style="display: block; text-align: right;">[[toc]]
[[xenharmonie/übermässige Temperaturen|Deutsch]]
</span>
The 5-limit parent comma for the **augmented family** is 128/125, the [[128_125|diesis]]. Its [[monzo]] is |7 0 -3>, and flipping that yields <<3 0 -7|| for the [[wedgie]]. Hence the period is 1/3 octave, and this is what is used for a major third. The [[generator]] can be taken as a fifth or a semitone, and [[12edo]], with its excellent fifth, is an obvious tuning for [[5-limit]] augmented, though a sharper fifth might be preferred to go with the sharp third.
=Seven limit children=
== Augmented = =
The second comma of the [[Normal lists|normal comma list]] defines which [[7-limit]] family member we are looking at. August adds 36/35, augene 64/63, hexe 256/245, hemiaug 245/243, and hemis 49/48. Hexe splits the period to 1/6 octave, and hemiaug the generator, giving quarter-tones instead of semitones.
The [[period]] is 1/3 octave, and this is what is used for 5/4, the classical major third. The [[generator ]] can be taken as a fifth or a semitone, and [[12edo]], with its excellent fifth, is an obvious tuning for [[5 -limit]] augmented , though a sharper fifth might be preferred to go with the sharp third. Its [[ploidacot]] is triploid monocot .
=August=
[[Subgroup ]]: 2.3.5
[[Comma]]s: 36/35, 128/125
[[POTE tuning|POTE generator]]: 696.011
[[Comma list ]]: 128/125
[[Map]]: [<3 0 7 -1|, <0 1 0 2|]
{{Mapping |legend= 1| 3 0 7 | 0 1 0 }}
[[Wedgie]]: <<3 0 6 -7 1 14||
[[edo|EDOs]]: [[9edo|9]], [[12edo|12]], [[45edo|45cd]], [[57edo|57cd]], [[69edo|69cd]]
[[Badness]]: 0.0265
==11-limit==
: mapping generators: ~5 /4 , ~3
Commas: 36/35, 45/44, 56/55
POTE generator: ~3/2 = 692.514
[[Optimal tuning]]s:
* [[WE]]: ~5/4 = 399.0128{{c}}, ~3/2 = 704.8937{{c}} (~16/15 = 93.1320{{c}})
: [[error map]]: {{val| -2.962 -0.023 +6.776 }}
* [[CWE]] : ~5/4 = 400.0000{{c}}, ~3/2 = 705.0691{{c}} (~16/15 = 94.9309{{c}})
: error map: {{val| 0.000 +3.114 +13 .686 }}
Map: [<3 0 7 -1 1|, <0 1 0 2 2|]
{{Optimal ET sequence|legend= 1| 3 , 9, 12, 27, 39 , 51c , 90cc }}
EDOs: 9, 12, [[21edo|21]], [[33edo|33e]], [[45edo|45cde]]
Badness: 0.0202
==13-limit==
[[Badness]] (Sintel) : 0.523
Commas: 27/26, 36/35, 45/44, 56/55
POTE generator: ~3/2 = 688.783
=== Overview to extensions ===
The second comma of the [[Normal lists #Normal interval list|normal comma list]] defines which [[7-limit]] family member we are looking at. Augene adds [[64/63]], august [[36/35]], hexe [[256/245]], hemiaug [[245/243]], and triforce [[49/48]]. Hexe splits the [[period]] to 1/6 octave, and hemiaug the [[ generator]], giving quartertones instead of semitones .
Map: [<3 0 7 -1 1 -3|, <0 1 0 2 2 3|]
== Augene ==
EDOs: 9, 12, [[21edo|21]], [[33edo|33ef]], [[54edo|54bcef]]
{{Main | Augene }}
Badness: 0.0184
==Augustus==
Augene tempers out 64 /63 and 126 /125. It may be described as the {{nowrap| 12 & 15 }} temperament. [[27edo]] and [[39edo]] in the 39d val make for good tunings.
Commas: 26/25, 36/35, 45/44, 56/55
POTE generator: ~3/2 = 685.356
[[Subgroup]] : 2. 3.5.7
Map: [<3 0 7 -1 1 11|, <0 1 0 2 2 0|]
[[Comma list] ]: 64/63 , 126/125
EDOs: 9, 12, 21f
Badness: 0.0222
=Augene=
{{Mapping|legend =1| 3 0 7 18 | 0 1 0 -2 }}
Commas: 64/63, 126/125
[[POTE tuning|POTE generator]]: 709.257
[[Optimal tuning]]s:
* [[WE]]: ~5/4 = 398.7461{{c}}, ~3/2 = 707.0335{{c}} (~21/20 = 90.4587{{c}})
: [[error map]]: {{val | -3.762 +1.317 +4.909 +2.060 }}
* [[CWE ]]: ~5/4 = 400.0000{{c}}, ~3/2 = 709.3249{{c}} (~21/20 = 90.6751{{c}})
: error map: {{val| 0.000 +7.370 +13.686 +12.524 }}
Map: [<3 0 7 18|, <0 1 0 -2|]
{{Optimal ET sequence |legend= 1| 12, 27, 39d, 66cd }}
Wedgie: <<3 0 -6 -7 -18 -14||
EDOs: [[12edo|12]], [[27edo|27]], [[39edo|39d]], [[66edo|66cd]]
Badness: 0.0248
==11-limit==
[[Badness]] (Sintel) : 0.628
Commas: 56/55, 64/63, 100/99
POTE generator: ~3/2 = 711.177
=== 11-limit ===
Subgroup : 2. 3.5.7.11
Map: [<3 0 7 18 20|, <0 1 0 -2 -2|]
Comma list : 56/55 , 64/63 , 100/99
EDOs: 12, 15, 27e
Badness: 0.0196
===13-limit===
Mapping: {{mapping| 3 0 7 18 20 | 0 1 0 -2 -2 }}
Commas: 40/39, 56/55, 64/63, 66/65
POTE generator: ~3/2 = 712.013
Optimal tunings :
* WE: ~5/4 = 398.4962{{c}}, ~3/2 = 708.5030{{c}} (~21/20 = 88.4895{{c}})
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 711.6031{{c}} (~21/20 = 88 .3969{{c}})
Map: [<3 0 7 18 20 16|, <0 1 0 -2 -2 -1|]
{{Optimal ET sequence |legend= 0| 12 , 15, 27e }}
EDOs: 12f, 15, 27ef
Badness: 0.0208
===Ogene===
Badness (Sintel) : 0.648
Commas: 56/55, 64/63, 91/90, 100/99
POTE generator: ~3/2 = 712.609
==== 13-limit ====
Subgroup : 2. 3.5.7.11.13
Map: [<3 0 7 18 20 -8|, <0 1 0 -2 -2 4|]
Comma list : 40/39 , 56/55 , 64/63 , 66/65
EDOs: 12, 15, 27e, 69bcef
Badness: 0.0229
===Agene===
Mapping : {{mapping| 3 0 7 18 20 16 | 0 1 0 -2 -2 -1 }}
Commas: 56/55, 64/63, 78/77, 100/99
POTE generator: ~3/2 = 709.677
Optimal tunings :
* WE: ~5/4 = 398.0488{{c}}, ~3/2 = 708.5402{{c}} (~21/20 = 87.5574{{c}})
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 712.6704{{c}} (~21/20 = 87 .3296{{c}})
Map: [<3 0 7 18 20 35|, <0 1 0 -2 -2 -5|]
{{Optimal ET sequence |legend= 0| 12f, 15, 27eff }}
EDOs: 12f, 27e
Badness: 0.0231
==Eugene==
Badness (Sintel) : 0.859
Commas: 55/54, 64/63, 77/75
POTE generator: ~3/2 = 714.150
==== Ogene ====
Subgroup : 2. 3.5.7.11.13
Map: [<3 0 7 18 -4|, <0 1 0 -2 3|]
Comma list : 56/55 , 64/63 , 91/90 , 100/99
EDOs: 15, 27, 42
Badness: 0.0356
[[http://micro.soonlabel.com/gene_ward_smith/Others/Igs/Sad%20Like%20Winter%20Leaves.mp3|Sad Like Winter Leaves]] by [[http://soundcloud.com/cityoftheasleep/sad-like-winter-trees|Igliashon Jones]]
Mapping : {{mapping | 3 0 7 18 20 -8 | 0 1 0 -2 -2 4 }}
[[http://micro.soonlabel.com/gene_ward_smith/Others/Taylor/12of27sonatina.mp3|Galticeran Sonatina]] by [[http://soundcloud.com/joelgranttaylor/galticeran_sonatina|Joel Taylor]]
=Inflated=
Optimal tunings:
Commas: 28/27, 128/125
* WE: ~5/4 = 398.6473{{c}}, ~3/2 = 710.1987{{c}} (~21/20 = 87.0959{{c}})
* CWE : ~5 /4 = 400.0000{{c}} , ~3/2 = 712.5057{{c}} (~21 /20 = 87.4943{{c}})
POTE generator: ~3/2 = 722.719
{{Optimal ET sequence|legend =0| 12, 15, 27e, 69bceef }}
Map: [<3 0 7 -6|, <0 1 0 3|]
Badness (Sintel) : 0.946
Wedgie: <<3 0 9 -7 6 21||
EDOs: 15, 48bc, 63bc, 78bc
Badness: 0.0547
==11-limit==
==== Agene == ==
Commas: 28/27, 55/54, 128/125
Subgroup : 2.3.5.7.11.13
POTE generator: ~3/2 = 722.663
Comma list : 56 /55, 64/63, 78/77, 100/99
Map: [<3 0 7 -6|, <0 1 0 3|]
Mapping : {{mapping| 3 0 7 18 20 35 | 0 1 0 -2 -2 -5 }}
EDOs: 15, 48bce, 63bce, 78bce
Badness: 0.0312
=Deflated=
Optimal tunings:
Commas: 21/20, 128/125
* WE: ~5/4 = 398.5229{{c}}, ~3/2 = 707.0562{{c}} (~21/20 = 89.9897{{c}})
* CWE : ~5/4 = 400.0000{{c}}, ~3/2 = 710.1903{{c}} (~ 21/20 = 89.8097{{c}})
POTE generator: ~3/2 = 681.629
{{Optimal ET sequence|legend =0| 12f, 27e, 66cdeeef }}
Map: [<3 0 7 13|, <0 1 0 -1|]
Badness (Sintel) : 0.955
Wedgie: <<3 0 -3 -7 -13 -7||
EDOs: 3, 9, 18bd, 21d, 30bd
Badness: 0.0591
=Hexe=
=== Eugene == =
Commas: 50/49, 128/125
Subgroup : 2.3.5.7.11
[[POTE tuning|POTE generator]]: 710.963
Comma list : 55/54, 64/63, 77/75
Map: [<6 0 14 17|, <0 1 0 0|]
Mapping : {{mapping| 3 0 7 18 -4 | 0 1 0 -2 3 }}
Wedgie: <<6 0 0 -14 -17 0||
EDOs: [[6edo|6]], [[12edo|12]], [[30edo|30d]], [[[42edo|42d]], [[54edo|54cd]]
Badness: 0.0577
==11-limit==
Optimal tunings:
Commas: 50/49, 56/55, 125/121
* WE: ~5/4 = 399.1743{{c}}, ~3/2 = 712.6763{{c}} (~21/20 = 85.6723{{c}})
* CWE : ~5 /4 = 400.0000{{c}} , ~3 /2 = 713.9414{{c}} (~21 /20 = 86.0586{{c}})
POTE generator: ~3/2 = 714.304
{{Optimal ET sequence|legend =0| 12e, 15, 27, 42 }}
Map: [<6 0 14 17 21|, <0 1 0 0 0|]
Badness (Sintel) : 1.18
EDOs: 6, 12, 30de
Badness: 0.0384
==13-limit==
== August ==
Commas: 50/49, 56/55, 66/65, 105/104
August tempers out 36 /35 and 225/224. It may be described as the {{nowrap| 9 & 12 }} temperament. Unlike augene , august calls for a flat tuning of the fifth , and besides [[12edo]] , [[21edo]] is among the possible tunings.
POTE generator: ~3/2 = 710.005
[[Subgroup]] : 2. 3.5.7
Map: [<6 0 14 17 21 13|, <0 1 0 0 0 1|]
[[Comma list] ]: 36/35, 128/125
EDOs: 12f
Badness: 0.0359
=Hemiaug=
{{Mapping|legend =1| 3 0 7 -1 | 0 1 0 2 }}
Commas: 128/125, 245/243
[[POTE tuning|POTE generator]]: ~28/27 = 45.118
[[Optimal tuning]]s:
* [[WE]]: ~5/4 = 399.1036{{c}}, ~3/2 = 694.4509{{c}} (~16/15 = 103.7564{{c}})
: [[error map]]: {{val | -2.689 -10.193 +7.412 +15.594 }}
* [[CWE ]]: ~5/4 = 400.0000{{c}}, ~3/2 = 694.6812{{c}} (~16 /15 = 105.3188{{c}})
: error map: {{val| 0.000 -7.274 +13.686 +20 .537 }}
Map: [<3 1 7 -1|, <0 2 0 5|]
{{Optimal ET sequence|legend= 1| 9 , 12 , 45cd }}
Wedgie: <<6 0 15 -14 7 35||
EDOs: [[24edo|24]], [[27edo|27]], [[105edo|105bc]]
Badness: 0.0705
==11-limit==
[[Badness]] (Sintel) : 0.670
Commas: 56/55, 128/125, 245/243
POTE generator: ~28/27 = 45.788
=== 11-limit ===
Subgroup : 2.3.5.7 .11
Map: [<3 1 7 -1 1|, <0 2 0 5 5|]
Comma list : 36/35 , 45/44 , 56/55
EDOs: 24, 27e, 51ce, 78ce
Badness: 0.0382
==13-limit==
Mapping: {{mapping| 3 0 7 -1 1 | 0 1 0 2 2 }}
Commas: 56/55, 91/90, 128/125, 245/243
POTE generator: ~28/27 = 46.250
Optimal tunings :
* WE: ~5/4 = 398.9225{{c}}, ~3/2 = 690.6486{{c}} (~16/15 = 107.1966{{c}})
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 690.8519{{c}} ( ~16 /15 = 109 .1481{{c}})
Map: [<3 1 7 -1 1 13|, <0 2 0 5 5 -1|]
{{Optimal ET sequence |legend= 0| 9 , 12 , 21 , 33e }}
EDOs: 24, 27e, 51ce, 78ce
Badness: 0.0302
=Triforce=
Badness (Sintel) : 0.668
Commas: 49/48, 128/125
[[POTE tuning|POTE generator]]: ~7/6 = 247.049
==== 13-limit ====
Subgroup : 2.3.5. 7.11.13
Map: [<3 0 7 6|, <0 2 0 1|]
Comma list : 27/26 , 36/35 , 45/44 , 56/55
Wedgie: <<6 0 3 -14 -12 7||
EDOs: 6, 9, [[15edo|15]], [[24edo|24]], [[39edo|39]], [[63edo|63cd]], [[102edo|102cd]]
Badness: 0.0202
[[image:triforce9.jpg]]
Mapping : {{mapping| 3 0 7 -1 1 -3 | 0 1 0 2 2 3 }}
==11-limit==
Optimal tunings:
Commas: 56/55, 77/75, 128/125
* WE: ~5/4 = 399.0956{{c}}, ~3/2 = 687.2261{{c}} (~16/15 = 110.9651{{c}})
* CWE : ~5 /4 = 400.0000{{c}} , ~3 /2 = 687.5057{{c}} (~16 /15 = 112.4943{{c}})
[[POTE tuning|POTE generator]]: ~7/6 = 247.068
{{Optimal ET sequence |legend =0| 9, 12f, 21, 33ef }}
Map: [<3 0 7 6 8|, <0 2 0 1 1|]
Badness (Sintel) : 0.762
EDOs: 6, 9, 15, 24, 39, [[63edo|63cd]], [[102edo|102cd]]
Badness: 0.0262
===Musical example:===
==== Augustus = ===
[[http://soundcloud.com/cityoftheasleep/the-triforce-of-courage15|The Triforce of Courage (tuned in 15edo)]] by Igliashon Jones
Subgroup : 2.3.5.7.11 .13
==13-limit==
Commas: 49/48, 56/55, 66/65, 77/75
[[POTE tuning|POTE generator]]: ~7/6 = 248.313
Comma list : 26 /25, 36/35, 45/44, 56/55
Map: [<3 0 7 6 8 4|, <0 2 0 1 1 3|]
Mapping : {{mapping| 3 0 7 -1 1 11 | 0 1 0 2 2 0 }}
EDOs: 6, 9, 15, 24, [[63edo|63cdf]], [[87edo|87cdf]]
Badness: 0.0202
[[triphi|Triforce(9) with L:s = phi]]
Optimal tunings:
* WE: ~5/4 = 400.4230{{c}}, ~3/2 = 686.0809{{c}} (~16/15 = 114.7650{{c}} )
* CWE : ~5/4 = 400.0000{{c}}, ~3/2 = 685.8446{{c}} (~16/15 = 114.1554{{c}})
==Semitriforce==
{{Optimal ET sequence|legend =0| 9 , 12 }}
Commas: 49/48, 56/55, 77/75, 507/500
POTE generator: ~7/6 = 246.642
Badness (Sintel) : 0 .919
Map: [<6 0 14 12 16 27|, <0 2 0 1 1 -1|]
== Inflated ==
EDOs: 6, 24, 54cd, 78cd, 102cdf
[ [Subgroup] ]: 2.3.5 .7
Badness: 0.0592
=== ===
[[Comma list]] : 28/27, 128/125
=Hemiug=
Commas: 128/125, 1323/1250
POTE generator: ~21/20 = 52.093
{{Mapping|legend =1| 3 0 7 -6 | 0 1 0 3 }}
Map: [<3 1 7 14|, <0 2 0 -3|]
[[Optimal tuning]]s :
Wedgie: <<6 0 -9 -14 -31 -21||
* [ [WE]]: ~5/4 = 398.4023{{c}}, ~ 3/ 2 = 719.8327{{c}} (~25/24 = 76.9719{{c}})
EDOs: 21, 24, 45c, 69cd
: [[error map] ]: {{val| -3.762 +1.317 +4.909 +2.060 }}
Badness: 0.1378
* [[CWE]] : ~5/4 = 400.0000{{c}} , ~3/2 = 721.0196{{c}} (~25/ 24 = 78.9804{{c}})
: error map: {{val| 0.000 +19.065 +13.686 -5.767 }}
==11-limit==
{{Optimal ET sequence|legend =1| 3d , 12d , 15 }}
Commas: 56/55, 128/125, 1323/1250
POTE generator: ~21/20 = 51.655
[[Badness]] (Sintel) : 1 .39
Map: [<3 1 7 14 16|, <0 2 0 -3 -3|]
=== 11-limit ===
EDOs: 21, 24, 69cd, 93cd
Subgroup : 2. 3.5. 7.11
Badness: 0.0681
==13-limit==
Comma list : 28 /27, 55/54 , 128 /125
Commas: 56/55, 66/65, 105/104, 507/500
POTE generator: ~21/20 = 51.548
Mapping : {{mapping| 3 0 7 -6 -4 | 0 1 0 3 3 }}
Map: [<3 1 7 14 16 13|, <0 2 0 -3 -3 -1|]
Optimal tunings :
EDOs: 21, 24, 69cdf, 93cdf
* WE: ~5/4 = 398.4016{{c}}, ~ 3/ 2 = 719.7758{{c}} (~25/24 = 77.0275{{c}})
Badness: 0.0423
* CWE : ~5/4 = 400.0000{{c}} , ~3/2 = 720.9386{{c}} (~25/ 24 = 79 .0614{{c}})
=Trug=
{{Optimal ET sequence|legend =0| 3de, 12de , 15 }}
Commas: 128/125, 360/343
POTE generator: ~48/35 = 501.980
Badness (Sintel) : 1 .03
Map: [<3 1 7 6|, <0 3 0 2|]
== Deflated ==
EDOs: 9bd, 12
[ [Subgroup] ]: 2.3.5 .7
Badness: 0.1383
=Oodako=
[[Comma list]] : 21/20, 128/125
Commas: 128/125, 2401/2400
POTE generator: ~8/7 = 223.3540873874507317
{{Mapping|legend=1| 3 0 7 13 | 0 1 0 -1 }}
Map: [<3 3 7 8|, <0 4 0 1|]
[[Optimal tuning]]s :
Wedgie: <<12 0 3 -28 -29 7||
* [ [WE]]: ~5/4 = 401.9566{{c}}, ~ 3/2 = 684.9634{{c}} (~16/15 = 118.9497{{c}})
EDOs: 6, 21, 27, 75c, 102cd, 129bcd
: [[error map] ]: {{val| +5.870 -11.122 +27.382 -34.224 }}
Badness: 0.1132
* [[CWE]] : ~5/4 = 400.0000{{c}} , ~3/2 = 682.2587{{c}} (~16/15 = 117.7413{{c}})
: error map: {{val| 0.000 -19.696 +13.686 -51.085 }}
==11-limit==
{{Optimal ET sequence|legend =1| 3 , 6b , 9 }}
Commas: 56/55, 128/125, 3773/3750
POTE generator: ~8/7 = 223.019
[[Badness]] (Sintel) : 1 .50
Map: [<3 3 7 8 10|, <0 4 0 1 1|]
=== 11-limit ===
EDOs: 6, 21, 27e
Subgroup : 2. 3.5. 7.11
Badness: 0.0592
==13-limit==
Comma list : 21 /20 , 33 /32 , 128/125
Commas: 56/55, 78/77, 128/125, 507/500
POTE generator: ~8/7 = 223.449
Mapping : {{mapping| 3 0 7 13 15 | 0 1 0 -1 -1 }}
Map: [<3 3 7 8 10 12|, <0 4 0 1 1 -2|]
Optimal tunings :
EDOs: 6, 21, 27e
* WE: ~5/4 = 402.1799{{c}}, ~ 3/ 2 = 683.7477{{c}} (~16/15 = 120.6120{{c}})
Badness: 0.0423
* CWE : ~5/4 = 400.0000{{c}} , ~3/2 = 680.0162{{c}} (~16/15 = 119 .9838{{c}})
=Hemisemiaug=
{{Optimal ET sequence|legend =0| 3, 6b , 9 }}
Commas: 128/125, 12005/11664
POTE generator: ~15/14 = 144.515
Badness (Sintel) : 1 .23
Map: [<6 1 14 4|, <0 2 0 3|]
== Hexe ==
Wedgie: <<12 0 18 -28 -5 42||
Hexe tempers out 50/49 and may be described as {{nowrap| 6 & 12 }} , viewed as [[6edo |6et ]] with an independent generator for prime 3. Its ploidacot is hexaploid monocot .
Edos: 18, 24, 42, 66c, 108bc
Badness: 0.2110
==11-limit==
[[Subgroup]] : 2.3.5.7
Commas: 56/55, 128/125, 3773/3645
POTE generator: ~15/14 = 144.780
[[Comma list]] : 50 /49, 128/125
Map: [<6 1 14 4 8|, <0 2 0 3 3|]
{{Mapping|legend=1| 6 0 14 17 | 0 1 0 0 }}
EDOs: 24, 42e, 66ce, 108bce
Badness: 0.0807
=Niner=
: mapping generators: ~28/25 , ~3
Niner gives 9 as the complexity of an otonal tetrad, tying it with augene as a temperament supported by 27edo. Niner[18], therefore, has nine such tetrads.
Commas: 128/125, 686/675
[[Optimal tuning]]s :
* [[WE]]: ~28 /25 = 199.0488{{c}} , ~3/2 = 707.5815{{c}} (~25/24 = 88.6137{{c}})
: [[error map]]: {{val| +5.870 -11.122 +27.382 -34.224 }}
* [[CWE]]: ~28/25 = 200.0000{{c}}, ~3/2 = 708.6907{{c}} (~25/24 = 91.3093{{c}})
: error map: {{val| 0.000 +6.735 +13. 686 +31.174 }}
POTE generator: ~3/2 = 707.167
{{Optimal ET sequence|legend =1| 6, 12, 30d, 42dd, 54cdd }}
Map: [<9 0 21 11|, <0 1 0 1|]
[[Badness] ] (Sintel) : 1 .46
Wedgie: <<9 0 9 -21 -11 21||
EDOs: 9, 18, 27, 63c, 90c
Badness: 0.0672
==11-limit==
= == 11-limit = ==
Commas: 56/55, 128/125, 540/539
Subgroup : 2.3.5.7.11
POTE generator: ~3/2 = 706.726
Comma list : 50 /49, 56/55, 125/121
Map: [<9 0 21 11 17|, <0 1 0 1 1|]
Mapping : {{mapping| 6 0 14 17 21 | 0 1 0 0 0 }}
EDOs: 9, 27e, 36, 63ce
Badness: 0.0349
==13-limit==
Optimal tunings:
Commas: 56/55, 78/77, 91/90, 128/125
* WE: ~28/25 = 198.6942{{c}}, ~3/2 = 709.6404{{c}} (~25/24 = 85.1362{{c}})
* CWE : ~28 /25 = 200.0000{{c}} , ~3 /2 = 711.8043{{c}} (~25 /24 = 88.1957{{c}})
POTE generator: ~3/2 = 706.889
{{Optimal ET sequence|legend =0| 6, 12, 30dee, 42ddeee }}
Map: [<9 0 21 11 17 19|, <0 1 0 1 1 1|]
Badness (Sintel) : 1.27
EDOs: 9, 27e, 36, 63ce
Badness: 0.0241
==Music==
=== 13-limit = ==
[[https://www.prismnet.com/~hmiller/music/temp-augmented.html|Herman Miller's page about augmented temperament]]</pre></div>
Subgroup : 2.3.5.7 .11 .13
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Augmented family</title></head><body><span style="display: block; text-align: right;"><!-- ws:start:WikiTextTocRule:78:&lt;img id=&quot;wikitext@@toc@@normal&quot; class=&quot;WikiMedia WikiMediaToc&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/normal?w=225&amp;h=100&quot;/&gt; --><div id="toc"><h1 class="nopad">Table of Contents</h1><!-- ws:end:WikiTextTocRule:78 --><!-- ws:start:WikiTextTocRule:79: --><div style="margin-left: 1em;"><a href="#Seven limit children">Seven limit children</a></div>
Comma list: 50/49, 56 /55, 66 /65, 105 /104
<!-- ws:end:WikiTextTocRule:79 --><!-- ws:start:WikiTextTocRule:80: --><div style="margin-left: 1em;"><a href="#August">August</a></div>
<!-- ws:end:WikiTextTocRule:80 --><!-- ws:start:WikiTextTocRule:81: --><div style="margin-left: 2em;"><a href="#August-11-limit">11-limit</a></div>
Mapping: {{mapping | 6 0 14 17 21 13 | 0 1 0 0 0 1 }}
<!-- ws:end:WikiTextTocRule:81 --><!-- ws:start:WikiTextTocRule:82: --><div style="margin-left: 2em;"><a href="#August-13-limit">13-limit</a></div>
<!-- ws:end:WikiTextTocRule:82 --><!-- ws:start:WikiTextTocRule:83: --><div style="margin-left: 2em;"><a href="#August-Augustus">Augustus</a></div>
Optimal tunings:
<!-- ws:end:WikiTextTocRule:83 --><!-- ws:start:WikiTextTocRule:84: --><div style="margin-left: 1em;"><a href="#Augene">Augene</a></div>
* WE : ~28 /25 = 198.4492{{c}}, ~3/2 = 704.4994{{c}} (~25/24 = 89.2973{{c}})
<!-- ws:end:WikiTextTocRule:84 --><!-- ws:start:WikiTextTocRule:85: --><div style="margin-left: 2em;"><a href="#Augene-11-limit">11-limit</a></div>
* CWE : ~28/25 = 200.0000{{c}}, ~3/2 = 706.6050{{c}} (~16 /15 = 93.3950{{c}})
<!-- ws:end:WikiTextTocRule:85 --><!-- ws:start:WikiTextTocRule:86: --><div style="margin-left: 3em;"><a href="#Augene-11-limit-13-limit">13-limit</a></div>
<!-- ws:end:WikiTextTocRule:86 --><!-- ws:start:WikiTextTocRule:87: --><div style="margin-left: 3em;"><a href="#Augene-11-limit-Ogene">Ogene</a></div>
{{Optimal ET sequence|legend =0| 6f, 12f }}
<!-- ws:end:WikiTextTocRule:87 --><!-- ws:start:WikiTextTocRule:88: --><div style="margin-left: 3em;"><a href="#Augene-11-limit-Agene">Agene</a></div>
<!-- ws:end:WikiTextTocRule:88 --><!-- ws:start:WikiTextTocRule:89: --><div style="margin-left: 2em;"><a href="#Augene-Eugene">Eugene</a></div>
Badness (Sintel) : 1.49
<!-- ws:end:WikiTextTocRule:89 --><!-- ws:start:WikiTextTocRule:90: --><div style="margin-left: 1em;"><a href="#Inflated">Inflated</a></div>
<!-- ws:end:WikiTextTocRule:90 --><!-- ws:start:WikiTextTocRule:91: --><div style="margin-left: 2em;"><a href="#Inflated-11-limit">11-limit</a></div>
== Triforce ==
<!-- ws:end:WikiTextTocRule:91 --><!-- ws:start:WikiTextTocRule:92: --><div style="margin-left: 1em;"><a href="#Deflated">Deflated</a></div>
[[File:triforce9.jpg|thumb|alt =triforce9.jpg|Lattice of triforce]]
<!-- ws:end:WikiTextTocRule:92 --><!-- ws:start:WikiTextTocRule:93: --><div style="margin-left: 1em;"><a href="#Hexe">Hexe</a></div>
<!-- ws:end:WikiTextTocRule:93 --><!-- ws:start:WikiTextTocRule:94: --><div style="margin-left: 2em;"><a href="#Hexe-11-limit">11-limit</a></div>
Triforce tempers out 49 /48 and may be described as {{nowrap| 9 & 15 }}. Its ploidacot is triploid alpha -dicot. [[24edo]] and [[39edo]] are among the possible tunings.
<!-- ws:end:WikiTextTocRule:94 --><!-- ws:start:WikiTextTocRule:95: --><div style="margin-left: 2em;"><a href="#Hexe-13-limit">13-limit</a></div>
<!-- ws:end:WikiTextTocRule:95 --><!-- ws:start:WikiTextTocRule:96: --><div style="margin-left: 1em;"><a href="#Hemiaug">Hemiaug</a></div>
[[Subgroup]] : 2.3.5.7
<!-- ws:end:WikiTextTocRule:96 --><!-- ws:start:WikiTextTocRule:97: --><div style="margin-left: 2em;"><a href="#Hemiaug-11-limit">11-limit</a></div>
<!-- ws:end:WikiTextTocRule:97 --><!-- ws:start:WikiTextTocRule:98: --><div style="margin-left: 2em;"><a href="#Hemiaug-13-limit">13-limit</a></div>
[[Comma list]] : 49/48, 128/125
<!-- ws:end:WikiTextTocRule:98 --><!-- ws:start:WikiTextTocRule:99: --><div style="margin-left: 1em;"><a href="#Triforce">Triforce</a></div>
<!-- ws:end:WikiTextTocRule:99 --><!-- ws:start:WikiTextTocRule:100: --><div style="margin-left: 2em;"><a href="#Triforce-11-limit">11-limit</a></div>
{{Mapping|legend=1| 3 0 7 6 | 0 2 0 1 }}
<!-- ws:end:WikiTextTocRule:100 --><!-- ws:start:WikiTextTocRule:101: --><div style="margin-left: 3em;"><a href="#Triforce-11-limit-Musical example:">Musical example:</a></div>
<!-- ws:end:WikiTextTocRule:101 --><!-- ws:start:WikiTextTocRule:102: --><div style="margin-left: 2em;"><a href="#Triforce-13-limit">13-limit</a></div>
: mapping generators : ~5/4, ~7/4
<!-- ws:end:WikiTextTocRule:102 --><!-- ws:start:WikiTextTocRule:103: --><div style="margin-left: 2em;"><a href="#Triforce-Semitriforce">Semitriforce</a></div>
<!-- ws:end:WikiTextTocRule:103 --><!-- ws:start:WikiTextTocRule:104: --><div style="margin-left: 3em;"><a href="#toc25"> </a></div>
[[Optimal tuning]]s :
<!-- ws:end:WikiTextTocRule:104 --><!-- ws:start:WikiTextTocRule:105: --><div style="margin-left: 1em;"><a href="#Hemiug">Hemiug</a></div>
* [[WE]] : ~5/4 = 399.7480{{c}}, ~7 /4 = 952.3507{{c}} (~35 /32 = 152.8547{{c}})
<!-- ws:end:WikiTextTocRule:105 --><!-- ws:start:WikiTextTocRule:106: --><div style="margin-left: 2em;"><a href="#Hemiug-11-limit">11-limit</a></div>
: [[error map]]: {{val| -0.756 +2.746 +11.922 -17.987 }}
<!-- ws:end:WikiTextTocRule:106 --><!-- ws:start:WikiTextTocRule:107: --><div style="margin-left: 2em;"><a href="#Hemiug-13-limit">13-limit</a></div>
* [[CWE]] : ~5/4 = 400.0000{{c}}, ~7/4 = 952.7463{{c}} (~35/32 = 152.7463{{c}})
<!-- ws:end:WikiTextTocRule:107 --><!-- ws:start:WikiTextTocRule:108: --><div style="margin-left: 1em;"><a href="#Trug">Trug</a></div>
: error map : {{val| 0.000 +3.538 +13.686 -16.080 }}
<!-- ws:end:WikiTextTocRule:108 --><!-- ws:start:WikiTextTocRule:109: --><div style="margin-left: 1em;"><a href="#Oodako">Oodako</a></div>
<!-- ws:end:WikiTextTocRule:109 --><!-- ws:start:WikiTextTocRule:110: --><div style="margin-left: 2em;"><a href="#Oodako-11-limit">11-limit</a></div>
{{Optimal ET sequence|legend=1| 6, 9, 15, 24, 39 }}
<!-- ws:end:WikiTextTocRule:110 --><!-- ws:start:WikiTextTocRule:111: --><div style="margin-left: 2em;"><a href="#Oodako-13-limit">13-limit</a></div>
<!-- ws:end:WikiTextTocRule:111 --><!-- ws:start:WikiTextTocRule:112: --><div style="margin-left: 1em;"><a href="#Hemisemiaug">Hemisemiaug</a></div>
[[Badness]] (Sintel) : 1.39
<!-- ws:end:WikiTextTocRule:112 --><!-- ws:start:WikiTextTocRule:113: --><div style="margin-left: 2em;"><a href="#Hemisemiaug-11-limit">11-limit</a></div>
<!-- ws:end:WikiTextTocRule:113 --><!-- ws:start:WikiTextTocRule:114: --><div style="margin-left: 1em;"><a href="#Niner">Niner</a></div>
=== 11 -limit = ==
<!-- ws:end:WikiTextTocRule:114 --><!-- ws:start:WikiTextTocRule:115: --><div style="margin-left: 2em;"><a href="#Niner-11-limit">11-limit</a></div>
Subgroup: 2.3.5.7.11
<!-- ws:end:WikiTextTocRule:115 --><!-- ws:start:WikiTextTocRule:116: --><div style="margin-left: 2em;"><a href="#Niner-13-limit">13-limit</a></div>
<!-- ws:end:WikiTextTocRule:116 --><!-- ws:start:WikiTextTocRule:117: --><div style="margin-left: 2em;"><a href="#Niner-Music">Music</a></div>
Comma list: 49/48, 56 /55, 77 /75
<!-- ws:end:WikiTextTocRule:117 --><!-- ws:start:WikiTextTocRule:118: --></div>
<!-- ws:end:WikiTextTocRule:118 --><br />
Mapping : {{mapping| 3 0 7 6 8 | 0 2 0 1 1 }}
<a class="wiki_link" href="http://xenharmonie.wikispaces.com/%C3%BCberm%C3%A4ssige%20Temperaturen">Deutsch</a><br />
</span><br />
Optimal tunings :
The 5-limit parent comma for the <strong>augmented family</strong> is 128/125, the <a class="wiki_link" href="/128_125">diesis</a>. Its <a class="wiki_link" href="/monzo">monzo</a> is |7 0 -3&gt;, and flipping that yields &lt;&lt;3 0 -7|| for the <a class="wiki_link" href="/wedgie">wedgie</a>. Hence the period is 1/3 octave, and this is what is used for a major third. The <a class="wiki_link" href="/generator">generator</a> can be taken as a fifth or a semitone, and <a class="wiki_link" href="/12edo">12edo</a>, with its excellent fifth, is an obvious tuning for <a class="wiki_link" href="/5-limit">5-limit</a> augmented, though a sharper fifth might be preferred to go with the sharp third.<br />
* WE : ~5/4 = 399.7654{{c}}, ~7/4 = 952.3730{{c}} (~12/ 11 = 152.8421{{c}})
<br />
* CWE: ~5/4 = 400.0000{{c}}, ~7 /4 = 952.7447{{c}} (~12 /11 = 152.7447{{c}})
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Seven limit children"></a><!-- ws:end:WikiTextHeadingRule:0 -->Seven limit children</h1>
The second comma of the <a class="wiki_link" href="/Normal%20lists">normal comma list</a> defines which <a class="wiki_link" href="/7-limit">7-limit</a> family member we are looking at. August adds 36/35, augene 64/63, hexe 256/245, hemiaug 245/243, and hemis 49/48. Hexe splits the period to 1/6 octave, and hemiaug the generator, giving quarter-tones instead of semitones.<br />
{{Optimal ET sequence|legend=0| 6, 9, 15, 24, 39 }}
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="August"></a><!-- ws:end:WikiTextHeadingRule:2 -->August</h1>
Badness (Sintel) : 0.865
<a class="wiki_link" href="/Comma">Comma</a>s: 36/35, 128/125<br />
<br />
; Music
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 696.011<br />
* [https ://cityoftheasleep.bandcamp.com/track/the -triforce -of -courage -24edo ''The Triforce of Courage (24edo)'']{{dead link}} by [[Igliashon Jones]] (2018)
<br />
* [https://www.chrisvaisvil.com/2 -2 -1 -2 -2 -1 -2 -2 -1 -mode -of -15 -edo/ ''2 -2 -1 -2 -2 -1 -2 -2 -1 mode of 15 edo''] [https ://web.archive.org/web/20201127015017/http ://micro.soonlabel.com/15 -ET/20130831_221of15.mp3 play] by [[Chris Vaisvil]] (2013)
<a class="wiki_link" href="/Map">Map</a>: [&lt;3 0 7 -1|, &lt;0 1 0 2|]<br />
<a class="wiki_link" href="/Wedgie">Wedgie</a>: &lt;&lt;3 0 6 -7 1 14||<br />
==== 13 -limit == ==
<a class="wiki_link" href="/edo">EDOs</a>: <a class="wiki_link" href="/9edo">9</a>, <a class="wiki_link" href="/12edo">12</a>, <a class="wiki_link" href="/45edo">45cd</a>, <a class="wiki_link" href="/57edo">57cd</a>, <a class="wiki_link" href="/69edo">69cd</a><br />
Subgroup : 2.3.5.7.11.13
<a class="wiki_link" href="/Badness">Badness</a>: 0.0265<br />
<br />
Comma list : 49/48, 56/55, 66/65, 77/75
<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="August-11-limit"></a><!-- ws:end:WikiTextHeadingRule:4 -->11-limit</h2>
Commas: 36/35, 45/44, 56/55<br />
Mapping : {{mapping| 3 0 7 6 8 4 | 0 2 0 1 1 3 }}
<br />
POTE generator: ~3/2 = 692.514<br />
Optimal tunings :
<br />
* WE : ~5/4 = 399.7107{{c}}, ~7/4 = 950.9983{{c}} (~12/ 11 = 151.5768{{c}})
Map: [&lt;3 0 7 -1 1|, &lt;0 1 0 2 2|]<br />
* CWE: ~5/4 = 400.0000{{c}}, ~7 /4 = 951.4465{{c}} (~12 /11 = 151.4465{{c}})
EDOs: 9, 12, <a class="wiki_link" href="/21edo">21</a>, <a class="wiki_link" href="/33edo">33e</a>, <a class="wiki_link" href="/45edo">45cde</a><br />
Badness: 0.0202<br />
{{Optimal ET sequence|legend=0| 6f, 9, 15, 24 }}
<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="August-13-limit"></a><!-- ws:end:WikiTextHeadingRule:6 -->13-limit</h2>
Badness (Sintel): 0.837
Commas: 27/26, 36/35, 45/44, 56/55<br />
<br />
; Scales
POTE generator: ~3/2 = 688.783<br />
* [[triphi]], Triforce[9] with L :s = phi
<br />
Map: [&lt;3 0 7 -1 1 -3|, &lt;0 1 0 2 2 3|]<br />
==== Semitriforce ====
EDOs: 9, 12, <a class="wiki_link" href="/21edo">21</a>, <a class="wiki_link" href="/33edo">33ef</a>, <a class="wiki_link" href="/54edo">54bcef</a><br />
This extension splits the period into 1/6 -octave for ~44 /39. Its ploidacot is hexaploid dicot.
Badness: 0.0184<br />
<br />
Subgroup : 2.3.5.7.11.13
<!-- ws:start:WikiTextHeadingRule:8:&lt;h2&gt; --><h2 id="toc4"><a name="August-Augustus"></a><!-- ws:end:WikiTextHeadingRule:8 -->Augustus</h2>
Commas: 26/25, 36/35, 45/44, 56/55<br />
Comma list : 49/48, 56/55, 77/75, 507/500
<br />
POTE generator: ~3/2 = 685.356<br />
Mapping : {{mapping| 6 0 14 12 16 27 | 0 2 0 1 1 -1 }}
<br />
Map: [&lt;3 0 7 -1 1 11|, &lt;0 1 0 2 2 0|]<br />
: mapping generators : ~44/39, ~7/4
EDOs: 9, 12, 21f<br />
Badness: 0.0222<br />
Optimal tunings :
<br />
* WE : ~44/39 = 199.8321{{c}}, ~7/4 = 952.5580{{c}} (~40/39 = 46.6024{{c}})
<!-- ws:start:WikiTextHeadingRule:10:&lt;h1&gt; --><h1 id="toc5"><a name="Augene"></a><!-- ws:end:WikiTextHeadingRule:10 -->Augene</h1>
* CWE: ~44/39 = 200.0000{{c}}, ~7 /4 = 953.2005{{c}} (~40 /39 = 46.7995{{c}})
Commas: 64/63, 126/125<br />
<br />
{{Optimal ET sequence|legend=0| 6, 18bd, 24 }}
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 709.257<br />
<br />
Badness (Sintel) : 2.44
Map: [&lt;3 0 7 18|, &lt;0 1 0 -2|]<br />
Wedgie: &lt;&lt;3 0 -6 -7 -18 -14||<br />
== Hemiaug ==
EDOs: <a class="wiki_link" href="/12edo">12</a>, <a class="wiki_link" href="/27edo">27</a>, <a class="wiki_link" href="/39edo">39d</a>, <a class="wiki_link" href="/66edo">66cd</a><br />
Hemiaug tempers out 245/243 and may be described as {{nowrap| 24 & 27 }}. The generator may be taken as ~14 /9, but also a neutral third or a neutral second that stand in for 11/9~16/13 and 12 /11~13/12 in the higher limits, respectively. Hemiaug's ploidacot is triploid dicot. [[27edo]] makes for a recommendable tuning in the 7 -limit, but [[51edo]] serves better in the higher limits.
Badness: 0.0248<br />
<br />
[[Subgroup]] : 2.3.5.7
<!-- ws:start:WikiTextHeadingRule:12:&lt;h2&gt; --><h2 id="toc6"><a name="Augene-11-limit"></a><!-- ws:end:WikiTextHeadingRule:12 -->11-limit</h2>
Commas: 56/55, 64/63, 100/99<br />
[[Comma list]] : 128/125, 245/243
<br />
POTE generator: ~3/2 = 711.177<br />
{{Mapping|legend =1| 3 1 7 -1 | 0 2 0 5 }}
<br />
Map: [&lt;3 0 7 18 20|, &lt;0 1 0 -2 -2|]<br />
: mapping generators: ~5 /4, ~14 /9
EDOs: 12, 15, 27e<br />
Badness: 0.0196<br />
[[Optimal tuning]]s :
<br />
* [[WE]] : ~5/4 = 398.9278{{c}}, ~14/9 = 752.8583{{c}} (~36/35 = 44.9973{{c}})
<!-- ws:start:WikiTextHeadingRule:14:&lt;h3&gt; --><h3 id="toc7"><a name="Augene-11-limit-13-limit"></a><!-- ws:end:WikiTextHeadingRule:14 -->13-limit</h3>
: [[error map]] : {{val| -3.217 +2.689 +6.181 -3.462 }}
Commas: 40/39, 56/55, 64/63, 66/65<br />
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~14/9 = 754.2078{{c}} (~36 /35 = 45.7922{{c}})
<br />
: error map : {{val| 0.000 +6.461 +13.686 +2.213 }}
POTE generator: ~3/2 = 712.013<br />
<br />
{{Optimal ET sequence|legend=1| 24, 27 }}
Map: [&lt;3 0 7 18 20 16|, &lt;0 1 0 -2 -2 -1|]<br />
EDOs: 12f, 15, 27ef<br />
[[Badness]] (Sintel) : 1.78
Badness: 0.0208<br />
<br />
= == 11-limit ===
<!-- ws:start:WikiTextHeadingRule:16:&lt;h3&gt; --><h3 id="toc8"><a name="Augene-11-limit-Ogene"></a><!-- ws:end:WikiTextHeadingRule:16 -->Ogene</h3>
Subgroup: 2.3.5.7. 11
Commas: 56/55, 64/63, 91/90, 100/99<br />
<br />
Comma list: 56/55, 128 /125, 243 /242
POTE generator: ~3/2 = 712.609<br />
<br />
Mapping : {{mapping| 3 1 7 -1 1 | 0 2 0 5 5 }}
Map: [&lt;3 0 7 18 20 -8|, &lt;0 1 0 -2 -2 4|]<br />
EDOs: 12, 15, 27e, 69bcef<br />
Optimal tunings :
Badness: 0.0229<br />
* WE : ~5/4 = 398.8946{{c}}, ~14/9 = 752.1272{{c}} (~36 /35 = 45.6619{{c}})
<br />
* CWE : ~5/4 = 400.0000{{c}}, ~14/9 = 753.5000{{c}} (~36/35 = 46.5000{{c}})
<!-- ws:start:WikiTextHeadingRule:18:&lt;h3&gt; --><h3 id="toc9"><a name="Augene-11-limit-Agene"></a><!-- ws:end:WikiTextHeadingRule:18 -->Agene</h3>
Commas: 56/55, 64/63, 78/77, 100/99<br />
{{Optimal ET sequence|legend =0| 24, 27e, 51ce }}
<br />
POTE generator: ~3/2 = 709.677<br />
Badness (Sintel) : 1.26
<br />
Map: [&lt;3 0 7 18 20 35|, &lt;0 1 0 -2 -2 -5|]<br />
= == 13 -limit ===
EDOs: 12f, 27e<br />
Subgroup: 2.3.5.7. 11.13
Badness: 0.0231<br />
<br />
Comma list: 56/55, 91/90, 128 /125, 243 /242
<!-- ws:start:WikiTextHeadingRule:20:&lt;h2&gt; --><h2 id="toc10"><a name="Augene-Eugene"></a><!-- ws:end:WikiTextHeadingRule:20 -->Eugene</h2>
Commas: 55/54, 64/63, 77/75<br />
Mapping: {{mapping| 3 1 7 -1 1 13 | 0 2 0 5 5 -1 }}
<br />
POTE generator: ~3/2 = 714.150<br />
Optimal tunings :
<br />
* WE : ~5/4 = 399.1053{{c}}, ~14/9 = 752.0643{{c}} (~36/35 = 46.1463{{c}})
Map: [&lt;3 0 7 18 -4|, &lt;0 1 0 -2 3|]<br />
* CWE : ~5/4 = 400.0000{{c}}, ~14 /9 = 753.3806{{c}} (~36 /35 = 46.6194{{c}})
EDOs: 15, 27, 42<br />
Badness: 0.0356<br />
{{Optimal ET sequence|legend=0| 24, 27e, 51ce }}
<br />
<a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Igs/Sad%20Like%20Winter%20Leaves.mp3" rel="nofollow">Sad Like Winter Leaves</a> by <a class="wiki_link_ext" href="http://soundcloud.com/cityoftheasleep/sad-like-winter-trees" rel="nofollow">Igliashon Jones</a><br />
Badness (Sintel) : 1.25
<a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Taylor/12of27sonatina.mp3" rel="nofollow">Galticeran Sonatina</a> by <a class="wiki_link_ext" href="http://soundcloud.com/joelgranttaylor/galticeran_sonatina" rel="nofollow">Joel Taylor</a><br />
<br />
== Hemiug ==
<!-- ws:start:WikiTextHeadingRule:22:&lt;h1&gt; --><h1 id="toc11"><a name="Inflated"></a><!-- ws:end:WikiTextHeadingRule:22 -->Inflated</h1>
Hemiug tempers out 1323 /1250 and may be described as {{nowrap| 21 & 24 }}. The generator is a similar interval but for ~32/21 instead of ~14 /9, and the ploidacot is triploid dicot, the same as hemiaug.
Commas: 28/27, 128/125<br />
<br />
[[Subgroup]] : 2.3.5.7
POTE generator: ~3/2 = 722.719<br />
<br />
[[Comma list]] : 128/125, 1323/1250
Map: [&lt;3 0 7 -6|, &lt;0 1 0 3|]<br />
Wedgie: &lt;&lt;3 0 9 -7 6 21||<br />
{{Mapping|legend =1| 3 1 7 14 | 0 2 0 -3 }}
EDOs: 15, 48bc, 63bc, 78bc<br />
Badness: 0.0547<br />
: mapping generators: ~5 /4, ~32 /21
<br />
<!-- ws:start:WikiTextHeadingRule:24:&lt;h2&gt; --><h2 id="toc12"><a name="Inflated-11-limit"></a><!-- ws:end:WikiTextHeadingRule:24 -->11-limit</h2>
[[Optimal tuning]]s :
Commas: 28/27, 55/54, 128/125<br />
* [[WE]] : ~5/4 = 400.1805{{c}}, ~32/21 = 748.2436{{c}} (~21/20 = 52.1174{{c}})
<br />
: [[error map]] : {{val| +0.542 -5.287 +14.950 -11.030 }}
POTE generator: ~3/2 = 722.663<br />
* [[CWE]] : ~5/4 = 400.0000{{c}}, ~32 /21 = 747.9138{{c}} (~21 /20 = 52.0862{{c}})
<br />
: error map : {{val| 0.000 -6.127 +13.686 -12.567 }}
Map: [&lt;3 0 7 -6|, &lt;0 1 0 3|]<br />
EDOs: 15, 48bce, 63bce, 78bce<br />
{{Optimal ET sequence|legend=1| 21, 24, 45c }}
Badness: 0.0312<br />
<br />
[[Badness]] (Sintel) : 3.49
<!-- ws:start:WikiTextHeadingRule:26:&lt;h1&gt; --><h1 id="toc13"><a name="Deflated"></a><!-- ws:end:WikiTextHeadingRule:26 -->Deflated</h1>
Commas: 21/20, 128/125<br />
== = 11 -limit == =
<br />
Subgroup : 2.3.5.7.11
POTE generator: ~3/2 = 681.629<br />
<br />
Comma list : 56/55, 128/125, 1323/1250
Map: [&lt;3 0 7 13|, &lt;0 1 0 -1|]<br />
Wedgie: &lt;&lt;3 0 -3 -7 -13 -7||<br />
Mapping: {{mapping| 3 1 7 14 16 | 0 2 0 -3 -3 }}
EDOs: 3, 9, 18bd, 21d, 30bd<br />
Badness: 0.0591<br />
Optimal tunings :
<br />
* WE : ~5/4 = 400.0637{{c}}, ~32/21 = 748.4638{{c}} (~33/32 = 51.6637{{c}})
<!-- ws:start:WikiTextHeadingRule:28:&lt;h1&gt; --><h1 id="toc14"><a name="Hexe"></a><!-- ws:end:WikiTextHeadingRule:28 -->Hexe</h1>
* CWE: ~5/4 = 400.0000{{c}}, ~32 /21 = 748.3383{{c}} (~33 /32 = 51.6617{{c}})
Commas: 50/49, 128/125<br />
<br />
{{Optimal ET sequence|legend=0| 21, 24 }}
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 710.963<br />
<br />
Badness (Sintel) : 2.25
Map: [&lt;6 0 14 17|, &lt;0 1 0 0|]<br />
Wedgie: &lt;&lt;6 0 0 -14 -17 0||<br />
=== 13 -limit ===
EDOs: <a class="wiki_link" href="/6edo">6</a>, <a class="wiki_link" href="/12edo">12</a>, <a class="wiki_link" href="/30edo">30d</a>, [<a class="wiki_link" href="/42edo">42d</a>, <a class="wiki_link" href="/54edo">54cd</a><br />
Subgroup : 2.3.5.7. 11.13
Badness: 0.0577<br />
<br />
Comma list : 56/55, 66 /65, 105 /104, 507/500
<!-- ws:start:WikiTextHeadingRule:30:&lt;h2&gt; --><h2 id="toc15"><a name="Hexe-11-limit"></a><!-- ws:end:WikiTextHeadingRule:30 -->11-limit</h2>
Commas: 50/49, 56/55, 125/121<br />
Mapping : {{mapping| 3 1 7 14 16 13 | 0 2 0 -3 -3 -1 }}
<br />
POTE generator: ~3/2 = 714.304<br />
Optimal tunings :
<br />
* WE : ~5/4 = 399.8855{{c}}, ~32/21 = 748.2378{{c}} (~33 /32 = 51.5332{{c}})
Map: [&lt;6 0 14 17 21|, &lt;0 1 0 0 0|]<br />
* CWE : ~5/4 = 400.0000{{c}}, ~32/21 = 748.4655{{c}} (~33/32 = 51.5345{{c}})
EDOs: 6, 12, 30de<br />
Badness: 0.0384<br />
{{Optimal ET sequence|legend =0| 21, 24 }}
<br />
<!-- ws:start:WikiTextHeadingRule:32:&lt;h2&gt; --><h2 id="toc16"><a name="Hexe-13-limit"></a><!-- ws:end:WikiTextHeadingRule:32 -->13-limit</h2>
Badness (Sintel) : 1.75
Commas: 50/49, 56/55, 66/65, 105/104<br />
<br />
== Oodako ==
POTE generator: ~3/2 = 710.005<br />
Oodako tempers out 2401/2400 and may be described as {{nowrap| 21 & 27 }}. It is generated by a quarter of a fifth, which stands in for ~28 /25. Its ploidacot is triploid tetracot.
<br />
Map: [&lt;6 0 14 17 21 13|, &lt;0 1 0 0 0 1|]<br />
[[Subgroup]]: 2.3.5.7
EDOs: 12f<br />
Badness: 0.0359<br />
[[Comma list]] : 128/125, 2401/2400
<br />
<!-- ws:start:WikiTextHeadingRule:34:&lt;h1&gt; --><h1 id="toc17"><a name="Hemiaug"></a><!-- ws:end:WikiTextHeadingRule:34 -->Hemiaug</h1>
{{Mapping|legend=1| 3 3 7 8 | 0 4 0 1 }}
Commas: 128/125, 245/243<br />
<br />
: mapping generators : ~5/4, ~28/25
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~28/27 = 45.118<br />
<br />
[[Optimal tuning]]s :
Map: [&lt;3 1 7 -1|, &lt;0 2 0 5|]<br />
* [[WE]] : ~5/4 = 399.0296{{c}}, ~28/25 = 176.2174{{c}} (~49/48 = 46.5949{{c}})
Wedgie: &lt;&lt;6 0 15 -14 7 35||<br />
: [[error map]] : {{val| -2.911 +0.004 +6.894 -0.371 }}
EDOs: <a class="wiki_link" href="/24edo">24</a>, <a class="wiki_link" href="/27edo">27</a>, <a class="wiki_link" href="/105edo">105bc</a><br />
* [[CWE]] : ~5/4 = 400.0000{{c}}, ~28/25 = 176.2984{{c}} (~49/48 = 47.4031{{c}})
Badness: 0.0705<br />
: error map : {{val| 0.000 +3.239 +13.686 +7.473 }}
<br />
<!-- ws:start:WikiTextHeadingRule:36:&lt;h2&gt; --><h2 id="toc18"><a name="Hemiaug-11-limit"></a><!-- ws:end:WikiTextHeadingRule:36 -->11-limit</h2>
{{Optimal ET sequence|legend=1| 6, 21, 27, 75c, 102ccd, 129bccd }}
Commas: 56/55, 128/125, 245/243<br />
<br />
[[Badness]] (Sintel): 2.86
POTE generator: ~28/27 = 45.788<br />
<br />
= == 11-limit ===
Map: [&lt;3 1 7 -1 1|, &lt;0 2 0 5 5|]<br />
Subgroup: 2.3.5.7. 11
EDOs: 24, 27e, 51ce, 78ce<br />
Badness: 0.0382<br />
Comma list: 56/55, 128 /125, 2401 /2400
<br />
<!-- ws:start:WikiTextHeadingRule:38:&lt;h2&gt; --><h2 id="toc19"><a name="Hemiaug-13-limit"></a><!-- ws:end:WikiTextHeadingRule:38 -->13-limit</h2>
Mapping : {{mapping| 3 3 7 8 10 | 0 4 0 1 1 }}
Commas: 56/55, 91/90, 128/125, 245/243<br />
<br />
Optimal tunings :
POTE generator: ~28/27 = 46.250<br />
* WE : ~5/4 = 398.6615{{c}}, ~11/10 = 176.3886{{c}} (~49/48 = 45.8843{{c}})
<br />
* CWE : ~5/4 = 400.0000{{c}}, ~11/10 = 176.5471{{c}} (~49/48 = 46.9059{{c}})
Map: [&lt;3 1 7 -1 1 13|, &lt;0 2 0 5 5 -1|]<br />
EDOs: 24, 27e, 51ce, 78ce<br />
{{Optimal ET sequence|legend=0| 6, 21, 27e }}
Badness: 0.0302<br />
<br />
Badness (Sintel): 1.96
<!-- ws:start:WikiTextHeadingRule:40:&lt;h1&gt; --><h1 id="toc20"><a name="Triforce"></a><!-- ws:end:WikiTextHeadingRule:40 -->Triforce</h1>
Commas: 49/48, 128/125<br />
== = 13-limit ===
<br />
Subgroup : 2.3.5.7.11.13
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 247.049<br />
<br />
Comma list : 56/55, 78/77, 128/125, 507/500
Map: [&lt;3 0 7 6|, &lt;0 2 0 1|]<br />
Wedgie: &lt;&lt;6 0 3 -14 -12 7||<br />
Mapping : {{mapping| 3 3 7 8 10 12 | 0 4 0 1 1 -2 }}
EDOs: 6, 9, <a class="wiki_link" href="/15edo">15</a>, <a class="wiki_link" href="/24edo">24</a>, <a class="wiki_link" href="/39edo">39</a>, <a class="wiki_link" href="/63edo">63cd</a>, <a class="wiki_link" href="/102edo">102cd</a><br />
Badness: 0.0202<br />
Optimal tunings :
<br />
* WE : ~5/4 = 398.8612{{c}}, ~11/10 = 176.0486{{c}} (~49 /48 = 46.7640{{c}})
<!-- ws:start:WikiTextLocalImageRule:119:&lt;img src=&quot;/file/view/triforce9.jpg/271381934/triforce9.jpg&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/triforce9.jpg/271381934/triforce9.jpg" alt="triforce9.jpg" title="triforce9.jpg" /><!-- ws:end:WikiTextLocalImageRule:119 --><br />
* CWE : ~5/4 = 400.0000{{c}}, ~11/10 = 176.3326{{c}} (~49/48 = 47.3348{{c}})
<br />
<!-- ws:start:WikiTextHeadingRule:42:&lt;h2&gt; --><h2 id="toc21"><a name="Triforce-11-limit"></a><!-- ws:end:WikiTextHeadingRule:42 -->11-limit</h2>
{{Optimal ET sequence|legend =0| 6, 21, 27e }}
Commas: 56/55, 77/75, 128/125<br />
<br />
Badness (Sintel) : 1.75
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 247.068<br />
<br />
== Hemisemiaug ==
Map: [&lt;3 0 7 6 8|, &lt;0 2 0 1 1|]<br />
Hemisemiaug tempers out 12005/11664 and splits both the period and generator of augmented in two. Its ploidacot is hexaploid alpha -dicot.
EDOs: 6, 9, 15, 24, 39, <a class="wiki_link" href="/63edo">63cd</a>, <a class="wiki_link" href="/102edo">102cd</a><br />
Badness: 0.0262<br />
[[Subgroup]]: 2.3.5.7
<br />
<!-- ws:start:WikiTextHeadingRule:44:&lt;h3&gt; --><h3 id="toc22"><a name="Triforce-11-limit-Musical example:"></a><!-- ws:end:WikiTextHeadingRule:44 -->Musical example:</h3>
[[Comma list]]: 128 /125, 12005 /11664
<a class="wiki_link_ext" href="http://soundcloud.com/cityoftheasleep/the-triforce-of-courage15" rel="nofollow">The Triforce of Courage (tuned in 15edo)</a> by Igliashon Jones<br />
<!-- ws:start:WikiTextHeadingRule:46:&lt;h2&gt; --><h2 id="toc23"><a name="Triforce-13-limit"></a><!-- ws:end:WikiTextHeadingRule:46 -->13-limit</h2>
{{Mapping|legend=1| 6 1 14 4 | 0 2 0 3 }}
Commas: 49/48, 56/55, 66/65, 77/75<br />
<br />
: mapping generators : ~54/49, ~45/28
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 248.313<br />
<br />
[[Optimal tuning]]s :
Map: [&lt;3 0 7 6 8 4|, &lt;0 2 0 1 1 3|]<br />
* [[WE]] : ~54/49 = 199.5469{{c}}, ~45/28 = 853.5468{{c}} (~36 /35 = 55.3594{{c}})
EDOs: 6, 9, 15, 24, <a class="wiki_link" href="/63edo">63cdf</a>, <a class="wiki_link" href="/87edo">87cdf</a><br />
: [[error map]] : {{val| -2.719 +4.686 +7.342 -9.998 }}
Badness: 0.0202<br />
* [[CWE]] : ~54/49 = 200.0000{{c}}, ~45/28 = 854.7144{{c}} (~36/35 = 54.7144{{c}})
<br />
: error map : {{val| 0.000 +7.474 +13.686 -4.683 }}
<a class="wiki_link" href="/triphi">Triforce(9) with L:s = phi</a><br />
<br />
{{Optimal ET sequence|legend =1| 18, 24, 42 }}
<!-- ws:start:WikiTextHeadingRule:48:&lt;h2&gt; --><h2 id="toc24"><a name="Triforce-Semitriforce"></a><!-- ws:end:WikiTextHeadingRule:48 -->Semitriforce</h2>
Commas: 49/48, 56/55, 77/75, 507/500<br />
[[Badness]] (Sintel) : 5.34
<br />
POTE generator: ~7/6 = 246.642<br />
== = 11-limit ===
<br />
Subgroup: 2.3.5.7.11
Map: [&lt;6 0 14 12 16 27|, &lt;0 2 0 1 1 -1|]<br />
EDOs: 6, 24, 54cd, 78cd, 102cdf<br />
Comma list: 56/55, 128 /125, 3773 /3645
Badness: 0.0592<br />
<br />
Mapping : {{mapping| 6 1 14 4 8 | 0 2 0 3 3 }}
<!-- ws:start:WikiTextHeadingRule:50:&lt;h3&gt; --><h3 id="toc25"><!-- ws:end:WikiTextHeadingRule:50 --> </h3>
<!-- ws:start:WikiTextHeadingRule:52:&lt;h1&gt; --><h1 id="toc26"><a name="Hemiug"></a><!-- ws:end:WikiTextHeadingRule:52 -->Hemiug</h1>
Optimal tunings :
Commas: 128/125, 1323/1250<br />
* WE : ~54/49 = 199.5188{{c}}, ~18/11 = 853.1623{{c}} (~36 /35 = 55.0872{{c}})
<br />
* CWE : ~54/49 = 200.0000{{c}}, ~18/11 = 854.3545{{c}} (~36/35 = 54.3545{{c}})
POTE generator: ~21/20 = 52.093<br />
<br />
{{Optimal ET sequence|legend=0| 18e, 24, 42e, 66ce, 108bccee }}
Map: [&lt;3 1 7 14|, &lt;0 2 0 -3|]<br />
Wedgie: &lt;&lt;6 0 -9 -14 -31 -21||<br />
Badness (Sintel) : 2.67
EDOs: 21, 24, 45c, 69cd<br />
Badness: 0.1378<br />
== Niner ==
<br />
Niner tempers out 686/675 and may be described as the {{nowrap| 9 & 27 }} temperament. Its ploidacot is enneaploid monocot. It gives 9 as the complexity of a [[harmonic seventh chord]], tying it with augene as a temperament supported by 27edo. Niner[18], therefore, has nine such tetrads. 27edo, [[36edo]] and [[63edo]] in the 63c val are among the possible tunings.
<!-- ws:start:WikiTextHeadingRule:54:&lt;h2&gt; --><h2 id="toc27"><a name="Hemiug-11-limit"></a><!-- ws:end:WikiTextHeadingRule:54 -->11-limit</h2>
Commas: 56/55, 128/125, 1323/1250<br />
[[Subgroup]] : 2.3.5.7
<br />
POTE generator: ~21/20 = 51.655<br />
[[Comma list]] : 128/125, 686/675
<br />
Map: [&lt;3 1 7 14 16|, &lt;0 2 0 -3 -3|]<br />
{{Mapping|legend=1| 9 0 21 11 | 0 1 0 1 }}
EDOs: 21, 24, 69cd, 93cd<br />
Badness: 0.0681<br />
: mapping generators : ~49/45, ~3
<br />
<!-- ws:start:WikiTextHeadingRule:56:&lt;h2&gt; --><h2 id="toc28"><a name="Hemiug-13-limit"></a><!-- ws:end:WikiTextHeadingRule:56 -->13-limit</h2>
[[Optimal tuning]]s :
Commas: 56/55, 66/65, 105/104, 507/500<br />
* [[WE]] : ~49/45 = 133.0272{{c}}, ~3 /2 = 705.5438{{c}} (~36 /35 = 40.4075{{c}})
<br />
: [[error map]] : {{val| -2.755 +0.834 +7.259 -2.737 }}
POTE generator: ~21/20 = 51.548<br />
* [[CWE]] : ~49/45 = 133.3333{{c}}, ~3/2 = 705.5157{{c}} (~36 /35 = 38.8490{{c}})
<br />
: error map : {{val| 0.000 +3.561 +13.686 +3.356 }}
Map: [&lt;3 1 7 14 16 13|, &lt;0 2 0 -3 -3 -1|]<br />
EDOs: 21, 24, 69cdf, 93cdf<br />
{{Optimal ET sequence|legend =1| 9, 18, 27, 63c, 90cc }}
Badness: 0.0423<br />
<br />
[[Badness]] (Sintel): 1 .70
<!-- ws:start:WikiTextHeadingRule:58:&lt;h1&gt; --><h1 id="toc29"><a name="Trug"></a><!-- ws:end:WikiTextHeadingRule:58 -->Trug</h1>
Commas: 128/125, 360/343<br />
=== 11 -limit ===
<br />
Subgroup: 2.3.5.7.11
POTE generator: ~48/35 = 501.980<br />
<br />
Comma list: 56 /55, 128/125, 540 /539
Map: [&lt;3 1 7 6|, &lt;0 3 0 2|]<br />
EDOs: 9bd, 12<br />
Mapping: {{mapping| 9 0 21 11 17 | 0 1 0 1 1 }}
Badness: 0.1383<br />
<br />
Optimal tunings:
<!-- ws:start:WikiTextHeadingRule:60:&lt;h1&gt; --><h1 id="toc30"><a name="Oodako"></a><!-- ws:end:WikiTextHeadingRule:60 -->Oodako</h1>
* WE: ~12/11 = 132 .9553{{c}}, ~3/2 = 704.7217{{c}} (~36/35 = 39.9453{{c}})
Commas: 128/125, 2401/2400<br />
* CWE: ~12 /11 = 133.3333{{c}}, ~3/2 = 704.5723{{c}} (~36 /35 = 37.9056{{c}})
<br />
POTE generator: ~8/7 = 223.3540873874507317<br />
{{Optimal ET sequence |legend= 0| 9, 18e, 27e, 63cee }}
<br />
Map: [&lt;3 3 7 8|, &lt;0 4 0 1|]<br />
Badness (Sintel): 1.15
Wedgie: &lt;&lt;12 0 3 -28 -29 7||<br />
EDOs: 6, 21, 27, 75c, 102cd, 129bcd<br />
=== 13 -limit ===
Badness: 0.1132<br />
Subgroup: 2. 3.5. 7.11.13
<br />
<!-- ws:start:WikiTextHeadingRule:62:&lt;h2&gt; --><h2 id="toc31"><a name="Oodako-11-limit"></a><!-- ws:end:WikiTextHeadingRule:62 -->11-limit</h2>
Comma list: 56 /55 , 78 /77, 91 /90 , 128 /125
Commas: 56/55, 128/125, 3773/3750<br />
<br />
Mapping: {{mapping| 9 0 21 11 17 19 | 0 1 0 1 1 1 }}
POTE generator: ~8/7 = 223.019<br />
<br />
Optimal tunings:
Map: [&lt;3 3 7 8 10|, &lt;0 4 0 1 1|]<br />
* WE: ~14 /13 = 133.0143{{c}} , ~3/2 = 705.1969{{c}} (~36/35 = 40.1256{{c}})
EDOs: 6, 21, 27e<br />
* CWE: ~14 /13 = 133.3333{{c}} , ~3/2 = 705 .0176{{c}} (~36 /35 = 38.3510{{c}})
Badness: 0.0592<br />
<br />
{{Optimal ET sequence|legend=0| 9, 18e, 27e }}
<!-- ws:start:WikiTextHeadingRule:64:&lt;h2&gt; --><h2 id="toc32"><a name="Oodako-13-limit"></a><!-- ws:end:WikiTextHeadingRule:64 -->13-limit</h2>
Commas: 56/55, 78/77, 128/125, 507/500<br />
Badness (Sintel) : 0.998
<br />
POTE generator: ~8/7 = 223.449<br />
== Trug ==
<br />
Trug tempers out 360 /343. It is generated by an interval of ~48 /35, tuned very close to a perfect fourth, but the perfect fourth is mapped to three generator steps and a period. Its ploidacot is triploid alpha -tricot. 12edo is about as accurate as it can be tuned .
Map: [&lt;3 3 7 8 10 12|, &lt;0 4 0 1 1 -2|]<br />
EDOs: 6, 21, 27e<br />
[[Subgroup]]: 2.3.5.7
Badness: 0.0423<br />
<br />
[[Comma list]]: 128 /125 , 360 /343
<!-- ws:start:WikiTextHeadingRule:66:&lt;h1&gt; --><h1 id="toc33"><a name="Hemisemiaug"></a><!-- ws:end:WikiTextHeadingRule:66 -->Hemisemiaug</h1>
Commas: 128/125, 12005/11664<br />
{{Mapping|legend=1| 3 1 7 6 | 0 3 0 2 }}
<br />
POTE generator: ~15/14 = 144.515<br />
: mapping generators: ~5/4 , ~48 /35
<br />
Map: [&lt;6 1 14 4|, &lt;0 2 0 3|]<br />
[[Optimal tuning]]s :
Wedgie: &lt;&lt;12 0 18 -28 -5 42||<br />
* [[WE]] : ~5/4 = 398.2337{{c}}, ~48/35 = 499.7635{{c}} (~15/14 = 101.5299{{c}})
Edos: 18, 24, 42, 66c, 108bc<br />
: [[error map]] : {{val| - 2.755 +0.834 +7.259 -2.737 }}
Badness: 0.2110<br />
* [[CWE]] : ~5 /4 = 400.0000{{c}} , ~48 /35 = 500.9654{{c}} (~15 /14 = 100.9654{{c}})
<br />
: error map: {{val| 0.000 +3.561 +13.686 +3 .356 }}
<!-- ws:start:WikiTextHeadingRule:68:&lt;h2&gt; --><h2 id="toc34"><a name="Hemisemiaug-11-limit"></a><!-- ws:end:WikiTextHeadingRule:68 -->11-limit</h2>
Commas: 56/55, 128/125, 3773/3645<br />
{{Optimal ET sequence|legend =1| 3b, 9bd , 12 }}
<br />
POTE generator: ~15/14 = 144.780<br />
[[Badness] ] (Sintel): 3.50
<br />
Map: [&lt;6 1 14 4 8|, &lt;0 2 0 3 3|]<br />
== External links ==
EDOs: 24, 42e, 66ce, 108bce<br />
* [https://web.archive.org/web /20211201070113 /https ://www.prismnet.com /~hmiller /music /temp-augmented.html Herman Miller's page about augmented temperament]
Badness: 0.0807<br />
<br />
[[Category :Temperament families]]
<!-- ws:start:WikiTextHeadingRule:70:&lt;h1&gt; --><h1 id="toc35"><a name="Niner"></a><!-- ws:end:WikiTextHeadingRule:70 -->Niner</h1>
[[Category:Pages with mostly numerical content]]
Niner gives 9 as the complexity of an otonal tetrad, tying it with augene as a temperament supported by 27edo. Niner[18], therefore, has nine such tetrads.<br />
[[Category :Augmented family| ]] < !-- main article -->
<br />
[[Category:Rank 2]]
Commas: 128/125, 686/675<br />
<br />
POTE generator: ~3/2 = 707.167<br />
<br />
Map: [&lt;9 0 21 11|, &lt;0 1 0 1|]<br />
Wedgie: &lt;&lt;9 0 9 -21 -11 21||<br />
EDOs: 9, 18, 27, 63c, 90c<br />
Badness: 0.0672<br />
<br />
<!-- ws:start:WikiTextHeadingRule:72:&lt;h2&gt; --><h2 id="toc36"><a name="Niner-11-limit"></a><!-- ws:end:WikiTextHeadingRule:72 -->11-limit</h2>
Commas: 56/55, 128/125, 540/539<br />
<br />
POTE generator: ~3/2 = 706.726<br />
<br />
Map: [&lt;9 0 21 11 17|, &lt;0 1 0 1 1|]<br />
EDOs: 9, 27e, 36, 63ce<br />
Badness: 0.0349<br />
<br />
<!-- ws:start:WikiTextHeadingRule:74:&lt;h2&gt; --><h2 id="toc37"><a name="Niner-13-limit"></a><!-- ws:end:WikiTextHeadingRule:74 -->13-limit</h2>
Commas: 56/55, 78/77, 91/90, 128/125<br />
<br />
POTE generator: ~3/2 = 706.889<br />
<br />
Map: [&lt;9 0 21 11 17 19|, &lt;0 1 0 1 1 1|]<br />
EDOs: 9, 27e, 36, 63ce<br />
Badness: 0.0241<br />
<br />
<!-- ws:start:WikiTextHeadingRule:76:&lt;h2&gt; --><h2 id="toc38"><a name="Niner-Music"></a><!-- ws:end:WikiTextHeadingRule:76 -->Music</h2>
<a class="wiki_link_ext" href="https://www.prismnet.com/~hmiller/music/temp-augmented.html" rel="nofollow">Herman Miller's page about augmented temperament</a></body></html></pre></div>
This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments .
The augmented family of temperaments tempers out the diesis a.k.a. augmented comma, 128/125 , the amount by which three 5/4 major thirds fall short of an octave , and so identifies the major third with the 1/3-octave. Hence it has the same 400-cent 5/4-approximations as 12edo .
Augmented
The period is 1/3 octave, and this is what is used for 5/4, the classical major third. The generator can be taken as a fifth or a semitone, and 12edo , with its excellent fifth, is an obvious tuning for 5-limit augmented, though a sharper fifth might be preferred to go with the sharp third. Its ploidacot is triploid monocot.
Subgroup : 2.3.5
Comma list : 128/125
Mapping : [ ⟨ 3 0 7] , ⟨ 0 1 0] ]
mapping generators: ~5/4, ~3
Optimal tunings :
WE : ~5/4 = 399.0128 ¢, ~3/2 = 704.8937 ¢ (~16/15 = 93.1320 ¢)
error map : ⟨ -2.962 -0.023 +6.776]
CWE : ~5/4 = 400.0000 ¢, ~3/2 = 705.0691 ¢ (~16/15 = 94.9309 ¢)
error map: ⟨ 0.000 +3.114 +13.686]
Optimal ET sequence : 3 , 9 , 12 , 27 , 39 , 51c , 90cc
Badness (Sintel): 0.523
Overview to extensions
The second comma of the normal comma list defines which 7-limit family member we are looking at. Augene adds 64/63 , august 36/35 , hexe 256/245 , hemiaug 245/243 , and triforce 49/48 . Hexe splits the period to 1/6 octave, and hemiaug the generator , giving quartertones instead of semitones.
Augene
Augene tempers out 64/63 and 126/125. It may be described as the 12 & 15 temperament. 27edo and 39edo in the 39d val make for good tunings.
Subgroup : 2.3.5.7
Comma list : 64/63, 126/125
Mapping : [ ⟨ 3 0 7 18] , ⟨ 0 1 0 -2] ]
Optimal tunings :
WE : ~5/4 = 398.7461 ¢, ~3/2 = 707.0335 ¢ (~21/20 = 90.4587 ¢)
error map : ⟨ -3.762 +1.317 +4.909 +2.060]
CWE : ~5/4 = 400.0000 ¢, ~3/2 = 709.3249 ¢ (~21/20 = 90.6751 ¢)
error map: ⟨ 0.000 +7.370 +13.686 +12.524]
Optimal ET sequence : 12 , 27 , 39d , 66cd
Badness (Sintel): 0.628
11-limit
Subgroup: 2.3.5.7.11
Comma list: 56/55, 64/63, 100/99
Mapping: [ ⟨ 3 0 7 18 20] , ⟨ 0 1 0 -2 -2] ]
Optimal tunings:
WE: ~5/4 = 398.4962 ¢, ~3/2 = 708.5030 ¢ (~21/20 = 88.4895 ¢)
CWE: ~5/4 = 400.0000 ¢, ~3/2 = 711.6031 ¢ (~21/20 = 88.3969 ¢)
Optimal ET sequence: 12 , 15 , 27e
Badness (Sintel): 0.648
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 56/55, 64/63, 66/65
Mapping: [ ⟨ 3 0 7 18 20 16] , ⟨ 0 1 0 -2 -2 -1] ]
Optimal tunings:
WE: ~5/4 = 398.0488 ¢, ~3/2 = 708.5402 ¢ (~21/20 = 87.5574 ¢)
CWE: ~5/4 = 400.0000 ¢, ~3/2 = 712.6704 ¢ (~21/20 = 87.3296 ¢)
Optimal ET sequence: 12f , 15 , 27eff
Badness (Sintel): 0.859
Ogene
Subgroup: 2.3.5.7.11.13
Comma list: 56/55, 64/63, 91/90, 100/99
Mapping: [ ⟨ 3 0 7 18 20 -8] , ⟨ 0 1 0 -2 -2 4] ]
Optimal tunings:
WE: ~5/4 = 398.6473 ¢, ~3/2 = 710.1987 ¢ (~21/20 = 87.0959 ¢)
CWE: ~5/4 = 400.0000 ¢, ~3/2 = 712.5057 ¢ (~21/20 = 87.4943 ¢)
Optimal ET sequence: 12 , 15 , 27e , 69bceef
Badness (Sintel): 0.946
Agene
Subgroup: 2.3.5.7.11.13
Comma list: 56/55, 64/63, 78/77, 100/99
Mapping: [ ⟨ 3 0 7 18 20 35] , ⟨ 0 1 0 -2 -2 -5] ]
Optimal tunings:
WE: ~5/4 = 398.5229 ¢, ~3/2 = 707.0562 ¢ (~21/20 = 89.9897 ¢)
CWE: ~5/4 = 400.0000 ¢, ~3/2 = 710.1903 ¢ (~21/20 = 89.8097 ¢)
Optimal ET sequence: 12f , 27e , 66cdeeef
Badness (Sintel): 0.955
Eugene
Subgroup: 2.3.5.7.11
Comma list: 55/54, 64/63, 77/75
Mapping: [ ⟨ 3 0 7 18 -4] , ⟨ 0 1 0 -2 3] ]
Optimal tunings:
WE: ~5/4 = 399.1743 ¢, ~3/2 = 712.6763 ¢ (~21/20 = 85.6723 ¢)
CWE: ~5/4 = 400.0000 ¢, ~3/2 = 713.9414 ¢ (~21/20 = 86.0586 ¢)
Optimal ET sequence: 12e , 15 , 27 , 42
Badness (Sintel): 1.18
August
August tempers out 36/35 and 225/224. It may be described as the 9 & 12 temperament. Unlike augene, august calls for a flat tuning of the fifth, and besides 12edo , 21edo is among the possible tunings.
Subgroup : 2.3.5.7
Comma list : 36/35, 128/125
Mapping : [ ⟨ 3 0 7 -1] , ⟨ 0 1 0 2] ]
Optimal tunings :
WE : ~5/4 = 399.1036 ¢, ~3/2 = 694.4509 ¢ (~16/15 = 103.7564 ¢)
error map : ⟨ -2.689 -10.193 +7.412 +15.594]
CWE : ~5/4 = 400.0000 ¢, ~3/2 = 694.6812 ¢ (~16/15 = 105.3188 ¢)
error map: ⟨ 0.000 -7.274 +13.686 +20.537]
Optimal ET sequence : 9 , 12 , 45cd
Badness (Sintel): 0.670
11-limit
Subgroup: 2.3.5.7.11
Comma list: 36/35, 45/44, 56/55
Mapping: [ ⟨ 3 0 7 -1 1] , ⟨ 0 1 0 2 2] ]
Optimal tunings:
WE: ~5/4 = 398.9225 ¢, ~3/2 = 690.6486 ¢ (~16/15 = 107.1966 ¢)
CWE: ~5/4 = 400.0000 ¢, ~3/2 = 690.8519 ¢ (~16/15 = 109.1481 ¢)
Optimal ET sequence: 9 , 12 , 21 , 33e
Badness (Sintel): 0.668
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 27/26, 36/35, 45/44, 56/55
Mapping: [ ⟨ 3 0 7 -1 1 -3] , ⟨ 0 1 0 2 2 3] ]
Optimal tunings:
WE: ~5/4 = 399.0956 ¢, ~3/2 = 687.2261 ¢ (~16/15 = 110.9651 ¢)
CWE: ~5/4 = 400.0000 ¢, ~3/2 = 687.5057 ¢ (~16/15 = 112.4943 ¢)
Optimal ET sequence: 9 , 12f , 21 , 33ef
Badness (Sintel): 0.762
Augustus
Subgroup: 2.3.5.7.11.13
Comma list: 26/25, 36/35, 45/44, 56/55
Mapping: [ ⟨ 3 0 7 -1 1 11] , ⟨ 0 1 0 2 2 0] ]
Optimal tunings:
WE: ~5/4 = 400.4230 ¢, ~3/2 = 686.0809 ¢ (~16/15 = 114.7650 ¢)
CWE: ~5/4 = 400.0000 ¢, ~3/2 = 685.8446 ¢ (~16/15 = 114.1554 ¢)
Optimal ET sequence: 9 , 12
Badness (Sintel): 0.919
Inflated
Subgroup : 2.3.5.7
Comma list : 28/27, 128/125
Mapping : [ ⟨ 3 0 7 -6] , ⟨ 0 1 0 3] ]
Optimal tunings :
WE : ~5/4 = 398.4023 ¢, ~3/2 = 719.8327 ¢ (~25/24 = 76.9719 ¢)
error map : ⟨ -3.762 +1.317 +4.909 +2.060]
CWE : ~5/4 = 400.0000 ¢, ~3/2 = 721.0196 ¢ (~25/24 = 78.9804 ¢)
error map: ⟨ 0.000 +19.065 +13.686 -5.767]
Optimal ET sequence : 3d , 12d , 15
Badness (Sintel): 1.39
11-limit
Subgroup: 2.3.5.7.11
Comma list: 28/27, 55/54, 128/125
Mapping: [ ⟨ 3 0 7 -6 -4] , ⟨ 0 1 0 3 3] ]
Optimal tunings:
WE: ~5/4 = 398.4016 ¢, ~3/2 = 719.7758 ¢ (~25/24 = 77.0275 ¢)
CWE: ~5/4 = 400.0000 ¢, ~3/2 = 720.9386 ¢ (~25/24 = 79.0614 ¢)
Optimal ET sequence: 3de , 12de , 15
Badness (Sintel): 1.03
Deflated
Subgroup : 2.3.5.7
Comma list : 21/20, 128/125
Mapping : [ ⟨ 3 0 7 13] , ⟨ 0 1 0 -1] ]
Optimal tunings :
WE : ~5/4 = 401.9566 ¢, ~3/2 = 684.9634 ¢ (~16/15 = 118.9497 ¢)
error map : ⟨ +5.870 -11.122 +27.382 -34.224]
CWE : ~5/4 = 400.0000 ¢, ~3/2 = 682.2587 ¢ (~16/15 = 117.7413 ¢)
error map: ⟨ 0.000 -19.696 +13.686 -51.085]
Optimal ET sequence : 3 , 6b , 9
Badness (Sintel): 1.50
11-limit
Subgroup: 2.3.5.7.11
Comma list: 21/20, 33/32, 128/125
Mapping: [ ⟨ 3 0 7 13 15] , ⟨ 0 1 0 -1 -1] ]
Optimal tunings:
WE: ~5/4 = 402.1799 ¢, ~3/2 = 683.7477 ¢ (~16/15 = 120.6120 ¢)
CWE: ~5/4 = 400.0000 ¢, ~3/2 = 680.0162 ¢ (~16/15 = 119.9838 ¢)
Optimal ET sequence: 3 , 6b , 9
Badness (Sintel): 1.23
Hexe
Hexe tempers out 50/49 and may be described as 6 & 12 , viewed as 6et with an independent generator for prime 3. Its ploidacot is hexaploid monocot.
Subgroup : 2.3.5.7
Comma list : 50/49, 128/125
Mapping : [ ⟨ 6 0 14 17] , ⟨ 0 1 0 0] ]
mapping generators: ~28/25, ~3
Optimal tunings :
WE : ~28/25 = 199.0488 ¢, ~3/2 = 707.5815 ¢ (~25/24 = 88.6137 ¢)
error map : ⟨ +5.870 -11.122 +27.382 -34.224]
CWE : ~28/25 = 200.0000 ¢, ~3/2 = 708.6907 ¢ (~25/24 = 91.3093 ¢)
error map: ⟨ 0.000 +6.735 +13.686 +31.174]
Optimal ET sequence : 6 , 12 , 30d , 42dd , 54cdd
Badness (Sintel): 1.46
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 56/55, 125/121
Mapping: [ ⟨ 6 0 14 17 21] , ⟨ 0 1 0 0 0] ]
Optimal tunings:
WE: ~28/25 = 198.6942 ¢, ~3/2 = 709.6404 ¢ (~25/24 = 85.1362 ¢)
CWE: ~28/25 = 200.0000 ¢, ~3/2 = 711.8043 ¢ (~25/24 = 88.1957 ¢)
Optimal ET sequence: 6 , 12 , 30dee , 42ddeee
Badness (Sintel): 1.27
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 56/55, 66/65, 105/104
Mapping: [ ⟨ 6 0 14 17 21 13] , ⟨ 0 1 0 0 0 1] ]
Optimal tunings:
WE: ~28/25 = 198.4492 ¢, ~3/2 = 704.4994 ¢ (~25/24 = 89.2973 ¢)
CWE: ~28/25 = 200.0000 ¢, ~3/2 = 706.6050 ¢ (~16/15 = 93.3950 ¢)
Optimal ET sequence: 6f , 12f
Badness (Sintel): 1.49
Triforce
Lattice of triforce
Triforce tempers out 49/48 and may be described as 9 & 15 . Its ploidacot is triploid alpha-dicot. 24edo and 39edo are among the possible tunings.
Subgroup : 2.3.5.7
Comma list : 49/48, 128/125
Mapping : [ ⟨ 3 0 7 6] , ⟨ 0 2 0 1] ]
mapping generators: ~5/4, ~7/4
Optimal tunings :
WE : ~5/4 = 399.7480 ¢, ~7/4 = 952.3507 ¢ (~35/32 = 152.8547 ¢)
error map : ⟨ -0.756 +2.746 +11.922 -17.987]
CWE : ~5/4 = 400.0000 ¢, ~7/4 = 952.7463 ¢ (~35/32 = 152.7463 ¢)
error map: ⟨ 0.000 +3.538 +13.686 -16.080]
Optimal ET sequence : 6 , 9 , 15 , 24 , 39
Badness (Sintel): 1.39
11-limit
Subgroup: 2.3.5.7.11
Comma list: 49/48, 56/55, 77/75
Mapping: [ ⟨ 3 0 7 6 8] , ⟨ 0 2 0 1 1] ]
Optimal tunings:
WE: ~5/4 = 399.7654 ¢, ~7/4 = 952.3730 ¢ (~12/11 = 152.8421 ¢)
CWE: ~5/4 = 400.0000 ¢, ~7/4 = 952.7447 ¢ (~12/11 = 152.7447 ¢)
Optimal ET sequence: 6 , 9 , 15 , 24 , 39
Badness (Sintel): 0.865
Music
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 56/55, 66/65, 77/75
Mapping: [ ⟨ 3 0 7 6 8 4] , ⟨ 0 2 0 1 1 3] ]
Optimal tunings:
WE: ~5/4 = 399.7107 ¢, ~7/4 = 950.9983 ¢ (~12/11 = 151.5768 ¢)
CWE: ~5/4 = 400.0000 ¢, ~7/4 = 951.4465 ¢ (~12/11 = 151.4465 ¢)
Optimal ET sequence: 6f , 9 , 15 , 24
Badness (Sintel): 0.837
Scales
triphi , Triforce[9] with L:s = phi
Semitriforce
This extension splits the period into 1/6-octave for ~44/39. Its ploidacot is hexaploid dicot.
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 56/55, 77/75, 507/500
Mapping: [ ⟨ 6 0 14 12 16 27] , ⟨ 0 2 0 1 1 -1] ]
mapping generators: ~44/39, ~7/4
Optimal tunings:
WE: ~44/39 = 199.8321 ¢, ~7/4 = 952.5580 ¢ (~40/39 = 46.6024 ¢)
CWE: ~44/39 = 200.0000 ¢, ~7/4 = 953.2005 ¢ (~40/39 = 46.7995 ¢)
Optimal ET sequence: 6 , 18bd , 24
Badness (Sintel): 2.44
Hemiaug
Hemiaug tempers out 245/243 and may be described as 24 & 27 . The generator may be taken as ~14/9, but also a neutral third or a neutral second that stand in for 11/9~16/13 and 12/11~13/12 in the higher limits, respectively. Hemiaug's ploidacot is triploid dicot. 27edo makes for a recommendable tuning in the 7-limit, but 51edo serves better in the higher limits.
Subgroup : 2.3.5.7
Comma list : 128/125, 245/243
Mapping : [ ⟨ 3 1 7 -1] , ⟨ 0 2 0 5] ]
mapping generators: ~5/4, ~14/9
Optimal tunings :
WE : ~5/4 = 398.9278 ¢, ~14/9 = 752.8583 ¢ (~36/35 = 44.9973 ¢)
error map : ⟨ -3.217 +2.689 +6.181 -3.462]
CWE : ~5/4 = 400.0000 ¢, ~14/9 = 754.2078 ¢ (~36/35 = 45.7922 ¢)
error map: ⟨ 0.000 +6.461 +13.686 +2.213]
Optimal ET sequence : 24 , 27
Badness (Sintel): 1.78
11-limit
Subgroup: 2.3.5.7.11
Comma list: 56/55, 128/125, 243/242
Mapping: [ ⟨ 3 1 7 -1 1] , ⟨ 0 2 0 5 5] ]
Optimal tunings:
WE: ~5/4 = 398.8946 ¢, ~14/9 = 752.1272 ¢ (~36/35 = 45.6619 ¢)
CWE: ~5/4 = 400.0000 ¢, ~14/9 = 753.5000 ¢ (~36/35 = 46.5000 ¢)
Optimal ET sequence: 24 , 27e , 51ce
Badness (Sintel): 1.26
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 56/55, 91/90, 128/125, 243/242
Mapping: [ ⟨ 3 1 7 -1 1 13] , ⟨ 0 2 0 5 5 -1] ]
Optimal tunings:
WE: ~5/4 = 399.1053 ¢, ~14/9 = 752.0643 ¢ (~36/35 = 46.1463 ¢)
CWE: ~5/4 = 400.0000 ¢, ~14/9 = 753.3806 ¢ (~36/35 = 46.6194 ¢)
Optimal ET sequence: 24 , 27e , 51ce
Badness (Sintel): 1.25
Hemiug
Hemiug tempers out 1323/1250 and may be described as 21 & 24 . The generator is a similar interval but for ~32/21 instead of ~14/9, and the ploidacot is triploid dicot, the same as hemiaug.
Subgroup : 2.3.5.7
Comma list : 128/125, 1323/1250
Mapping : [ ⟨ 3 1 7 14] , ⟨ 0 2 0 -3] ]
mapping generators: ~5/4, ~32/21
Optimal tunings :
WE : ~5/4 = 400.1805 ¢, ~32/21 = 748.2436 ¢ (~21/20 = 52.1174 ¢)
error map : ⟨ +0.542 -5.287 +14.950 -11.030]
CWE : ~5/4 = 400.0000 ¢, ~32/21 = 747.9138 ¢ (~21/20 = 52.0862 ¢)
error map: ⟨ 0.000 -6.127 +13.686 -12.567]
Optimal ET sequence : 21 , 24 , 45c
Badness (Sintel): 3.49
11-limit
Subgroup: 2.3.5.7.11
Comma list: 56/55, 128/125, 1323/1250
Mapping: [ ⟨ 3 1 7 14 16] , ⟨ 0 2 0 -3 -3] ]
Optimal tunings:
WE: ~5/4 = 400.0637 ¢, ~32/21 = 748.4638 ¢ (~33/32 = 51.6637 ¢)
CWE: ~5/4 = 400.0000 ¢, ~32/21 = 748.3383 ¢ (~33/32 = 51.6617 ¢)
Optimal ET sequence: 21 , 24
Badness (Sintel): 2.25
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 56/55, 66/65, 105/104, 507/500
Mapping: [ ⟨ 3 1 7 14 16 13] , ⟨ 0 2 0 -3 -3 -1] ]
Optimal tunings:
WE: ~5/4 = 399.8855 ¢, ~32/21 = 748.2378 ¢ (~33/32 = 51.5332 ¢)
CWE: ~5/4 = 400.0000 ¢, ~32/21 = 748.4655 ¢ (~33/32 = 51.5345 ¢)
Optimal ET sequence: 21 , 24
Badness (Sintel): 1.75
Oodako
Oodako tempers out 2401/2400 and may be described as 21 & 27 . It is generated by a quarter of a fifth, which stands in for ~28/25. Its ploidacot is triploid tetracot.
Subgroup : 2.3.5.7
Comma list : 128/125, 2401/2400
Mapping : [ ⟨ 3 3 7 8] , ⟨ 0 4 0 1] ]
mapping generators: ~5/4, ~28/25
Optimal tunings :
WE : ~5/4 = 399.0296 ¢, ~28/25 = 176.2174 ¢ (~49/48 = 46.5949 ¢)
error map : ⟨ -2.911 +0.004 +6.894 -0.371]
CWE : ~5/4 = 400.0000 ¢, ~28/25 = 176.2984 ¢ (~49/48 = 47.4031 ¢)
error map: ⟨ 0.000 +3.239 +13.686 +7.473]
Optimal ET sequence : 6 , 21 , 27 , 75c , 102ccd , 129bccd
Badness (Sintel): 2.86
11-limit
Subgroup: 2.3.5.7.11
Comma list: 56/55, 128/125, 2401/2400
Mapping: [ ⟨ 3 3 7 8 10] , ⟨ 0 4 0 1 1] ]
Optimal tunings:
WE: ~5/4 = 398.6615 ¢, ~11/10 = 176.3886 ¢ (~49/48 = 45.8843 ¢)
CWE: ~5/4 = 400.0000 ¢, ~11/10 = 176.5471 ¢ (~49/48 = 46.9059 ¢)
Optimal ET sequence: 6 , 21 , 27e
Badness (Sintel): 1.96
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 56/55, 78/77, 128/125, 507/500
Mapping: [ ⟨ 3 3 7 8 10 12] , ⟨ 0 4 0 1 1 -2] ]
Optimal tunings:
WE: ~5/4 = 398.8612 ¢, ~11/10 = 176.0486 ¢ (~49/48 = 46.7640 ¢)
CWE: ~5/4 = 400.0000 ¢, ~11/10 = 176.3326 ¢ (~49/48 = 47.3348 ¢)
Optimal ET sequence: 6 , 21 , 27e
Badness (Sintel): 1.75
Hemisemiaug
Hemisemiaug tempers out 12005/11664 and splits both the period and generator of augmented in two. Its ploidacot is hexaploid alpha-dicot.
Subgroup : 2.3.5.7
Comma list : 128/125, 12005/11664
Mapping : [ ⟨ 6 1 14 4] , ⟨ 0 2 0 3] ]
mapping generators: ~54/49, ~45/28
Optimal tunings :
WE : ~54/49 = 199.5469 ¢, ~45/28 = 853.5468 ¢ (~36/35 = 55.3594 ¢)
error map : ⟨ -2.719 +4.686 +7.342 -9.998]
CWE : ~54/49 = 200.0000 ¢, ~45/28 = 854.7144 ¢ (~36/35 = 54.7144 ¢)
error map: ⟨ 0.000 +7.474 +13.686 -4.683]
Optimal ET sequence : 18 , 24 , 42
Badness (Sintel): 5.34
11-limit
Subgroup: 2.3.5.7.11
Comma list: 56/55, 128/125, 3773/3645
Mapping: [ ⟨ 6 1 14 4 8] , ⟨ 0 2 0 3 3] ]
Optimal tunings:
WE: ~54/49 = 199.5188 ¢, ~18/11 = 853.1623 ¢ (~36/35 = 55.0872 ¢)
CWE: ~54/49 = 200.0000 ¢, ~18/11 = 854.3545 ¢ (~36/35 = 54.3545 ¢)
Optimal ET sequence: 18e , 24 , 42e , 66ce , 108bccee
Badness (Sintel): 2.67
Niner
Niner tempers out 686/675 and may be described as the 9 & 27 temperament. Its ploidacot is enneaploid monocot. It gives 9 as the complexity of a harmonic seventh chord , tying it with augene as a temperament supported by 27edo. Niner[18], therefore, has nine such tetrads. 27edo, 36edo and 63edo in the 63c val are among the possible tunings.
Subgroup : 2.3.5.7
Comma list : 128/125, 686/675
Mapping : [ ⟨ 9 0 21 11] , ⟨ 0 1 0 1] ]
mapping generators: ~49/45, ~3
Optimal tunings :
WE : ~49/45 = 133.0272 ¢, ~3/2 = 705.5438 ¢ (~36/35 = 40.4075 ¢)
error map : ⟨ -2.755 +0.834 +7.259 -2.737]
CWE : ~49/45 = 133.3333 ¢, ~3/2 = 705.5157 ¢ (~36/35 = 38.8490 ¢)
error map: ⟨ 0.000 +3.561 +13.686 +3.356]
Optimal ET sequence : 9 , 18 , 27 , 63c , 90cc
Badness (Sintel): 1.70
11-limit
Subgroup: 2.3.5.7.11
Comma list: 56/55, 128/125, 540/539
Mapping: [ ⟨ 9 0 21 11 17] , ⟨ 0 1 0 1 1] ]
Optimal tunings:
WE: ~12/11 = 132.9553 ¢, ~3/2 = 704.7217 ¢ (~36/35 = 39.9453 ¢)
CWE: ~12/11 = 133.3333 ¢, ~3/2 = 704.5723 ¢ (~36/35 = 37.9056 ¢)
Optimal ET sequence: 9 , 18e , 27e , 63cee
Badness (Sintel): 1.15
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 56/55, 78/77, 91/90, 128/125
Mapping: [ ⟨ 9 0 21 11 17 19] , ⟨ 0 1 0 1 1 1] ]
Optimal tunings:
WE: ~14/13 = 133.0143 ¢, ~3/2 = 705.1969 ¢ (~36/35 = 40.1256 ¢)
CWE: ~14/13 = 133.3333 ¢, ~3/2 = 705.0176 ¢ (~36/35 = 38.3510 ¢)
Optimal ET sequence: 9 , 18e , 27e
Badness (Sintel): 0.998
Trug
Trug tempers out 360/343. It is generated by an interval of ~48/35, tuned very close to a perfect fourth, but the perfect fourth is mapped to three generator steps and a period. Its ploidacot is triploid alpha-tricot. 12edo is about as accurate as it can be tuned.
Subgroup : 2.3.5.7
Comma list : 128/125, 360/343
Mapping : [ ⟨ 3 1 7 6] , ⟨ 0 3 0 2] ]
mapping generators: ~5/4, ~48/35
Optimal tunings :
WE : ~5/4 = 398.2337 ¢, ~48/35 = 499.7635 ¢ (~15/14 = 101.5299 ¢)
error map : ⟨ -2.755 +0.834 +7.259 -2.737]
CWE : ~5/4 = 400.0000 ¢, ~48/35 = 500.9654 ¢ (~15/14 = 100.9654 ¢)
error map: ⟨ 0.000 +3.561 +13.686 +3.356]
Optimal ET sequence : 3b , 9bd , 12
Badness (Sintel): 3.50
External links