Rastmic rank three clan: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Spelling 1\1 in decimal so there's no more backslashes. The display of the backslash isn't our problem. Set the font in your browser
 
(One intermediate revision by the same user not shown)
Line 24: Line 24:
[[Minimax tuning]]:
[[Minimax tuning]]:
* [[11-odd-limit]]: ~2 = {{monzo| 1 0 0 0 0 }}, ~11/9 = {{monzo| -2/5 0 0 0 1/5 }}, ~5 = {{monzo| 2/5 -2 1 0 4/5 }}
* [[11-odd-limit]]: ~2 = {{monzo| 1 0 0 0 0 }}, ~11/9 = {{monzo| -2/5 0 0 0 1/5 }}, ~5 = {{monzo| 2/5 -2 1 0 4/5 }}
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.9/5.11
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/5.11


{{Optimal ET sequence|legend=1| 31, 41, 72, 247c, 281, 353c, 425bc, 497bc }}
{{Optimal ET sequence|legend=1| 31, 41, 72, 247c, 281, 353c, 425bc, 497bc }}
Line 252: Line 252:


[[Category:Temperament clans]]
[[Category:Temperament clans]]
[[Category:Pages with mostly numerical content]]
[[Category:Rastmic rank-3 clan| ]] <!-- main article -->
[[Category:Rastmic rank-3 clan| ]] <!-- main article -->
[[Category:Rastmic| ]] <!-- key article -->
[[Category:Rastmic| ]] <!-- key article -->
[[Category:Rank 3]]
[[Category:Rank 3]]

Latest revision as of 00:27, 24 June 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The rastmic rank-3 clan of temperaments tempers out the rastma, 243/242. Both no-5 rastmic and no-7 rastmic can be the head of this clan. These temperaments divide the fifth in half and use it as an 11/9 neutral third.

Temperaments discussed elsewhere include:

Spectacle

Spectacle, named by Gene Ward Smith in 2010[1], can be described as the 31 & 34 & 41 temperament. It tempers out 225/224, making it a sort of marvel infested with neutral thirds. It is therefore generated by octaves, major thirds, and neutral thirds. 3/2 is equated with two a stack of two 11/9's as a corollary of 243/242 being tempered out, 7/4 is equated with a stack of four 11/9's and two 5/4's, 11/8 is equated with a stack of five 11/9's, 13/8 is equated with a stack of two 18/11's and four 5/4's, and 17/16 is equated with three 18/11's and three 5/4's. Every harmonic is reached with help of other intervals at most with three 5/4's.

Subgroup: 2.3.5.7.11

Comma list: 225/224, 243/242

Mapping[1 1 0 -3 2], 0 2 0 4 5], 0 0 1 2 0]]

mapping generators: ~2, ~11/9, ~5

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/9 = 350.377, ~5/4 = 384.370
  • CWE: ~2 = 1200.000, ~11/9 = 350.176, ~5/4 = 384.095

Minimax tuning:

  • 11-odd-limit: ~2 = [1 0 0 0 0, ~11/9 = [-2/5 0 0 0 1/5, ~5 = [2/5 -2 1 0 4/5
unchanged-interval (eigenmonzo) basis: 2.9/5.11

Optimal ET sequence31, 41, 72, 247c, 281, 353c, 425bc, 497bc

Badness: 0.499 × 10-3

Projection pairs: 3 242/81, 7 366025/52488, 11 644204/59049 to 2.5.11/9

Scales: spectacle31

Associated temperament: marvo

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 225/224, 243/242, 351/350

Mapping: [1 1 0 -3 2 -5], 0 2 0 4 5 -2], 0 0 1 2 0 4]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/9 = 350.239, ~5/4 = 384.998
  • CWE: ~2 = 1200.000, ~11/9 = 350.039, ~5/4 = 384.587

Optimal ET sequence: 31, 72, 103, 175f *

* optimal patent val: 240

Badness: 1.009 × 10-3

Cuckoo

Subgroup: 2.3.5.7.11

Comma list: 126/125, 243/242

Mapping[1 1 0 -3 2], 0 2 0 -4 5], 0 0 1 3 0]]

mapping generators: ~2, ~11/9, ~5

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/9 = 350.355, ~5/4 = 389.555
  • CWE: ~2 = 1200.000, ~11/9 = 350.421, ~5/4 = 389.731

Optimal ET sequence24d, 27e, 31, 58, 89, 154, 185

Badness: 0.933 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 126/125, 196/195, 243/242

Mapping: [1 1 0 -3 2 -5], 0 2 0 -4 5 -10], 0 0 1 3 0 5]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/9 = 350.585, ~5/4 = 389.302
  • CWE: ~2 = 1200.000, ~11/9 = 350.568, ~5/4 = 389.610

Optimal ET sequence: 27e, 31, 58, 96d, 154

Mirwomo

The mirwomo temperament tunes ~36/35 to exactly half of an apotome ~2187/2048, and tunes ~128/105 to exactly half of a perfect fifth ~3/2.

7-limit

Subgroup: 2.3.5.7

Comma list: 33075/32768

Mapping[1 1 0 6], 0 2 0 -3], 0 0 1 -1]]

mapping generators: ~2, ~128/105, ~5

Optimal tuning (CTE): ~2 = 1200.000, ~128/105 = 350.174, ~5/4 = 384.014

Optimal ET sequence17, 21, 24, 31, 41, 72, 281d

Badness: 0.770 × 10-3

11-limit

Subgroup: 2.3.5.7.11

Comma list: 243/242, 385/384

Mapping[1 1 0 6 2], 0 2 0 -3 5], 0 0 1 -1 0]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/9 = 350.217, ~5/4 = 383.962
  • CWE: ~2 = 1200.000, ~11/9 = 350.003, ~5/4 = 384.078

Optimal ET sequence17, 24, 31, 41, 72, 312bd, 384bcd, 456bcde, 528bcde, 631bcde

Badness: 0.641 × 10-3

Mirage

Subgroup: 2.3.5.7.11.13

Comma list: 225/224, 243/242, 385/384

Mapping[1 1 3 3 2 0], 0 6 -7 -2 15 0], 0 0 0 0 0 1]]

mapping generators: ~2, ~15/14, ~13

Optimal tunings:

  • CTE: ~2 = 1200.000, ~15/14 = 116.711, ~13/8 = 840.528
  • CWE: ~2 = 1200.000, ~15/14 = 116.647, ~13/8 = 838.212

Optimal ET sequence10, 31, 41, 62, 72, 103, 175f, 216c, 288cdf, 391bcdef

Badness: 0.738 × 10-3

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 225/224, 243/242, 273/272, 385/384

Mapping: [1 1 3 3 2 0 0], 0 6 -7 -2 15 0 4], 0 0 0 0 0 1 1]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~15/14 = 116.704, ~13/8 = 839.452
  • CWE: ~2 = 1200.000, ~15/14 = 116.640, ~13/8 = 837.142

Optimal ET sequence: 10, 31, 41, 62, 72, 103, 175f

Mandos

Subgroup: 2.3.5.7.11

Comma list: 176/175, 243/242

Mapping[1 1 0 6 2], 0 2 0 5 5], 0 0 1 -2 0]]

mapping generators: ~2, ~11/9, ~5

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/9 = 350.145, ~5/4 = 389.708
  • CWE: ~2 = 1200.000, ~11/9 = 350.555, ~5/4 = 390.269

Optimal ET sequence7, 24, 31, 58, 89

Badness: 0.751 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 144/143, 176/175, 243/242

Mapping: [1 1 0 6 2 4], 0 2 0 5 5 -1], 0 0 1 -2 0 0]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/9 = 350.293, ~5/4 = 389.979
  • CWE: ~2 = 1200.000, ~11/9 = 351.155, ~5/4 = 391.123

Optimal ET sequence: 7, 24, 31, 58

Badness: 0.923 × 10-3

Parahemif

7-limit

Subgroup: 2.3.5.7

Comma list: 1605632/1594323

Mapping[1 1 0 -1], 0 2 0 13], 0 0 1 0]]

mapping generators: ~2, ~896/729, ~5

Optimal tuning (CTE): ~2 = 1200.000, ~896/729 = 351.416, ~5/4 = 386.314

Optimal ET sequence17c, 24, 34d, 41, 58, 99, 239, 338

Badness: 0.607 × 10-3

11-limit

Subgroup: 2.3.5.7.11

Comma list: 243/242, 896/891

Mapping[1 1 0 -1 2], 0 2 0 13 5], 0 0 1 0 0]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/9 = 351.320, ~5/4 = 386.314
  • CWE: ~2 = 1200.000, ~11/9 = 351.459, ~5/4 = 387.423

Optimal ET sequence17c, 24, 34d, 41, 58, 99e *

* optimal patent val: 123

Badness: 1.34547 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 144/143, 243/242, 364/363

Mapping: [1 1 0 -1 2 4], 0 2 0 13 5 -1], 0 0 1 0 0 0]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/9 = 351.343, ~5/4 = 386.314
  • CWE: ~2 = 1200.000, ~11/9 = 351.604, ~5/4 = 388.472

Optimal ET sequence: 17c, 24, 34d, 41, 58, 99ef, 157eff, 290cdeeefff

Badness: 1.19366 × 10-3

Urania

Subgroup: 2.3.5.7.11

Comma list: 81/80, 121/120

Mapping[1 1 0 0 2], 0 2 8 0 5], 0 0 0 1 0]]

Mapping to lattice: [0 2 8 0 5], 0 0 0 -1 0]]

Lattice basis:

11/9 length = 0.2536, 8/7 length = 2.807
Angle (11/9, 8/7) = 90 degrees

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/9 = 348.830, ~7/4 = 968.826
  • CWE: ~2 = 1200.000, ~11/9 = 348.379, ~7/4 = 965.630

Optimal ET sequence7, 14c, 17c, 24, 31, 100de, 131bde, 162bde

Badness: 0.842 × 10-3

Complexity spectrum: 11/9, 4/3, 12/11, 11/10, 10/9, 9/8, 11/8, 6/5, 5/4, 8/7, 7/6, 9/7, 14/11, 7/5

Scales: urania24