30edo
← 29edo | 30edo | 31edo → |
30 equal divisions of the octave (abbreviated 30edo or 30ed2), also called 30-tone equal temperament (30tet) or 30 equal temperament (30et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 30 equal parts of exactly 40 ¢ each. Each step represents a frequency ratio of 21/30, or the 30th root of 2.
Theory
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +18.0 | +13.7 | -8.8 | -3.9 | +8.7 | -0.5 | -8.3 | +15.0 | -17.5 | +9.2 | +11.7 |
Relative (%) | +45.1 | +34.2 | -22.1 | -9.8 | +21.7 | -1.3 | -20.7 | +37.6 | -43.8 | +23.0 | +29.3 | |
Steps (reduced) |
48 (18) |
70 (10) |
84 (24) |
95 (5) |
104 (14) |
111 (21) |
117 (27) |
123 (3) |
127 (7) |
132 (12) |
136 (16) |
Its patent val is a doubled version of the patent val for 15edo through the 11-limit, so 30 can be viewed as a contorted version of 15. In the 13-limit it supplies the optimal patent val for quindecic temperament.
However, 5\30 is 200 cents, which is a good (and familiar) approximation for 9/8, and hence 30edo can be viewed inconsistently, as having a 9/1 at 95\30 as well as 96\30.
Instead of the 18\30 fifth of 720 cents, 30edo also makes available a 17\30 fifth of 680 cents. This is an ideal tuning for pelogic (5-limit mavila), which tempers out 135/128. When 30edo is used for pelogic, 5\30 can again be used inconsistently as a 9/8.
Subsets and supersets
30edo has subset edos 1, 2, 3, 5, 6, 10, 15 and it is a largely composite edo.
30edo is the 3rd primorial edo, being the product of first three primes and thus the smallest number with three distinct prime factors. As a corollary, 30edo is the smallest EDO that supports perfectly balanced scales that are minimal and not equally spaced. See the article on perfect balance.
Intervals
Step | Cents | Ups and downs notation | Armodue Notation | ||
---|---|---|---|---|---|
0 | 0 | P1 | unison, minor 2nd | D, Eb | 1 |
1 | 40 | ^1, ^m2 | up unison, upminor 2nd | ^D, ^Eb | 2b |
2 | 80 | ^^1, v~2 | dup unison, downmid 2nd | ^^D, ^^Eb | 9# |
3 | 120 | ~2 | mid 2nd | v3E | 1# |
4 | 160 | ^~2 | upmid 2nd | vvE | 2 |
5 | 200 | vM2 | downmajor 2nd | vE | 3b |
6 | 240 | M2, m3 | major 2nd, minor 3rd | E, F | 1x, 4bb |
7 | 280 | ^m3 | upminor 3rd | ^F | 2# |
8 | 320 | v~3 | downmid 3rd | ^^F | 3 |
9 | 360 | ~3 | mid 3rd | ^3F, v3F# | 4b |
10 | 400 | ^~3 | upmid 3rd | vvF# | 5b |
11 | 440 | vM3, v4 | downmajor 3rd, down 4th | vF#, vG | 3# |
12 | 480 | M3, P4 | major 3rd, perfect 4th | F#, G | 4 |
13 | 520 | ^4 | up 4th | ^G | 5 |
14 | 560 | v~4, v~d5 | downmid 4th, downmid 5th | ^^G, ^^Ab | 6b |
15 | 600 | ~4, ~5 | mid 4th, mid 5th | ^3G, v3A | 4# |
16 | 640 | ^~4, ^~5 | upmid 4th, upmid 5th | vvG#, vvA | 5# |
17 | 680 | v5 | down 5th | vA | 6 |
18 | 720 | P5, m6 | perfect 5th, minor 6th | A, Bb | 7b |
19 | 760 | ^5, ^m6 | up 5th, upminor 6th | ^A, ^Bb | 5x, 8bb |
20 | 800 | v~6 | downmid 6th | ^^Bb | 6# |
21 | 840 | ~6 | mid 6th | v3B | 7 |
22 | 880 | ^~6 | upmid 6th | vvB | 8b |
23 | 920 | vM6 | downmajor 6th | vB | 6x, 9bb |
24 | 960 | M6. m7 | major 6th, minor 7th | B, C | 7# |
25 | 1000 | ^m7 | upminor 7th | ^C | 8 |
26 | 1040 | v~7 | downmid 7th | ^^C | 9b |
27 | 1080 | ~7 | mid 7th | ^3C | 1b |
28 | 1120 | ^~7, vv8 | upmid 7th, dud 8ve | vvC#, vvD | 8# |
29 | 1160 | vM7, v8 | downmajor 7th, down 8ve | vC#, vD | 9 |
30 | 1200 | P8 | major 7th, 8ve | C#, D | 1 |
Notation
Sagittal notation
Best fifth notation
This notation uses the same sagittal sequence as EDOs 23b, 37, and 44, and is a superset of the notations for EDOs 15, 10, and 5.
Evo and Revo flavors
Evo-SZ flavor
Second-best fifth notation
This notation uses the same sagittal sequence as EDOs 35 and 40.
Regular temperament properties
Rank-2 temperaments
As 30edo is largely composite, only 7, 11 and 13 steps create MOS scales that cover every interval using one period per octave.
7/30 produces Lovecraft, in which 2 generators is a moderately sharp 11/8, 3 a near perfect 13/8 and 5 the familiar mildly flat 9/8 from 12edo, creating the possibility of ignoring the 3rd & 5th entirely to use those harmonics as the primary building blocks of harmony in a similar way to orgone.
11 produces a flat sensi scale. 13 is an excellent higher order Mavila tuning that functions the closest to the familiar diatonic scale you can get in this edo.
Commas
30et tempers out the following commas. This assumes the val ⟨30 48 70 84 104 111].
Prime limit |
Ratio[1] | Monzo | Cents | Color name | Name(s) |
---|---|---|---|---|---|
3 | 256/243 | [8 -5⟩ | 90.22 | Sawa | Blackwood comma, Pythagorean limma |
5 | 250/243 | [1 -5 3⟩ | 49.17 | Triyo | Porcupine comma, maximal diesis |
5 | 128/125 | [7 0 -3⟩ | 41.06 | Trigu | Augmented comma, diesis |
5 | 15625/15552 | [-6 -5 6⟩ | 8.11 | Tribiyo | Kleisma, semicomma majeur |
7 | 1029/1000 | [-3 1 -3 3⟩ | 49.49 | Trizogu | Keega |
7 | 49/48 | [-4 -1 0 2⟩ | 35.70 | Zozo | Semaphoresma, slendro diesis |
7 | 64/63 | [6 -2 0 -1⟩ | 27.26 | Ru | Septimal comma, Archytas' comma, Leipziger Komma |
7 | 64827/64000 | [-9 3 -3 4⟩ | 22.23 | Laquadzo-atrigu | Squalentine comma |
7 | 875/864 | [-5 -3 3 1⟩ | 21.90 | Zotriyo | Keema |
7 | 126/125 | [1 2 -3 1⟩ | 13.79 | Zotrigu | Starling comma, septimal semicomma |
7 | 4000/3969 | [5 -4 3 -2⟩ | 13.47 | Rurutriyo | Octagar comma |
7 | 1029/1024 | [-10 1 0 3⟩ | 8.43 | Latrizo | Gamelisma |
7 | 6144/6125 | [11 1 -3 -2⟩ | 5.36 | Saruru-atrigu | Porwell comma |
7 | (12 digits) | [-4 6 -6 3⟩ | 0.33 | Trizogugu | Landscape comma |
11 | 100/99 | [2 -2 2 0 -1⟩ | 17.40 | Luyoyo | Ptolemisma |
11 | 121/120 | [-3 -1 -1 0 2⟩ | 14.37 | Lologu | Biyatisma |
11 | 176/175 | [4 0 -2 -1 1⟩ | 9.86 | Lorugugu | Valinorsma |
11 | 65536/65219 | [16 0 0 -2 -3⟩ | 8.39 | Satrilu-aruru | Orgonisma |
11 | 385/384 | [-7 -1 1 1 1⟩ | 4.50 | Lozoyo | Keenanisma |
11 | 441/440 | [-3 2 -1 2 -1⟩ | 3.93 | Luzozogu | Werckisma |
11 | 4000/3993 | [5 -1 3 0 -3⟩ | 3.03 | Triluyo | Wizardharry comma |
11 | 3025/3024 | [-4 -3 2 -1 2⟩ | 0.57 | Loloruyoyo | Lehmerisma |
- ↑ Ratios longer than 10 digits are presented by placeholders with informative hints
Scales
MOS scales
- Lovecraft[5] - 77772
- Lovecraft[9] - 525252522
- Lovecraft[13] - 3223223223222
- Lovecraft[17] - 22221222122212221
- Sensi[5] - 83838
- Sensi[8] - 53353353
- Sensi[11] - 33323332332
- Sensi[19] - 2121212212121221212
- Mavila[5] - 94944
- Mavila[7] - 5445444
- Mavila[9] - 444414441
- Mavila[16] - 3131313113131311
- Mavila[23] - 21121121121112112112111
Subsets of Mavila[16]
- Arcade (approximated from 32afdo): 9 3 5 8 5
- Blackened skies (approximated from Compton in 72edo): 8 5 2 3 2 8 2
- Carousel (this is the original/default tuning): 9 4 4 9 4
- Dewdrops (this is the original/default tuning): 4 4 4 5 4 4 5
- Geode (approximated from 6afdo): 7 6 4 9 4
- Lost spirit (approximated from Meantone in 31edo): 7 5 2 3 5 3 5
- Lost phantom (this is the original/default tuning): 8 5 2 2 6 2 5
- Mechanical (approximated from 16afdo): 7 2 8 8 5
- Mushroom (approximated from 30afdo): 7 5 5 3 10
- Nightdrive (this is the original/default tuning): 8 5 4 9 4
- Pelagic (this is the original/default tuning): 8 4 2 4 7 5
- Bathypelagic (this is the original/default tuning): 8 4 2 3 8 5
- Underpass (approximated from 10afdo): 8 9 5 3 5
- Volcanic (approximated from 16afdo): 3 6 8 8 5
Subsets of 15edo
- Augmented[6] MOS: 8 2 8 2 8 2
- Equipentatonic (exact from 5edo): 6 6 6 6 6
- Rockpool (approximated from 47zpi): 2 8 2 6 6 6
Other notable scales
Delta-rational harmony
The tables below show chords that approximate 3-integer-limit delta-rational chords with least-squares error less than 0.001.
Fully delta-rational triads
chord | delta signature | error |
---|---|---|
0,1,2 | +1+1 | 0.00026 |
0,1,3 | +1+2 | 0.00058 |
0,1,4 | +1+3 | 0.00094 |
0,2,3 | +2+1 | 0.00047 |
0,3,4 | +3+1 | 0.00068 |
0,3,11 | +1+3 | 0.00064 |
0,4,11 | +1+2 | 0.00039 |
0,5,8 | +3+2 | 0.00057 |
0,6,16 | +1+2 | 0.00042 |
0,7,13 | +1+1 | 0.00035 |
0,7,23 | +1+3 | 0.00024 |
0,10,25 | +1+2 | 0.00072 |
0,11,17 | +3+2 | 0.00063 |
0,11,27 | +1+2 | 0.00072 |
0,13,23 | +1+1 | 0.00030 |
0,14,29 | +2+3 | 0.00019 |
0,15,19 | +3+1 | 0.00069 |
0,20,25 | +3+1 | 0.00085 |
Partially delta-rational tetrads
chord | delta signature | error |
---|---|---|
0,1,2,3 | +1+?+1 | 0.00064 |
0,1,3,4 | +1+?+1 | 0.00097 |
0,1,15,16 | +2+?+3 | 0.00097 |
0,1,15,17 | +1+?+3 | 0.00098 |
0,1,16,17 | +2+?+3 | 0.00060 |
0,1,16,18 | +1+?+3 | 0.00050 |
0,1,17,18 | +2+?+3 | 0.00021 |
0,1,17,19 | +1+?+3 | 0.00002 |
0,1,18,19 | +2+?+3 | 0.00018 |
0,1,18,20 | +1+?+3 | 0.00047 |
0,1,19,20 | +2+?+3 | 0.00058 |
0,1,19,21 | +1+?+3 | 0.00098 |
0,1,20,21 | +2+?+3 | 0.00099 |
0,1,28,29 | +1+?+2 | 0.00086 |
0,2,3,4 | +2+?+1 | 0.00094 |
0,2,6,11 | +1+?+3 | 0.00036 |
0,2,7,12 | +1+?+3 | 0.00063 |
0,2,11,12 | +3+?+2 | 0.00089 |
0,2,11,14 | +1+?+2 | 0.00084 |
0,2,12,13 | +3+?+2 | 0.00044 |
0,2,12,15 | +1+?+2 | 0.00005 |
0,2,13,14 | +3+?+2 | 0.00002 |
0,2,13,16 | +1+?+2 | 0.00095 |
0,2,14,15 | +3+?+2 | 0.00049 |
0,2,15,16 | +3+?+2 | 0.00098 |
0,2,16,20 | +1+?+3 | 0.00053 |
0,2,17,19 | +2+?+3 | 0.00043 |
0,2,17,21 | +1+?+3 | 0.00046 |
0,2,18,20 | +2+?+3 | 0.00036 |
0,3,4,8 | +2+?+3 | 0.00071 |
0,3,5,9 | +2+?+3 | 0.00050 |
0,3,7,12 | +1+?+2 | 0.00017 |
0,3,9,16 | +1+?+3 | 0.00024 |
0,3,16,22 | +1+?+3 | 0.00003 |
0,3,17,18 | +2+?+1 | 0.00085 |
0,3,17,19 | +1+?+1 | 0.00100 |
0,3,17,20 | +2+?+3 | 0.00066 |
0,3,17,21 | +1+?+2 | 0.00006 |
0,3,18,19 | +2+?+1 | 0.00031 |
0,3,18,20 | +1+?+1 | 0.00005 |
0,3,18,21 | +2+?+3 | 0.00055 |
0,3,19,20 | +2+?+1 | 0.00025 |
0,3,19,21 | +1+?+1 | 0.00092 |
0,3,20,21 | +2+?+1 | 0.00081 |
0,3,24,29 | +1+?+3 | 0.00063 |
0,4,5,15 | +1+?+3 | 0.00038 |
0,4,7,12 | +2+?+3 | 0.00062 |
0,4,10,19 | +1+?+3 | 0.00023 |
0,4,11,17 | +1+?+2 | 0.00078 |
0,4,12,13 | +3+?+1 | 0.00099 |
0,4,13,14 | +3+?+1 | 0.00049 |
0,4,13,15 | +3+?+2 | 0.00044 |
0,4,13,16 | +1+?+1 | 0.00005 |
0,4,14,15 | +3+?+1 | 0.00002 |
0,4,14,16 | +3+?+2 | 0.00052 |
0,4,15,16 | +3+?+1 | 0.00054 |
0,4,17,21 | +2+?+3 | 0.00089 |
0,4,18,22 | +2+?+3 | 0.00074 |
0,4,20,25 | +1+?+2 | 0.00030 |
0,4,22,29 | +1+?+3 | 0.00041 |
0,5,6,9 | +3+?+2 | 0.00051 |
0,5,6,18 | +1+?+3 | 0.00011 |
0,5,8,16 | +1+?+2 | 0.00028 |
0,5,9,15 | +2+?+3 | 0.00030 |
0,5,10,14 | +1+?+1 | 0.00027 |
0,5,10,21 | +1+?+3 | 0.00084 |
0,5,11,13 | +2+?+1 | 0.00017 |
0,5,12,14 | +2+?+1 | 0.00078 |
0,5,14,21 | +1+?+2 | 0.00095 |
0,5,15,25 | +1+?+3 | 0.00006 |
0,5,18,23 | +2+?+3 | 0.00093 |
0,5,20,29 | +1+?+3 | 0.00014 |
0,5,22,28 | +1+?+2 | 0.00093 |
0,5,23,24 | +3+?+1 | 0.00073 |
0,5,23,25 | +3+?+2 | 0.00075 |
0,5,23,26 | +1+?+1 | 0.00020 |
0,5,24,25 | +3+?+1 | 0.00009 |
0,5,24,26 | +3+?+2 | 0.00045 |
0,5,25,26 | +3+?+1 | 0.00057 |
0,6,7,21 | +1+?+3 | 0.00086 |
0,6,8,13 | +1+?+1 | 0.00079 |
0,6,10,17 | +2+?+3 | 0.00091 |
0,6,11,20 | +1+?+2 | 0.00026 |
0,6,14,17 | +3+?+2 | 0.00003 |
0,6,19,21 | +2+?+1 | 0.00066 |
0,6,19,23 | +1+?+1 | 0.00086 |
0,6,20,22 | +2+?+1 | 0.00048 |
0,7,8,11 | +2+?+1 | 0.00095 |
0,7,8,12 | +3+?+2 | 0.00035 |
0,7,9,11 | +3+?+1 | 0.00020 |
0,7,9,12 | +2+?+1 | 0.00039 |
0,7,10,12 | +3+?+1 | 0.00074 |
0,7,11,19 | +2+?+3 | 0.00075 |
0,7,13,23 | +1+?+2 | 0.00005 |
0,7,14,28 | +1+?+3 | 0.00034 |
0,7,16,21 | +1+?+1 | 0.00097 |
0,7,18,27 | +1+?+2 | 0.00030 |
0,7,21,24 | +3+?+2 | 0.00028 |
0,7,27,29 | +2+?+1 | 0.00032 |
0,8,10,27 | +1+?+3 | 0.00088 |
0,8,12,21 | +2+?+3 | 0.00022 |
0,8,14,18 | +3+?+2 | 0.00099 |
0,8,15,17 | +3+?+1 | 0.00054 |
0,8,15,18 | +2+?+1 | 0.00001 |
0,8,16,18 | +3+?+1 | 0.00053 |
0,8,22,27 | +1+?+1 | 0.00033 |
0,9,10,15 | +3+?+2 | 0.00013 |
0,9,10,29 | +1+?+3 | 0.00029 |
0,9,12,19 | +1+?+1 | 0.00028 |
0,9,12,25 | +1+?+2 | 0.00000 |
0,9,16,28 | +1+?+2 | 0.00005 |
0,9,19,25 | +1+?+1 | 0.00028 |
0,9,20,24 | +3+?+2 | 0.00025 |
0,9,21,23 | +3+?+1 | 0.00015 |
0,9,21,24 | +2+?+1 | 0.00068 |
0,10,13,17 | +2+?+1 | 0.00052 |
0,10,13,24 | +2+?+3 | 0.00042 |
0,10,15,20 | +3+?+2 | 0.00006 |
0,10,17,24 | +1+?+1 | 0.00005 |
0,10,25,29 | +3+?+2 | 0.00048 |
0,10,26,28 | +3+?+1 | 0.00028 |
0,10,26,29 | +2+?+1 | 0.00061 |
0,11,13,16 | +3+?+1 | 0.00032 |
0,11,17,21 | +2+?+1 | 0.00085 |
0,11,20,25 | +3+?+2 | 0.00095 |
0,12,14,23 | +1+?+1 | 0.00005 |
0,12,17,20 | +3+?+1 | 0.00014 |
0,12,22,26 | +2+?+1 | 0.00081 |
0,12,24,29 | +3+?+2 | 0.00014 |
0,13,18,27 | +1+?+1 | 0.00000 |
0,13,21,24 | +3+?+1 | 0.00013 |
0,14,16,23 | +3+?+2 | 0.00035 |
0,14,19,24 | +2+?+1 | 0.00067 |
0,14,25,28 | +3+?+1 | 0.00040 |
0,15,23,28 | +2+?+1 | 0.00083 |
0,16,19,23 | +3+?+1 | 0.00076 |
0,17,20,28 | +3+?+2 | 0.00099 |
0,17,21,27 | +2+?+1 | 0.00067 |
0,17,22,26 | +3+?+1 | 0.00042 |
0,18,25,29 | +3+?+1 | 0.00042 |
0,19,20,29 | +3+?+2 | 0.00033 |
0,21,23,28 | +3+?+1 | 0.00012 |
Music
- Edolian - Shift (2020)