User:FloraC/Sandbox
Temperament pages
Databoxes has been canceled, but the cleanup will continue
Note:
- Order: subgroup, comma list, mapping, mapping generators, gencom mapping, gencom, map to lattice, lattice basis, wedgie, minimax tuning, tuning ranges, algebraic generator, vals, badness, complexity spectrum.
- Comma list shows the simplest commas sufficient to define the temperament, stated in Normal lists #Normal interval list.
- Mapping generators should show all the ratios as used in the mapping, including the period.
- Minimax tuning are based on tonality diamond, so it should explicitly state the odd limit, or a diamond function of ratios.
- Use Template:Val list.
- For subgroup temperaments, "mapping" becomes "sval mapping", add "gencom mapping" and "gencom". If TE is TE is TE (sic), simply show "POTE", otherwise show "POL2" or "POT2" instead of "POTE".
Get a family for:
Ripple (3 different 7-limit extensions)smate (2 different 7-limit extensions)- Maybe parakleismic (2 different 7-limit extensions)
- Maybe superpyth (2 different 7-limit extensions)
Who's next?
Meantone familyArchytas clanFather familyTrienstonic clanSeptisemi temperamentsArchytas familySlendro clanSemiphore familyMarvel temperamentsMarvel familyMint temperamentsMint family- Gamelismic clan
Gamelismic familyJubilismic clanJubilismic familyDidymus rank three familyKleismic family- Kleismic rank three family
Shibboleth familyKeemic temperamentsKeemic familySchismatic family- Starling temperaments
- Starling family
- Sensipent family
Septimal meantone
The 7/4 of septimal meantone is the augmented sixth, C-A#, and other septimal intervals are 7/6, C-D#, the augmented second, 7/5, C-F#, the tritone, and 21/16, C-E#, the augmented third. Septimal meantone tempers out the common 7-limit commas 126/125 and 225/224 and in fact can be defined as the 7-limit temperament that tempers out any two of 81/80, 126/125 and 225/224.
Subgroup: 2.3.5.7
Comma list: 81/80, 126/125
Mapping: [⟨1 0 -4 -13], ⟨0 1 4 10]]
Mapping generators: ~2, ~3
Wedgie: ⟨⟨ 1 4 10 4 13 12 ]]
POTE generator: ~3/2 = 696.495
- 7- and 9-odd-limit
- [[1 0 0 0⟩, [1 0 1/4 0⟩, [0 0 1 0⟩, [-3 0 5/2 0⟩]
- Eigenmonzos: 2, 5
- valid range: [694.737, 700.000] (11\19 to 7\12)
- nice range: [694.786, 701.955]
- strict range: [694.786, 700.000]
Algebraic generator: Cybozem, the real root of 15x3 - 10x2 - 18, 503.4257 cents. The recurrence converges quickly.
Badness: 0.0137
Scales: meantone5, meantone7, meantone12
Archytas
Subgroup: 2.3.5.7
Comma list: 64/63
Mapping: [⟨1 0 0 6], ⟨0 1 0 -2], ⟨0 0 1 0]]
Mapping generators: ~2, ~3, ~5
Map to lattice: [⟨0 1 0 -2], ⟨0 0 1 0]]
Lattice basis:
- 3/2 length = 1.0508, 5/4 length = 2.3219
- Angle (3/2, 5/4) = 90 degrees
POTE generators: ~3/2 = 709.3213, ~5/4 = 393.3747
- [[1 0 0 0⟩, [2 1/3 0 -1/3⟩, [2 -2/3 1 -1/3⟩, [2 -2/3 0 2/3⟩]
- Eigenmonzos: 2, 6/5, 7/5
- [[1 0 0 0⟩, [3/2 1/2 0 -1/4⟩, [3/2 -1/2 1 -1/4⟩, [3 -1 0 1/2⟩]
- Eigenmonzos: 2, 6/5, 9/7
Scales: archytas12, archytas12synch
Commas
41edo tempers out the following commas using its patent val, ⟨41 65 95 115 142 152 168 174 185 199 203].
Prime limit |
Ratio[1] | Name(s) |
---|---|---|
3 | [65 -41⟩ | 41-comma |
5 | [-5 -10 9⟩ | Shibboleth |
5 | [-25 7 6⟩ | Ampersand |
5 | 3125/3072 | Magic comma |
5 | [5 -9 4⟩ | Tetracot comma |
5 | [20 -17 3⟩ | Roda |
5 | [-15 8 1⟩ | Schisma |
7 | [0 -7 6 -1⟩ | Great BP diesis |
7 | [-10 7 8 -7⟩ | Blackjackisma |
7 | 875/864 | Keema |
7 | 3125/3087 | Gariboh |
7 | [10 -11 2 1⟩ | Tolerma |
7 | [-15 3 2 2⟩ | Mirwomo comma |
7 | 245/243 | Sensamagic |
7 | 4000/3969 | Octagar |
7 | [-15 0 -2 7⟩ | Quince |
7 | 1029/1024 | Gamelisma |
7 | 225/224 | Marvel comma |
7 | [0 3 4 -5⟩ | Mirkwai |
7 | [5 -7 -1 3⟩ | Hemimage |
7 | 5120/5103 | Hemifamity |
7 | [25 -14 0 -1⟩ | Garischisma |
7 | 2401/2400 | Breedsma |
11 | [15 0 1 0 -5⟩ | Thuja comma |
11 | 245/242 | Cassacot |
11 | 100/99 | Ptolemisma |
11 | 1344/1331 | Hemimin |
11 | 896/891 | Pentacircle |
11 | [16 0 0 -2 -3⟩ | Orgonisma |
11 | 243/242 | Rastma |
11 | 385/384 | Keenanisma |
11 | 441/440 | Werckisma |
11 | 1375/1372 | Moctdel |
11 | 540/539 | Swetisma |
11 | 3025/3024 | Lehmerisma |
11 | [-1 2 -4 5 -2⟩ | Odiheim |
13 | 343/338 | |
13 | 105/104 | Animist comma |
13 | [12 -7 0 1 0 -1⟩ | Secorian |
13 | 275/273 | Gassorma |
13 | 144/143 | Grossma |
13 | 196/195 | Mynucuma |
13 | 640/637 | Huntma |
13 | 1188/1183 | Kestrel comma |
13 | 325/324 | Marveltwin |
13 | 352/351 | Minthma |
13 | 364/363 | Gentle comma |
13 | 847/845 | Cuthbert |
13 | 729/728 | Squbema |
13 | 4096/4095 | Schismina |
13 | [3 -2 0 -1 3 -2⟩ | Harmonisma |
17 | 2187/2176 | Septendecimal schisma |
17 | 256/255 | Septendecimal kleisma |
17 | 715/714 | Septendecimal bridge comma |
19 | 210/209 | Spleen comma |
19 | 361/360 | Go comma |
19 | 513/512 | Undevicesimal comma |
19 | 1216/1215 | Eratosthenes' comma |
23 | 736/729 | Vicesimotertial comma |
29 | 145/144 | 29th-partial chroma |
- ↑ Ratios with more than 9 digits are presented in monzos