33edo
← 32edo | 33edo | 34edo → |
33 equal divisions of the octave (abbreviated 33edo or 33ed2), also called 33-tone equal temperament (33tet) or 33 equal temperament (33et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 33 equal parts of about 36.4 ¢ each. Each step represents a frequency ratio of 21/33, or the 33rd root of 2.
Theory
Structural properties
While relatively uncommon, 33edo is actually quite an interesting system. As a multiple of 11edo, it approximates the 7th and 11th harmonics via orgone temperament (see 26edo). 33edo also tunes the 13th harmonic slightly flat, allowing it to approximate the 21st and 17th harmonics as well, having a 3L 7s with L = 4, s = 3. The 33c (⟨33 52 76 93]) and 33cd (⟨33 52 76 92]) mappings temper out 81/80 and can be used to represent 1/2-comma meantone, a "flattertone" tuning where the whole tone is 10/9 in size. Indeed, the perfect fifth is tuned about 11 ¢ flat, and two stacked fifths fall only 0.6 ¢ flat of 10/9. Leaving the scale be would result in the standard diatonic scale (5L 2s) having minor seconds of four steps and whole tones of five steps. This also results in common practice minor and major chords becoming more supraminor and submajor in character, making everything sound almost neutral in quality.
Instead of the flat 19-step fifth you may use the 20-step sharp fifth, over 25 ¢ sharp. Two of these lead to a 9/8 of 7\33, which is about 22/19 in size and may be counted as a small third. Between the flat 5\33 version of 9/8 and the sharp 7\33 version there is, of course, a 6\33 = 2\11 interval of 218 ¢. Together, these add up to 6\33 + 5\33 = 11\33 = 1\3, or 400 ¢, the same major third as 12edo. We also have both a 327 ¢ minor third (9\33 = 6\22 = 3\11), the same as that of 22edo, and a flatter 8\33 third of 291 ¢, which if you like could also be called a flat 19th harmonic, but much more accurately a 13/11 sharp by 1.7 ¢ (if you use the patent val it is an extremely inaccurate 6/5). Another talent it has is that 7/5 is tuned quite accurately by 16\33, and we may put two 8\33 versions of 13/11 together to produce the cuthbert triad. The 8\33 generator, with MOS of size 5, 9, and 13, gives plenty of scope for these, as well as the 11th, 13th, and 19th harmonics (taking the generator as a 19/16) which are relatively well in tune.
33edo contains an accurate approximation of the Bohlen–Pierce scale with 4\33 near 1\13edt.
Other notable 33edo scales are diasem with L:m:s = 5:3:1 and 5L 4s with L:s = 5:2. This step ratio for 5L 4s is great for its semitone size of 72.7 ¢.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -11.0 | +13.7 | +13.0 | +14.3 | -5.9 | -4.2 | +2.6 | +4.1 | -6.6 | +1.9 | -10.1 |
Relative (%) | -30.4 | +37.6 | +35.7 | +39.2 | -16.1 | -11.5 | +7.3 | +11.4 | -18.2 | +5.4 | -27.8 | |
Steps (reduced) |
52 (19) |
77 (11) |
93 (27) |
105 (6) |
114 (15) |
122 (23) |
129 (30) |
135 (3) |
140 (8) |
145 (13) |
149 (17) |
33edo is not especially good at representing all rational intervals in the 7-limit, but it does very well on the 7-limit 3*33 subgroup 2.27.15.21.11.13. On this subgroup it tunes things to the same tuning as 99edo, and as a subgroup patent val it tempers out the same commas. The 99 equal temperaments hemififths, amity, parakleismic, hemiwuerschmidt, ennealimmal and hendecatonic can be reduced to this subgroup and give various possibilities for MOS scales, etc. In particular, the terrain 2.7/5.9/5 subgroup temperament can be tuned via the 5\33 generator. The full system of harmony provides the optimal patent val for slurpee temperament in the 5-, 7-, 11-, and 13-limits.
While it might not be the most harmonically accurate temperament, it is structurally quite interesting, and it approximates the full 19-limit consort in its own way. You could even say it tunes the 23rd and 29th harmonics ten cents flat if you were so inclined; as well as getting within two cents of the 37th.
Miscellany
33 is also the number of years in the Iranian calendar's leap cycle, where leap year is inserted once every 4 or 5 years. This corresponds to the 1L 7s with the step ratio of 5:4.
Intervals
Step # | ET | Just | Difference (ET minus Just) |
Extended Pythagorean notation | |||
---|---|---|---|---|---|---|---|
Cents | Interval | Cents | |||||
0 | 0 | 1/1 | 0 | 0 | Perfect Unison | P1 | D |
1 | 36.364 | 48/47 | 36.448 | −0.085 | Augmented Unison | A1 | D# |
2 | 72.727 | 24/23 | 73.681 | −0.953 | Double-aug 1sn | AA1 | Dx |
3 | 109.091 | 16/15 | 111.731 | −2.640 | Diminished 2nd | d2 | Ebb |
4 | 145.455 | 12/11 | 150.637 | −5.183 | Minor 2nd | m2 | Eb |
5 | 181.818 | 10/9 | 182.404 | −0.586 | Major 2nd | M2 | E |
6 | 218.182 | 17/15 | 216.687 | +1.495 | Augmented 2nd | A2 | E# |
7 | 254.545 | 15/13 | 247.741 | +6.804 | Double-aug 2nd/Double-dim 3rd | AA2/dd3 | Ex/Fbb |
8 | 290.909 | 13/11 | 289.210 | +1.699 | Diminished 3rd | d3 | Fb |
9 | 327.273 | 6/5 | 315.641 | +11.631 | Minor 3rd | m3 | F |
10 | 363.636 | 16/13 | 359.472 | +4.164 | Major 3rd | M3 | F# |
11 | 400.000 | 5/4 | 386.314 | +13.686 | Augmented 3rd | A3 | Fx |
12 | 436.364 | 9/7 | 435.084 | +1.280 | Double-dim 4th | dd4 | Gbb |
13 | 472.727 | 21/16 | 470.781 | +1.946 | Diminished 4th | d4 | Gb |
14 | 509.091 | 4/3 | 498.045 | +11.046 | Perfect 4th | P4 | G |
15 | 545.455 | 11/8 | 551.318 | −5.863 | Augmented 4th | A4 | G# |
16 | 581.818 | 7/5 | 582.513 | −0.694 | Double-aug 4th | AA4 | Gx |
17 | 618.182 | 10/7 | 617.488 | +0.694 | Double-dim 5th | dd5 | Abb |
18 | 654.545 | 16/11 | 648.682 | +5.863 | Diminished 5th | d5 | Ab |
19 | 690.909 | 3/2 | 701.955 | −11.046 | Perfect 5th | P5 | A |
20 | 727.273 | 32/21 | 729.219 | -1.946 | Augmented 5th | A5 | A# |
21 | 763.636 | 14/9 | 764.916 | −1.280 | Double-aug 5th | AA5 | Ax |
22 | 800.000 | 8/5 | 813.686 | −13.686 | Double-dim 6th | d6 | Bbb |
23 | 836.364 | 13/8 | 840.528 | −4.164 | Minor 6th | m6 | Bb |
24 | 872.727 | 5/3 | 884.359 | −11.631 | Major 6th | M6 | B |
25 | 909.091 | 22/13 | 910.790 | −1.699 | Augmented 6th | A6 | B# |
26 | 945.455 | 12/7 | 933.129 | +12.325 | Double-aug 6th/Double-dim 7th | AA6/dd7 | Bx/Cbb |
27 | 981.818 | 30/17 | 983.313 | −1.495 | Diminished 7th | d7 | Cb |
28 | 1018.182 | 9/5 | 1017.596 | +0.586 | Minor 7th | m7 | C |
29 | 1054.545 | 11/6 | 1049.363 | +5.183 | Major 7th | M7 | C# |
30 | 1090.909 | 15/8 | 1088.268 | +2.640 | Augmented 7th | A7 | Cx |
31 | 1127.273 | 23/12 | 1126.319 | −0.953 | Double-dim 8ve | dd8 | Dbb |
32 | 1163.636 | 47/24 | 1163.551 | +0.085 | Diminished 8ve | d8 | Db |
33 | 1200 | 2/1 | 1200 | 0 | Perfect Octave | P8 | D |
Notation
Standard notation
Because the chromatic semitone in 33edo is 1 step, 33edo can be notated using only naturals, sharps, and flats. However, many key signatures will require double- and triple-sharps and flats, which means that notation in distant keys can be very unwieldy.
Step offset | −2 | −1 | 0 | +1 | +2 |
---|---|---|---|---|---|
Symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
Sagittal notation
This notation uses the same sagittal sequence as EDOs 23 and 28.

Approximation to JI
The following tables show how 15-odd-limit intervals are represented in 33edo. Prime harmonics are in bold; inconsistent intervals are in italics.
Interval and complement | Error (abs, ¢) | Error (rel, %) |
---|---|---|
1/1, 2/1 | 0.000 | 0.0 |
9/5, 10/9 | 0.586 | 1.6 |
7/5, 10/7 | 0.694 | 1.9 |
9/7, 14/9 | 1.280 | 3.5 |
13/11, 22/13 | 1.699 | 4.7 |
15/8, 16/15 | 2.640 | 7.3 |
13/8, 16/13 | 4.164 | 11.5 |
11/6, 12/11 | 5.183 | 14.3 |
11/8, 16/11 | 5.863 | 16.1 |
15/13, 26/15 | 6.804 | 18.7 |
13/12, 24/13 | 6.882 | 18.9 |
15/11, 22/15 | 8.504 | 23.4 |
15/14, 28/15 | 10.352 | 28.5 |
3/2, 4/3 | 11.046 | 30.4 |
5/3, 6/5 | 11.631 | 32.0 |
7/6, 12/7 | 12.325 | 33.9 |
7/4, 8/7 | 12.992 | 35.7 |
5/4, 8/5 | 13.686 | 37.6 |
9/8, 16/9 | 14.272 | 39.2 |
11/9, 18/11 | 16.228 | 44.6 |
11/10, 20/11 | 16.814 | 46.2 |
13/7, 14/13 | 17.156 | 47.2 |
11/7, 14/11 | 17.508 | 48.1 |
13/10, 20/13 | 17.850 | 49.1 |
13/9, 18/13 | 17.928 | 49.3 |
Interval and complement | Error (abs, ¢) | Error (rel, %) |
---|---|---|
1/1, 2/1 | 0.000 | 0.0 |
7/5, 10/7 | 0.694 | 1.9 |
13/11, 22/13 | 1.699 | 4.7 |
15/8, 16/15 | 2.640 | 7.3 |
13/8, 16/13 | 4.164 | 11.5 |
11/6, 12/11 | 5.183 | 14.3 |
11/8, 16/11 | 5.863 | 16.1 |
15/13, 26/15 | 6.804 | 18.7 |
13/12, 24/13 | 6.882 | 18.9 |
15/11, 22/15 | 8.504 | 23.4 |
15/14, 28/15 | 10.352 | 28.5 |
3/2, 4/3 | 11.046 | 30.4 |
7/4, 8/7 | 12.992 | 35.7 |
5/4, 8/5 | 13.686 | 37.6 |
11/9, 18/11 | 16.228 | 44.6 |
13/7, 14/13 | 17.156 | 47.2 |
13/10, 20/13 | 17.850 | 49.1 |
13/9, 18/13 | 17.928 | 49.3 |
11/7, 14/11 | 18.856 | 51.9 |
11/10, 20/11 | 19.550 | 53.8 |
9/8, 16/9 | 22.092 | 60.8 |
7/6, 12/7 | 24.038 | 66.1 |
5/3, 6/5 | 24.732 | 68.0 |
9/7, 14/9 | 35.084 | 96.5 |
9/5, 10/9 | 35.778 | 98.4 |
Interval and complement | Error (abs, ¢) | Error (rel, %) |
---|---|---|
1/1, 2/1 | 0.000 | 0.0 |
9/5, 10/9 | 0.586 | 1.6 |
7/5, 10/7 | 0.694 | 1.9 |
9/7, 14/9 | 1.280 | 3.5 |
13/11, 22/13 | 1.699 | 4.7 |
13/8, 16/13 | 4.164 | 11.5 |
11/6, 12/11 | 5.183 | 14.3 |
11/8, 16/11 | 5.863 | 16.1 |
13/12, 24/13 | 6.882 | 18.9 |
15/14, 28/15 | 10.352 | 28.5 |
3/2, 4/3 | 11.046 | 30.4 |
5/3, 6/5 | 11.631 | 32.0 |
7/6, 12/7 | 12.325 | 33.9 |
11/9, 18/11 | 16.228 | 44.6 |
11/10, 20/11 | 16.814 | 46.2 |
11/7, 14/11 | 17.508 | 48.1 |
13/9, 18/13 | 17.928 | 49.3 |
13/10, 20/13 | 18.513 | 50.9 |
13/7, 14/13 | 19.207 | 52.8 |
9/8, 16/9 | 22.092 | 60.8 |
5/4, 8/5 | 22.677 | 62.4 |
7/4, 8/7 | 23.371 | 64.3 |
15/11, 22/15 | 27.860 | 76.6 |
15/13, 26/15 | 29.559 | 81.3 |
15/8, 16/15 | 33.723 | 92.7 |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-52 33⟩ | [⟨33 52]] | +3.48 | 3.49 | 9.59 |
2.3.5 | 81/80, 1171875/1048576 | [⟨33 52 76]] (33c) | +5.59 | 4.13 | 11.29 |
2.3.5.7 | 49/48, 81/80, 1875/1792 | [⟨33 52 76 92]] (33cd) | +6.29 | 3.77 | 10.31 |
2.3.5.7.11 | 45/44, 49/48, 81/80, 1375/1344 | [⟨33 52 76 92 114]] (33cd) | +5.36 | 3.84 | 10.50 |
2.3.5.7.11.13 | 45/44, 49/48, 65/64, 81/80, 275/273 | [⟨33 52 76 92 114 122]] (33cd) | +4.65 | 3.84 | 10.52 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 2\33 | 72.73 | 21/20 | Slurpee (33) |
1 | 4\33 | 145.45 | 12/11 | Bohpier (33cd) |
1 | 7\33 | 254.55 | 8/7 | Godzilla (33cd) |
1 | 8\33 | 290.91 | 25/21 | Quasitemp (33b) |
1 | 10\33 | 363.64 | 49/40 | Submajor (33ee) / interpental (33e) |
1 | 14\33 | 509.09 | 4/3 | Flattertone (33cd) Deeptone a.k.a. tragicomical (33) |
1 | 16\33 | 581.82 | 7/5 | Tritonic (33) |
3 | 7\33 (4\33) |
254.55 (145.45) |
8/7 (12/11) |
Triforce (33d) |
3 | 13\33 (2\33) |
472.73 (72.73) |
4/3 (25/24) |
Inflated (33bcddd) |
3 | 14\33 (3\33) |
509.09 (98.09) |
4/3 (16/15) |
August (33cd) |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct
Octave stretch or compression
33edo is nearby to many other equal tunings which can act as stretched or compressed versions of 33edo, improving some of its harmonics at the expense of others.
What follows is a comparison of stretched- and compressed-octave 33edo tunings.
- Octave size: 1209.8 ¢
Stretching the octave of 33edo by around 10 ¢ results in improved primes 3 and 7, but worse primes 2 and 11. This approximates all harmonics up to 16 within 17.0 ¢. The tuning 76ed5 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +9.8 | +4.5 | -17.0 | +0.0 | +14.3 | +4.1 | -7.1 | +8.9 | +9.8 | -8.5 | -12.5 |
Relative (%) | +26.9 | +12.2 | -46.3 | +0.0 | +39.1 | +11.1 | -19.4 | +24.4 | +26.9 | -23.2 | -34.1 | |
Steps (reduced) |
33 (33) |
52 (52) |
65 (65) |
76 (0) |
85 (9) |
92 (16) |
98 (22) |
104 (28) |
109 (33) |
113 (37) |
117 (41) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.4 | +13.9 | +4.5 | +2.7 | +7.8 | -17.9 | -1.5 | -17.0 | +8.6 | +1.3 | -2.3 | -2.7 |
Relative (%) | -12.1 | +38.0 | +12.2 | +7.4 | +21.2 | -48.8 | -4.1 | -46.3 | +23.3 | +3.6 | -6.3 | -7.2 | |
Steps (reduced) |
121 (45) |
125 (49) |
128 (52) |
131 (55) |
134 (58) |
136 (60) |
139 (63) |
141 (65) |
144 (68) |
146 (70) |
148 (72) |
150 (74) |
- Octave size: 1208.4 ¢
Stretching the octave of 33edo by around 8.5 ¢ results in improved primes 3, 5 and 7, but worse primes 2, 11 and 13. This approximates all harmonics up to 16 within 17.7 ¢. The tuning 92ed7 does this. So does the tuning 137zpi whose octave differs by only 0.3 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.4 | +2.2 | +16.8 | -3.4 | +10.5 | +0.0 | -11.5 | +4.3 | +5.0 | -13.5 | -17.7 |
Relative (%) | +22.9 | +5.9 | +45.8 | -9.2 | +28.8 | +0.0 | -31.3 | +11.8 | +13.7 | -36.9 | -48.3 | |
Steps (reduced) |
33 (33) |
52 (52) |
66 (66) |
76 (76) |
85 (85) |
92 (0) |
98 (6) |
104 (12) |
109 (17) |
113 (21) |
117 (25) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.8 | +8.4 | -1.2 | -3.1 | +1.8 | +12.7 | -7.7 | +13.4 | +2.2 | -5.1 | -8.9 | -9.3 |
Relative (%) | -26.7 | +22.9 | -3.3 | -8.4 | +5.0 | +34.7 | -20.9 | +36.6 | +5.9 | -14.0 | -24.2 | -25.4 | |
Steps (reduced) |
121 (29) |
125 (33) |
128 (36) |
131 (39) |
134 (42) |
137 (45) |
139 (47) |
142 (50) |
144 (52) |
146 (54) |
148 (56) |
150 (58) |
- Step size: 36.576, octave size: 1207.0 ¢
Stretching the octave of 33edo by around 7 ¢ results in improved primes 3, 5 and 7, but worse primes 2, 11 and 14. This approximates all harmonics up to 16 within 18.2 ¢. The tuning 52edt does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.0 | +0.0 | +14.0 | -6.5 | +7.0 | -3.8 | -15.5 | +0.0 | +0.5 | -18.2 | +14.0 |
Relative (%) | +19.2 | +0.0 | +38.3 | -17.9 | +19.2 | -10.5 | -42.5 | +0.0 | +1.3 | -49.8 | +38.3 | |
Steps (reduced) |
33 (33) |
52 (0) |
66 (14) |
76 (24) |
85 (33) |
92 (40) |
98 (46) |
104 (0) |
109 (5) |
113 (9) |
118 (14) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -14.8 | +3.2 | -6.5 | -8.5 | -3.8 | +7.0 | -13.4 | +7.5 | -3.8 | -11.2 | -15.0 | -15.5 |
Relative (%) | -40.5 | +8.7 | -17.9 | -23.3 | -10.3 | +19.2 | -36.7 | +20.5 | -10.5 | -30.7 | -41.1 | -42.5 | |
Steps (reduced) |
121 (17) |
125 (21) |
128 (24) |
131 (27) |
134 (30) |
137 (33) |
139 (35) |
142 (38) |
144 (40) |
146 (42) |
148 (44) |
150 (46) |
- Octave size: 1201.7 ¢
Stretching the octave of 33edo by around 2 ¢ results in improved primes 3, 11 and 13, but worse primes 2, 5 and 7. This approximates all harmonics up to 16 within 17.8 ¢. The tuning 114ed11 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.7 | -8.4 | +3.4 | +17.6 | -6.7 | +17.8 | +5.1 | -16.7 | -17.1 | +0.0 | -5.0 |
Relative (%) | +4.7 | -23.0 | +9.3 | +48.5 | -18.3 | +48.8 | +14.0 | -46.0 | -46.9 | +0.0 | -13.7 | |
Steps (reduced) |
33 (33) |
52 (52) |
66 (66) |
77 (77) |
85 (85) |
93 (93) |
99 (99) |
104 (104) |
109 (109) |
114 (0) |
118 (4) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.1 | -16.9 | +9.3 | +6.8 | +11.1 | -15.0 | +0.6 | -15.4 | +9.4 | +1.7 | -2.4 | -3.3 |
Relative (%) | +5.8 | -46.5 | +25.5 | +18.6 | +30.4 | -41.3 | +1.6 | -42.2 | +25.8 | +4.7 | -6.7 | -9.0 | |
Steps (reduced) |
122 (8) |
125 (11) |
129 (15) |
132 (18) |
135 (21) |
137 (23) |
140 (26) |
142 (28) |
145 (31) |
147 (33) |
149 (35) |
151 (37) |
- Step size: 36.394 ¢, octave size: 1201.0 ¢
Stretching the octave of 33edo by around 1 ¢ results in improved primes 3, 11 and 13, but worse primes 2, 5 and 7. This approximates all harmonics up to 16 within 17.5 ¢. The tuning 138zpi does this. So does the tuning 122ed13 whose octave differs by only 0.1 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.0 | -9.5 | +2.0 | +16.0 | -8.5 | +15.8 | +3.0 | +17.5 | +17.0 | -2.4 | -7.5 |
Relative (%) | +2.8 | -26.0 | +5.5 | +44.0 | -23.3 | +43.5 | +8.3 | +48.0 | +46.8 | -6.6 | -20.5 | |
Step | 33 | 52 | 66 | 77 | 85 | 93 | 99 | 105 | 110 | 114 | 118 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.5 | +16.8 | +6.6 | +4.0 | +8.2 | -17.9 | -2.4 | +18.0 | +6.3 | -1.4 | -5.6 | -6.5 |
Relative (%) | -1.3 | +46.2 | +18.0 | +11.0 | +22.6 | -49.3 | -6.5 | +49.5 | +17.4 | -3.8 | -15.3 | -17.8 | |
Step | 122 | 126 | 129 | 132 | 135 | 137 | 140 | 143 | 145 | 147 | 149 | 151 |
- 33edo
- Step size: 36.363 ¢, octave size: 1200.0 ¢
Pure-octaves 33edo approximates all harmonics up to 16 within 14.3 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -11.0 | +0.0 | +13.7 | -11.0 | +13.0 | +0.0 | +14.3 | +13.7 | -5.9 | -11.0 |
Relative (%) | +0.0 | -30.4 | +0.0 | +37.6 | -30.4 | +35.7 | +0.0 | +39.2 | +37.6 | -16.1 | -30.4 | |
Steps (reduced) |
33 (0) |
52 (19) |
66 (0) |
77 (11) |
85 (19) |
93 (27) |
99 (0) |
105 (6) |
110 (11) |
114 (15) |
118 (19) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.2 | +13.0 | +2.6 | +0.0 | +4.1 | +14.3 | -6.6 | +13.7 | +1.9 | -5.9 | -10.1 | -11.0 |
Relative (%) | -11.5 | +35.7 | +7.3 | +0.0 | +11.4 | +39.2 | -18.2 | +37.6 | +5.4 | -16.1 | -27.8 | -30.4 | |
Steps (reduced) |
122 (23) |
126 (27) |
129 (30) |
132 (0) |
135 (3) |
138 (6) |
140 (8) |
143 (11) |
145 (13) |
147 (15) |
149 (17) |
151 (19) |
- Step size: 36.357 ¢, octave size: 1199.8 ¢
Compressing the octave of 33edo by a fifth of a cent results in improved primes 5 and 7, but worse primes 2, 3, 11 and 13. This approximates all harmonics up to 16 within 13.6 ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.2 | -11.4 | -0.4 | +13.2 | -11.6 | +12.4 | -0.7 | +13.6 | +13.0 | -6.6 | -11.8 |
Relative (%) | -0.6 | -31.3 | -1.2 | +36.2 | -31.9 | +34.0 | -1.8 | +37.3 | +35.6 | -18.2 | -32.5 | |
Step | 33 | 52 | 66 | 77 | 85 | 93 | 99 | 105 | 110 | 114 | 118 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.0 | +12.2 | +1.8 | -0.9 | +3.2 | +13.4 | -7.5 | +12.7 | +1.0 | -6.8 | -11.1 | -12.0 |
Relative (%) | -13.7 | +33.4 | +4.9 | -2.4 | +8.9 | +36.7 | -20.7 | +35.0 | +2.7 | -18.8 | -30.5 | -33.1 | |
Step | 122 | 126 | 129 | 132 | 135 | 138 | 140 | 143 | 145 | 147 | 149 | 151 |
- Octave size: 1196.4 ¢
Compressing the octave of 33edo by around 4.5 ¢ results in improved primes 5 and 7, but worse primes 2, 3, 11 and 13. This approximates all harmonics up to 16 within 17.9 ¢. If one wishes to use both 33edo's sharp and flat fifths simultaneously (see dual-fifth tuning), then this amount of stretch is ideal, because it evenly shares error between the two fifths. The tuning 93ed7 does this. So does the tuning 52ed13 whose octave differs by only 0.1 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.6 | +17.9 | -9.2 | +2.9 | +13.3 | +0.0 | -13.8 | -0.4 | -1.7 | +14.4 | +8.7 |
Relative (%) | -12.7 | +49.5 | -25.5 | +8.1 | +36.7 | +0.0 | -38.2 | -1.1 | -4.6 | +39.8 | +24.0 | |
Steps (reduced) |
33 (33) |
53 (53) |
66 (66) |
77 (77) |
86 (86) |
93 (0) |
99 (6) |
105 (12) |
110 (17) |
115 (22) |
119 (26) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +15.0 | -4.6 | -15.4 | +17.8 | -14.7 | -5.0 | +10.1 | -6.3 | +17.9 | +9.8 | +5.3 | +4.1 |
Relative (%) | +41.5 | -12.7 | -42.5 | +49.1 | -40.6 | -13.8 | +27.8 | -17.4 | +49.5 | +27.1 | +14.7 | +11.3 | |
Steps (reduced) |
123 (30) |
126 (33) |
129 (36) |
133 (40) |
135 (42) |
138 (45) |
141 (48) |
143 (50) |
146 (53) |
148 (55) |
150 (57) |
152 (59) |
- Octave size: 1194.1 ¢
Compressing the octave of 33edo by around 6 ¢ results in improved primes 5 and 7, but worse primes 2, 3, 11 and 13. This approximates all harmonics up to 16 within 17.6 ¢. The tuning 77ed5 does this. So does the tuning 139zpi whose octave differs by only 0.2 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.9 | +15.9 | -11.7 | +0.0 | +10.0 | -3.5 | -17.6 | -4.4 | -5.9 | +10.1 | +4.2 |
Relative (%) | -16.2 | +43.9 | -32.4 | +0.0 | +27.7 | -9.8 | -48.6 | -12.1 | -16.2 | +27.8 | +11.5 | |
Steps (reduced) |
33 (33) |
53 (53) |
66 (66) |
77 (0) |
86 (9) |
93 (16) |
99 (22) |
105 (28) |
110 (33) |
115 (38) |
119 (42) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +10.3 | -9.4 | +15.9 | +12.7 | +16.3 | -10.3 | +4.7 | -11.7 | +12.4 | +4.2 | -0.4 | -1.7 |
Relative (%) | +28.6 | -26.0 | +43.9 | +35.2 | +45.1 | -28.3 | +13.0 | -32.4 | +34.2 | +11.6 | -1.1 | -4.7 | |
Steps (reduced) |
123 (46) |
126 (49) |
130 (53) |
133 (56) |
136 (59) |
138 (61) |
141 (64) |
143 (66) |
146 (69) |
148 (71) |
150 (73) |
152 (75) |
- Octave size: 1191.2 ¢
Compressing the octave of 33edo by around 9 ¢ results in improved primes 5, 7, 11 and 13, but a worse prime 2. This approximates all harmonics up to 16 within 17.5 ¢. The tuning 115ed11 does this. So do the tunings 123ed13 and 1ed47/46 whose octaves are within 0.3 ¢ of 115ed11.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -8.8 | +11.3 | -17.5 | -6.7 | +2.5 | -11.7 | +9.8 | -13.6 | -15.5 | +0.0 | -6.2 |
Relative (%) | -24.2 | +31.2 | -48.5 | -18.7 | +7.0 | -32.3 | +27.3 | -37.6 | -42.9 | +0.0 | -17.3 | |
Steps (reduced) |
33 (33) |
53 (53) |
66 (66) |
77 (77) |
86 (86) |
93 (93) |
100 (100) |
105 (105) |
110 (110) |
115 (0) |
119 (4) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.4 | +15.7 | +4.5 | +1.1 | +4.4 | +13.8 | -7.6 | +11.9 | -0.4 | -8.8 | -13.5 | -15.0 |
Relative (%) | -1.2 | +43.4 | +12.5 | +3.0 | +12.3 | +38.1 | -21.2 | +32.8 | -1.1 | -24.2 | -37.4 | -41.5 | |
Steps (reduced) |
123 (8) |
127 (12) |
130 (15) |
133 (18) |
136 (21) |
139 (24) |
141 (26) |
144 (29) |
146 (31) |
148 (33) |
150 (35) |
152 (37) |
Scales
Brightest mode is listed except where noted.
- Deeptone[7], 5 5 5 4 5 5 4 (diatonic)
- Fun 5-tone subset of Deeptone[7] 9 5 5 4 10
- Deeptone[12], 4 4 1 4 1 4 4 1 4 1 4 1 (chromatic)
- Deeptone[19], 3 1 3 1 1 3 1 1 3 1 3 1 1 3 1 1 3 1 1 (enharmonic)
- Semiquartal, 5 5 2 5 2 5 2 5 2
- Semiquartal[14], 3 2 3 2 2 3 2 2 3 2 2
- Iranian Calendar, 5 4 4 4 4 4 4 4
- Diasem, 5 3 5 1 5 3 5 1 5 (*right-handed)
- Diasem, 5 1 5 3 5 1 5 3 5 (*left-handed)
- Diaslen (4sR), 1 5 1 5 2 5 1 5 1 5 2
- Diaslen (4sL), 2 5 1 5 1 5 2 5 1 5 1
- Diaslen (4sC), 1 5 2 5 1 5 1 5 2 5 1
Delta-rational harmony
The tables below show chords that approximate 3-integer-limit delta-rational chords with least-squares error less than 0.001.
Fully delta-rational triads
Steps | Delta signature | Least-squares error |
---|---|---|
0,1,2 | +1+1 | 0.00021 |
0,1,3 | +1+2 | 0.00048 |
0,1,4 | +1+3 | 0.00078 |
0,2,3 | +2+1 | 0.00039 |
0,2,4 | +1+1 | 0.00087 |
0,3,4 | +3+1 | 0.00056 |
0,3,11 | +1+3 | 0.00007 |
0,5,8 | +3+2 | 0.00084 |
0,8,18 | +2+3 | 0.00082 |
0,9,20 | +2+3 | 0.00076 |
0,12,17 | +2+1 | 0.00048 |
0,13,20 | +3+2 | 0.00063 |
0,15,21 | +2+1 | 0.00063 |
0,16,28 | +1+1 | 0.00082 |
0,18,25 | +2+1 | 0.00081 |
0,18,31 | +1+1 | 0.00058 |
0,19,24 | +3+1 | 0.00095 |
Partially delta-rational tetrads
Steps | Delta signature | Least-squares error |
---|---|---|
0,1,2,3 | +1+?+1 | 0.00053 |
0,1,2,4 | +1+?+2 | 0.00094 |
0,1,3,4 | +1+?+1 | 0.00080 |
0,1,17,18 | +2+?+3 | 0.00073 |
0,1,17,19 | +1+?+3 | 0.00071 |
0,1,18,19 | +2+?+3 | 0.00042 |
0,1,18,20 | +1+?+3 | 0.00032 |
0,1,19,20 | +2+?+3 | 0.00010 |
0,1,19,21 | +1+?+3 | 0.00008 |
0,1,20,21 | +2+?+3 | 0.00023 |
0,1,20,22 | +1+?+3 | 0.00049 |
0,1,21,22 | +2+?+3 | 0.00056 |
0,1,21,23 | +1+?+3 | 0.00091 |
0,1,22,23 | +2+?+3 | 0.00090 |
0,1,31,32 | +1+?+2 | 0.00071 |
0,2,3,4 | +2+?+1 | 0.00077 |
0,2,6,11 | +1+?+3 | 0.00094 |
0,2,7,12 | +1+?+3 | 0.00013 |
0,2,8,13 | +1+?+3 | 0.00069 |
0,2,12,13 | +3+?+2 | 0.00083 |
0,2,12,15 | +1+?+2 | 0.00087 |
0,2,13,14 | +3+?+2 | 0.00045 |
0,2,13,16 | +1+?+2 | 0.00014 |
0,2,14,15 | +3+?+2 | 0.00008 |
0,2,14,17 | +1+?+2 | 0.00060 |
0,2,15,16 | +3+?+2 | 0.00031 |
0,2,16,17 | +3+?+2 | 0.00071 |
0,2,18,20 | +2+?+3 | 0.00084 |
0,2,18,22 | +1+?+3 | 0.00024 |
0,2,19,21 | +2+?+3 | 0.00020 |
0,2,19,23 | +1+?+3 | 0.00058 |
0,2,20,22 | +2+?+3 | 0.00046 |
0,3,4,5 | +3+?+1 | 0.00097 |
0,3,5,9 | +2+?+3 | 0.00010 |
0,3,6,10 | +2+?+3 | 0.00090 |
0,3,7,12 | +1+?+2 | 0.00074 |
0,3,8,13 | +1+?+2 | 0.00037 |
0,3,10,17 | +1+?+3 | 0.00009 |
0,3,17,23 | +1+?+3 | 0.00096 |
0,3,18,22 | +1+?+2 | 0.00088 |
0,3,18,24 | +1+?+3 | 0.00027 |
0,3,19,20 | +2+?+1 | 0.00059 |
0,3,19,21 | +1+?+1 | 0.00063 |
0,3,19,22 | +2+?+3 | 0.00030 |
0,3,19,23 | +1+?+2 | 0.00023 |
0,3,20,21 | +2+?+1 | 0.00014 |
0,3,20,22 | +1+?+1 | 0.00015 |
0,3,20,23 | +2+?+3 | 0.00070 |
0,3,21,22 | +2+?+1 | 0.00032 |
0,3,21,23 | +1+?+1 | 0.00095 |
0,3,22,23 | +2+?+1 | 0.00078 |
0,3,27,32 | +1+?+3 | 0.00004 |
0,4,5,12 | +1+?+2 | 0.00026 |
0,4,6,16 | +1+?+3 | 0.00066 |
0,4,8,13 | +2+?+3 | 0.00023 |
0,4,11,20 | +1+?+3 | 0.00023 |
0,4,13,14 | +3+?+1 | 0.00091 |
0,4,13,19 | +1+?+2 | 0.00048 |
0,4,14,15 | +3+?+1 | 0.00050 |
0,4,14,16 | +3+?+2 | 0.00055 |
0,4,14,17 | +1+?+1 | 0.00021 |
0,4,15,16 | +3+?+1 | 0.00009 |
0,4,15,17 | +3+?+2 | 0.00023 |
0,4,15,18 | +1+?+1 | 0.00085 |
0,4,16,17 | +3+?+1 | 0.00034 |
0,4,17,18 | +3+?+1 | 0.00077 |
0,4,17,25 | +1+?+3 | 0.00043 |
0,4,19,23 | +2+?+3 | 0.00041 |
0,4,20,24 | +2+?+3 | 0.00094 |
0,4,22,27 | +1+?+2 | 0.00020 |
0,4,24,31 | +1+?+3 | 0.00022 |
0,5,6,9 | +3+?+2 | 0.00003 |
0,5,7,10 | +3+?+2 | 0.00097 |
0,5,7,19 | +1+?+3 | 0.00004 |
0,5,9,17 | +1+?+2 | 0.00017 |
0,5,10,16 | +2+?+3 | 0.00019 |
0,5,11,13 | +2+?+1 | 0.00087 |
0,5,11,15 | +1+?+1 | 0.00018 |
0,5,12,14 | +2+?+1 | 0.00011 |
0,5,12,23 | +1+?+3 | 0.00067 |
0,5,13,15 | +2+?+1 | 0.00067 |
0,5,16,23 | +1+?+2 | 0.00008 |
0,5,17,27 | +1+?+3 | 0.00055 |
0,5,19,24 | +2+?+3 | 0.00051 |
0,5,22,31 | +1+?+3 | 0.00057 |
0,5,24,30 | +1+?+2 | 0.00036 |
0,5,25,26 | +3+?+1 | 0.00071 |
0,5,25,27 | +3+?+2 | 0.00082 |
0,5,25,28 | +1+?+1 | 0.00045 |
0,5,26,27 | +3+?+1 | 0.00018 |
0,5,26,28 | +3+?+2 | 0.00016 |
0,5,26,29 | +1+?+1 | 0.00090 |
0,5,27,28 | +3+?+1 | 0.00035 |
0,5,28,29 | +3+?+1 | 0.00090 |
0,6,7,17 | +1+?+2 | 0.00087 |
0,6,8,22 | +1+?+3 | 0.00045 |
0,6,9,14 | +1+?+1 | 0.00031 |
0,6,11,18 | +2+?+3 | 0.00093 |
0,6,12,21 | +1+?+2 | 0.00036 |
0,6,12,25 | +1+?+3 | 0.00032 |
0,6,15,18 | +3+?+2 | 0.00026 |
0,6,16,19 | +3+?+2 | 0.00095 |
0,6,16,28 | +1+?+3 | 0.00053 |
0,6,18,26 | +1+?+2 | 0.00064 |
0,6,19,25 | +2+?+3 | 0.00062 |
0,6,20,24 | +1+?+1 | 0.00052 |
0,6,21,23 | +2+?+1 | 0.00031 |
0,6,21,32 | +1+?+3 | 0.00033 |
0,6,22,24 | +2+?+1 | 0.00063 |
0,6,25,32 | +1+?+2 | 0.00034 |
0,7,8,14 | +1+?+1 | 0.00029 |
0,7,8,24 | +1+?+3 | 0.00080 |
0,7,9,11 | +3+?+1 | 0.00066 |
0,7,9,12 | +2+?+1 | 0.00041 |
0,7,9,13 | +3+?+2 | 0.00019 |
0,7,10,12 | +3+?+1 | 0.00009 |
0,7,10,13 | +2+?+1 | 0.00070 |
0,7,11,13 | +3+?+1 | 0.00087 |
0,7,12,27 | +1+?+3 | 0.00041 |
0,7,16,30 | +1+?+3 | 0.00098 |
0,7,17,22 | +1+?+1 | 0.00008 |
0,7,19,26 | +2+?+3 | 0.00073 |
0,7,20,29 | +1+?+2 | 0.00002 |
0,7,23,26 | +3+?+2 | 0.00010 |
0,7,28,32 | +1+?+1 | 0.00033 |
0,7,29,31 | +2+?+1 | 0.00020 |
0,7,30,32 | +2+?+1 | 0.00091 |
0,8,12,29 | +1+?+3 | 0.00097 |
0,8,13,22 | +2+?+3 | 0.00051 |
0,8,15,21 | +1+?+1 | 0.00062 |
0,8,15,31 | +1+?+3 | 0.00047 |
0,8,16,18 | +3+?+1 | 0.00066 |
0,8,16,19 | +2+?+1 | 0.00031 |
0,8,16,20 | +3+?+2 | 0.00043 |
0,8,16,27 | +1+?+2 | 0.00090 |
0,8,17,19 | +3+?+1 | 0.00022 |
0,8,17,20 | +2+?+1 | 0.00098 |
0,8,19,27 | +2+?+3 | 0.00085 |
0,8,24,29 | +1+?+1 | 0.00020 |
0,9,11,16 | +3+?+2 | 0.00051 |
0,9,13,20 | +1+?+1 | 0.00002 |
0,9,14,24 | +2+?+3 | 0.00073 |
0,9,18,30 | +1+?+2 | 0.00090 |
0,9,19,28 | +2+?+3 | 0.00096 |
0,9,21,27 | +1+?+1 | 0.00040 |
0,9,22,24 | +3+?+1 | 0.00087 |
0,9,22,25 | +2+?+1 | 0.00053 |
0,9,22,26 | +3+?+2 | 0.00026 |
0,9,23,25 | +3+?+1 | 0.00013 |
0,9,23,26 | +2+?+1 | 0.00093 |
0,10,11,26 | +1+?+2 | 0.00035 |
0,10,11,32 | +1+?+3 | 0.00081 |
0,10,12,20 | +1+?+1 | 0.00098 |
0,10,14,18 | +2+?+1 | 0.00050 |
0,10,14,25 | +2+?+3 | 0.00088 |
0,10,15,29 | +1+?+2 | 0.00041 |
0,10,16,21 | +3+?+2 | 0.00055 |
0,10,19,32 | +1+?+2 | 0.00021 |
0,10,27,31 | +3+?+2 | 0.00082 |
0,10,28,30 | +3+?+1 | 0.00045 |
0,10,28,31 | +2+?+1 | 0.00016 |
0,10,29,31 | +3+?+1 | 0.00068 |
0,11,12,18 | +3+?+2 | 0.00030 |
0,11,13,16 | +3+?+1 | 0.00081 |
0,11,14,17 | +3+?+1 | 0.00044 |
0,11,16,31 | +1+?+2 | 0.00064 |
0,11,17,25 | +1+?+1 | 0.00091 |
0,11,19,23 | +2+?+1 | 0.00045 |
0,11,21,26 | +3+?+2 | 0.00074 |
0,12,15,24 | +1+?+1 | 0.00087 |
0,12,15,28 | +2+?+3 | 0.00013 |
0,12,17,23 | +3+?+2 | 0.00054 |
0,12,18,21 | +3+?+1 | 0.00043 |
0,12,19,22 | +3+?+1 | 0.00095 |
0,12,23,27 | +2+?+1 | 0.00083 |
0,12,26,31 | +3+?+2 | 0.00005 |
0,13,14,24 | +1+?+1 | 0.00019 |
0,13,17,22 | +2+?+1 | 0.00085 |
0,13,21,27 | +3+?+2 | 0.00035 |
0,13,22,25 | +3+?+1 | 0.00097 |
0,13,23,26 | +3+?+1 | 0.00054 |
0,13,28,32 | +2+?+1 | 0.00055 |
0,14,17,24 | +3+?+2 | 0.00099 |
0,14,18,28 | +1+?+1 | 0.00043 |
0,14,21,26 | +2+?+1 | 0.00080 |
0,14,25,31 | +3+?+2 | 0.00054 |
0,14,27,30 | +3+?+1 | 0.00050 |
0,15,16,20 | +3+?+1 | 0.00055 |
0,15,17,28 | +1+?+1 | 0.00064 |
0,15,21,28 | +3+?+2 | 0.00045 |
0,15,22,32 | +1+?+1 | 0.00039 |
0,16,18,26 | +3+?+2 | 0.00049 |
0,16,19,25 | +2+?+1 | 0.00031 |
0,16,20,24 | +3+?+1 | 0.00018 |
0,16,25,32 | +3+?+2 | 0.00095 |
0,17,22,28 | +2+?+1 | 0.00091 |
0,17,23,27 | +3+?+1 | 0.00066 |
0,18,27,31 | +3+?+1 | 0.00095 |
0,19,21,28 | +2+?+1 | 0.00065 |
0,20,24,31 | +2+?+1 | 0.00078 |
0,21,22,32 | +3+?+2 | 0.00091 |
0,22,27,32 | +3+?+1 | 0.00038 |
Instruments
Music
Modern renderings
- "Contrapunctus 4" from The Art of Fugue, BWV 1080 (1742–1749) – rendered by Claudi Meneghin (2024)
- "Contrapunctus 11" from The Art of Fugue, BWV 1080 (1742–1749) – rendered by Claudi Meneghin (2024)
21st century
- groove 33edo (2023)
- 33edo jam (2025)
- 33edo riff (2025)
- Rising Canon on a Ground, for Baroque Oboe, Bassoon, Violone (2024) – (for Organ)
- Lytel Twyelyghte Musicke (Little Twilight Music), for Brass and Timpani (2024)
- Mysteries of Thirty-Three (2024)