5L 7s: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Inthar (talk | contribs)
No edit summary
m Scales: +pepperoni
Line 31: Line 31:
== Scales ==
== Scales ==
* [[Pythagorean12]] – Pythagorean tuning
* [[Pythagorean12]] – Pythagorean tuning
* [[Garibaldi12]] – 94edo tuning
* [[Cotoneum12]] – 217edo tuning
* [[Cotoneum12]] – 217edo tuning
* [[Garibaldi12]] – 94edo tuning
* [[Pepperoni12]] – 271edo tuning
* [[Supra12]] – 56edo tuning
* [[Supra12]] – 56edo tuning
* [[Archy12]] – 472edo tuning
* [[Archy12]] – 472edo tuning

Revision as of 16:33, 11 December 2022

↖ 4L 6s ↑ 5L 6s 6L 6s ↗
← 4L 7s 5L 7s 6L 7s →
↙ 4L 8s ↓ 5L 8s 6L 8s ↘
┌╥┬╥┬╥┬┬╥┬╥┬┬┐
│║│║│║││║│║│││
││││││││││││││
└┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
Step pattern LsLsLssLsLss
ssLsLssLsLsL
Equave 2/1 (1200.0 ¢)
Period 2/1 (1200.0 ¢)
Generator size
Bright 7\12 to 3\5 (700.0 ¢ to 720.0 ¢)
Dark 2\5 to 5\12 (480.0 ¢ to 500.0 ¢)
TAMNAMS information
Related to 5L 2s (diatonic)
With tunings 2:1 to 1:0 (hard-of-basic)
Related MOS scales
Parent 5L 2s
Sister 7L 5s
Daughters 12L 5s, 5L 12s
Neutralized 10L 2s
2-Flought 17L 7s, 5L 19s
Equal tunings
Equalized (L:s = 1:1) 7\12 (700.0 ¢)
Supersoft (L:s = 4:3) 24\41 (702.4 ¢)
Soft (L:s = 3:2) 17\29 (703.4 ¢)
Semisoft (L:s = 5:3) 27\46 (704.3 ¢)
Basic (L:s = 2:1) 10\17 (705.9 ¢)
Semihard (L:s = 5:2) 23\39 (707.7 ¢)
Hard (L:s = 3:1) 13\22 (709.1 ¢)
Superhard (L:s = 4:1) 16\27 (711.1 ¢)
Collapsed (L:s = 1:0) 3\5 (720.0 ¢)

5L 7s is the MOS pattern of the Pythagorean/schismic chromatic scale, and also the superpyth chromatic scale. In contrast to the meantone chromatic scale, in which the diatonic semitone is larger than the chromatic semitone, here the reverse is true: the diatonic semitone is smaller than the chromatic semitone, so the diatonic scale subset is actually improper.

The two distinct harmonic entropy minima with this MOS pattern are, on the one hand, scales very close to Pythagorean such that 64/63 is not tempered out, such as the schismatic temperaments known as Helmholtz and Garibaldi, and on the other hand, the much simpler and less accurate scale known as superpyth in which 64/63 is tempered out.

The Pythagorean/schismatic version is proper, but the superpyth version is improper (it does not become proper until you add 5 more notes to form the superpyth enharmonic scale, superpyth[17]).

Modes

  • 11|0 LsLsLssLsLss
  • 10|1 LsLssLsLsLss
  • 9|2 LsLssLsLssLs
  • 8|3 LssLsLsLssLs
  • 7|4 LssLsLssLsLs
  • 6|5 sLsLsLssLsLs
  • 5|6 sLsLssLsLsLs
  • 4|7 sLsLssLsLssL
  • 3|8 sLssLsLsLssL
  • 2|9 sLssLsLssLsL
  • 1|10 ssLsLsLssLsL
  • 0|11 ssLsLssLsLsL

Scales

Scale tree

Generator ranges:

  • Chroma-positive generator: 700 cents (7\12) to 720 cents (3\5)
  • Chroma-negative generator: 480 cents (2\5) to 500 cents (5\12)
Generator Cents L s L/s Comments
7\12 700.000 1 1 1.000
38\65 701.539 6 5 1.200 Photia / pontiac / grackle
31\53 701.887 5 4 1.250 Helmholtz, Pythagorean tuning (701.9550¢)
55\94 702.128 9 7 1.286 Garibaldi / cassandra
24\41 702.409 4 3 1.333 Garibaldi / andromeda
65\111 702.703 11 8 1.375 Kwai
41\70 702.857 7 5 1.400
58\99 703.030 10 7 1.428 Undecental
17\29 703.448 3 2 1.500 Edson
61\104 703.846 11 7 1.571
44\75 704.000 8 5 1.600
71\121 704.132 13 8 1.625 Golden neogothic (704.0956¢)
27\46 704.348 5 3 1.667 Leapday / polypyth
64\109 704.587 12 7 1.714 Leapweek
37\63 704.762 7 4 1.750
47\80 705.000 9 5 1.800
10\17 705.882 2 1 2.000 Basic p-chromatic
(Generators smaller than this are proper)
43\73 706.849 9 4 2.250
33\56 707.143 7 3 2.333 Supra
56\95 707.368 12 5 2.400
23\39 707.692 5 2 2.500
59\100 708.000 13 5 2.600 Golden supra (708.0539¢)
36\61 708.197 8 3 2.667 Quasisuper / quasisupra
49\83 708.434 11 4 2.750
13\22 709.091 3 1 3.000 Suprapyth
42\71 709.859 10 3 3.333
29\49 710.204 7 2 3.500 Superpyth
45\76 710.526 11 3 3.667
16\27 711.111 4 1 4.000
35\59 711.864 9 2 4.500
19\32 712.500 5 1 5.000
22\37 713.514 6 1 6.000 Oceanfront↓ / ultrapyth
3\5 720.000 1 0 → inf