12L 5s: Difference between revisions
Undo revision 83916 by Moremajorthanmajor (talk) Tag: Undo |
No edit summary |
||
Line 1: | Line 1: | ||
This MOS separates its small steps by intervals of 3L-2L-2L-3L-2L. Its major third of -4 generators approximates an interval between [[ | {{Infobox MOS | ||
| Periods = 1 | |||
| nLargeSteps = 12 | |||
| nSmallSteps = 5 | |||
| Equalized = 7 | |||
| Paucitonic = 5 | |||
| Pattern = sLLsLLsLLLsLLsLLL | |||
| Name = Schismic mega-chromatic | |||
}} | |||
'''12L 5s''' is the MOS pattern of the [[Pythagorean tuning|Pythagorean]]/[[Garibaldi temperament|Helmholtz/Garibaldi]] mega-chromatic scale. In contrast to the [[5L 12s|superpyth mega-chromatic scale]], in which mega-chromatic semitones (negative diminished seconds) are larger than chromatic semitones, here the reverse is true: mega-chromatic semitones are smaller than chromatic semitones, so the [[5L 7s|diatonic scale]] subset is actually [[Rothenberg propriety|proper]]. | |||
This MOS separates its small steps by intervals of 3L-2L-2L-3L-2L. Its major third of -4 generators approximates an interval between [[24/19]] and [[32/25]], thus its generator is a perfect fourth between 7\17 (494.412 cents) and 5\12 (500 cents). | |||
The leapday/leapweek version is proper, but the Pythagorean/schismic version is improper (it doesn't become proper until you add 12 more notes to form the schismic 29-note scale). | |||
== Modes == | |||
* 16|0 LLLsLLsLLLsLLsLLs | |||
* 15|1 LLLsLLsLLsLLLsLLs | |||
* 14|2 LLsLLLsLLsLLLsLLs | |||
* 13|3 LLsLLLsLLsLLsLLLs | |||
* 12|4 LLsLLsLLLsLLsLLLs | |||
* 11|5 LLsLLsLLLsLLsLLsL | |||
* 10|6 LLsLLsLLsLLLsLLsL | |||
* 9|7 LsLLLsLLsLLLsLLsL | |||
* 8|8 LsLLLsLLsLLsLLLsL | |||
* 7|9 LsLLsLLLsLLsLLLsL | |||
* 6|10 LsLLsLLLsLLsLLsLL | |||
* 5|11 LsLLsLLsLLLsLLsLL | |||
* 4|12 sLLLsLLsLLLsLLsLL | |||
* 3|13 sLLLsLLsLLsLLLsLL | |||
* 2|14 sLLsLLLsLLsLLLsLL | |||
* 1|15 sLLsLLLsLLsLLsLLL | |||
* 0|16 sLLsLLsLLLsLLsLLL | |||
== Scales == | |||
* [[Pythagorean17]] – Pythagorean tuning | |||
* [[Nestoria17]] – 171edo tuning | |||
* [[Cotoneum17]] – 217edo tuning | |||
* [[Garibaldi17]] – 94edo tuning | |||
== Scale tree == | == Scale tree == | ||
Line 18: | Line 57: | ||
| || || || || || 59\143 || 495.105 || 9 || 7 || 1.286 || | | || || || || || 59\143 || 495.105 || 9 || 7 || 1.286 || | ||
|- | |- | ||
| || || || 26\63 || || || 495.238 || 4 || 3 || 1.333 || Leapfrog | | || || || 26\63 || || || 495.238 || 4 || 3 || 1.333 || [[Leapfrog]] | ||
|- | |- | ||
| || || || || || 71\172 || 495.349 || 11 || 8 || 1.375 || | | || || || || || 71\172 || 495.349 || 11 || 8 || 1.375 || | ||
|- | |- | ||
| || || || || 45\109 || || 495.413 || 7 || 5 || 1.400 || Leapweek | | || || || || 45\109 || || 495.413 || 7 || 5 || 1.400 || [[Leapweek]] | ||
|- | |- | ||
| || || || || || 64\155 || 495.484 || 10 || 7 || 1.428 || | | || || || || || 64\155 || 495.484 || 10 || 7 || 1.428 || | ||
|- | |- | ||
| || || 19\46 || || || || 495.652 || 3 || 2 || 1.500 || | | || || 19\46 || || || || 495.652 || 3 || 2 || 1.500 || | ||
|- | |- | ||
| || || || || || 69\167 || 495.808 || 11 || 7 || 1.571 || Leapday | | || || || || || 69\167 || 495.808 || 11 || 7 || 1.571 || [[Leapday]] / [[Polypyth]] | ||
|- | |- | ||
| || || || || 50\121 || || 495.868 || 8 || 5 || 1.600 || | | || || || || 50\121 || || 495.868 || 8 || 5 || 1.600 || | ||
|- | |- | ||
| || || || || || 81\196 || 495.918 || 13 || 8 || 1.625 || Golden neogothic | | || || || || || 81\196 || 495.918 || 13 || 8 || 1.625 || Golden neogothic (Generator = 495.9044 cents) | ||
|- | |- | ||
| || || || 31\75 || || || 496.000 || 5 || 3 || 1.667 || | | || || || 31\75 || || || 496.000 || 5 || 3 || 1.667 || | ||
Line 42: | Line 81: | ||
| || || || || || 55\133 || 496.241 || 9 || 5 || 1.800 || | | || || || || || 55\133 || 496.241 || 9 || 5 || 1.800 || | ||
|- | |- | ||
| || 12\29 || || || || || 496.552 || 2 || 1 || 2.000 || Basic 12L 5s<br>(Generators smaller than this are proper) | | || 12\29 || || || || || 496.552 || 2 || 1 || 2.000 || Basic 12L 5s <br>(Generators smaller than this are proper) | ||
|- | |- | ||
| || || || || || 53\128 || 496.875 || 9 || 4 || 2.250 || | | || || || || || 53\128 || 496.875 || 9 || 4 || 2.250 || | ||
|- | |- | ||
| || || || || 41\99 || || 496.970 || 7 || 3 || 2.333 || Undecental | | || || || || 41\99 || || 496.970 || 7 || 3 || 2.333 || [[Undecental]] | ||
|- | |- | ||
| || || || || || 70\169 || 497.041 || 12 || 5 || 2.400 || Argent tuning | | || || || || || 70\169 || 497.041 || 12 || 5 || 2.400 || Argent tuning (Generator: 497.0563 cents) | ||
|- | |- | ||
| || || || 29\70 || || || 497.143 || 5 || 2 || 2.500 || | | || || || 29\70 || || || 497.143 || 5 || 2 || 2.500 || | ||
|- | |- | ||
| || || || || || 75\181 || 497.238 || 13 || 5 || 2.600 || Unnamed golden tuning | | || || || || || 75\181 || 497.238 || 13 || 5 || 2.600 || Unnamed golden tuning (Generator: 497.2540 cents) | ||
|- | |- | ||
| || || || || 46\111 || || 497.297 || 8 || 3 || 2.667 || | | || || || || 46\111 || || 497.297 || 8 || 3 || 2.667 || | ||
|- | |- | ||
| || || || || || 63\152 || 497.368 || 11 || 4 || 2.750 || Kwai | | || || || || || 63\152 || 497.368 || 11 || 4 || 2.750 || [[Kwai]] | ||
|- | |- | ||
| || || 17\41 || || || || 497.561 || 3 || 1 || 3.000 || | | || || 17\41 || || || || 497.561 || 3 || 1 || 3.000 || [[Garibaldi]] / [[Andromeda]] | ||
|- | |- | ||
| || || || || || 56\135 || 497.778 || 10 || 3 || 3.333 || | | || || || || || 56\135 || 497.778 || 10 || 3 || 3.333 || | ||
|- | |- | ||
| || || || || 39\94 || || 497.872 || 7 || 2 || 3.500 || Garibaldi/ | | || || || || 39\94 || || 497.872 || 7 || 2 || 3.500 || Garibaldi / [[Cassandra]] | ||
|- | |- | ||
| || || || || || 61\147 || 497.959 || 11 || 3 || 3.667 || | | || || || || || 61\147 || 497.959 || 11 || 3 || 3.667 || | ||
|- | |- | ||
| || || || 22\53 || || || 498.113 || 4 || 1 || 4.000 || Garibaldi/ | | || || || 22\53 || || || 498.113 || 4 || 1 || 4.000 || Garibaldi / [[Helenus]] / [[Pythagorean]] | ||
|- | |- | ||
| || || || || || 49\118 || 498.305 || 9 || 2 || 4.500 || Pontiac | | || || || || || 49\118 || 498.305 || 9 || 2 || 4.500 || [[Pontiac]] | ||
|- | |- | ||
| || || || || 27\65 || || 498.462 || 5 || 1 || 5.000 || Photia | | || || || || 27\65 || || 498.462 || 5 || 1 || 5.000 || [[Photia]] | ||
|- | |- | ||
| || || || || || 32\77 || 498.701 || 6 || 1 || 6.000 || | | || || || || || 32\77 || 498.701 || 6 || 1 || 6.000 || [[Grackle]]↓ | ||
|- | |- | ||
| 5\12 || || || || || || 500.000 || 1 || 0 || → inf || | | 5\12 || || || || || || 500.000 || 1 || 0 || → inf || | ||
Line 80: | Line 119: | ||
[[Category:Abstract MOS patterns]] | [[Category:Abstract MOS patterns]] | ||
[[Category:17-tone scales]] | [[Category:17-tone scales]] | ||
[[Category:Mega chromatic scales]] |
Revision as of 07:20, 12 February 2022
↖ 11L 4s | ↑ 12L 4s | 13L 4s ↗ |
← 11L 5s | 12L 5s | 13L 5s → |
↙ 11L 6s | ↓ 12L 6s | 13L 6s ↘ |
┌╥╥╥┬╥╥┬╥╥╥┬╥╥┬╥╥┬┐ │║║║│║║│║║║│║║│║║││ │││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLLsLLsLLLsLLsLLL
12L 5s is the MOS pattern of the Pythagorean/Helmholtz/Garibaldi mega-chromatic scale. In contrast to the superpyth mega-chromatic scale, in which mega-chromatic semitones (negative diminished seconds) are larger than chromatic semitones, here the reverse is true: mega-chromatic semitones are smaller than chromatic semitones, so the diatonic scale subset is actually proper.
This MOS separates its small steps by intervals of 3L-2L-2L-3L-2L. Its major third of -4 generators approximates an interval between 24/19 and 32/25, thus its generator is a perfect fourth between 7\17 (494.412 cents) and 5\12 (500 cents).
The leapday/leapweek version is proper, but the Pythagorean/schismic version is improper (it doesn't become proper until you add 12 more notes to form the schismic 29-note scale).
Modes
- 16|0 LLLsLLsLLLsLLsLLs
- 15|1 LLLsLLsLLsLLLsLLs
- 14|2 LLsLLLsLLsLLLsLLs
- 13|3 LLsLLLsLLsLLsLLLs
- 12|4 LLsLLsLLLsLLsLLLs
- 11|5 LLsLLsLLLsLLsLLsL
- 10|6 LLsLLsLLsLLLsLLsL
- 9|7 LsLLLsLLsLLLsLLsL
- 8|8 LsLLLsLLsLLsLLLsL
- 7|9 LsLLsLLLsLLsLLLsL
- 6|10 LsLLsLLLsLLsLLsLL
- 5|11 LsLLsLLsLLLsLLsLL
- 4|12 sLLLsLLsLLLsLLsLL
- 3|13 sLLLsLLsLLsLLLsLL
- 2|14 sLLsLLLsLLsLLLsLL
- 1|15 sLLsLLLsLLsLLsLLL
- 0|16 sLLsLLsLLLsLLsLLL
Scales
- Pythagorean17 – Pythagorean tuning
- Nestoria17 – 171edo tuning
- Cotoneum17 – 217edo tuning
- Garibaldi17 – 94edo tuning
Scale tree
Generator | Cents | L | s | L/s | Comments | |||||
---|---|---|---|---|---|---|---|---|---|---|
7\17 | 494.412 | 1 | 1 | 1.000 | ||||||
40\97 | 494.845 | 6 | 5 | 1.200 | ||||||
33\80 | 495.000 | 5 | 4 | 1.250 | ||||||
59\143 | 495.105 | 9 | 7 | 1.286 | ||||||
26\63 | 495.238 | 4 | 3 | 1.333 | Leapfrog | |||||
71\172 | 495.349 | 11 | 8 | 1.375 | ||||||
45\109 | 495.413 | 7 | 5 | 1.400 | Leapweek | |||||
64\155 | 495.484 | 10 | 7 | 1.428 | ||||||
19\46 | 495.652 | 3 | 2 | 1.500 | ||||||
69\167 | 495.808 | 11 | 7 | 1.571 | Leapday / Polypyth | |||||
50\121 | 495.868 | 8 | 5 | 1.600 | ||||||
81\196 | 495.918 | 13 | 8 | 1.625 | Golden neogothic (Generator = 495.9044 cents) | |||||
31\75 | 496.000 | 5 | 3 | 1.667 | ||||||
74\179 | 496.089 | 12 | 7 | 1.714 | ||||||
43\104 | 496.154 | 7 | 4 | 1.750 | ||||||
55\133 | 496.241 | 9 | 5 | 1.800 | ||||||
12\29 | 496.552 | 2 | 1 | 2.000 | Basic 12L 5s (Generators smaller than this are proper) | |||||
53\128 | 496.875 | 9 | 4 | 2.250 | ||||||
41\99 | 496.970 | 7 | 3 | 2.333 | Undecental | |||||
70\169 | 497.041 | 12 | 5 | 2.400 | Argent tuning (Generator: 497.0563 cents) | |||||
29\70 | 497.143 | 5 | 2 | 2.500 | ||||||
75\181 | 497.238 | 13 | 5 | 2.600 | Unnamed golden tuning (Generator: 497.2540 cents) | |||||
46\111 | 497.297 | 8 | 3 | 2.667 | ||||||
63\152 | 497.368 | 11 | 4 | 2.750 | Kwai | |||||
17\41 | 497.561 | 3 | 1 | 3.000 | Garibaldi / Andromeda | |||||
56\135 | 497.778 | 10 | 3 | 3.333 | ||||||
39\94 | 497.872 | 7 | 2 | 3.500 | Garibaldi / Cassandra | |||||
61\147 | 497.959 | 11 | 3 | 3.667 | ||||||
22\53 | 498.113 | 4 | 1 | 4.000 | Garibaldi / Helenus / Pythagorean | |||||
49\118 | 498.305 | 9 | 2 | 4.500 | Pontiac | |||||
27\65 | 498.462 | 5 | 1 | 5.000 | Photia | |||||
32\77 | 498.701 | 6 | 1 | 6.000 | Grackle↓ | |||||
5\12 | 500.000 | 1 | 0 | → inf |