Porcupine family: Difference between revisions
m →Hedgehog: the difference in accuracy between echidna and hedgehog is astounding. pls at least let me emphasize it with "much more" instead of "more". the link to echidna is already obscured from the "see also". |
|||
Line 452: | Line 452: | ||
{{See also| Stearnsmic clan }} | {{See also| Stearnsmic clan }} | ||
Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out [[245/243]], the sensamagic comma. It is a strong extension of [[BPS]] (as BPS has no 2 or sqrt(2)). 22edo provides the obvious (i.e the only [[patent val]]) tuning, but if you are looking for an alternative you could try the {{val| 146 232 338 411 }} (146bccdd) val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14-note mos gives scope for harmony while stopping well short of 22. A related temperament is [[echidna]], which offers more accuracy. They merge on 22edo. | Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out [[245/243]], the sensamagic comma. It is a strong extension of [[BPS]] (as BPS has no 2 or sqrt(2)). 22edo provides the obvious (i.e the only [[patent val]]) tuning, but if you are looking for an alternative you could try the {{val| 146 232 338 411 }} (146bccdd) val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14-note mos gives scope for harmony while stopping well short of 22. A related temperament is [[echidna]], which offers much more accuracy. They merge on 22edo. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 |
Revision as of 05:48, 6 May 2024
The porcupine family is the rank-2 family of temperaments whose 5-limit parent comma is 250/243, also called the maximal diesis or porcupine comma.
Its monzo is [1 -5 3⟩, and flipping that yields ⟨⟨ 3 5 1 ]] for the wedgie. This tells us the generator is a minor whole tone, the 10/9 interval, and that three of these add up to a perfect fourth (4/3), with two more giving the minor sixth (8/5). In fact, (10/9)3 = 4/3 × 250/243, and (10/9)5 = 8/5 × (250/243)2. 3\22 is a very recommendable generator, and mos scales of 7, 8 and 15 notes make for some nice scale possibilities.
Notice 250/243 = (55/54)(100/99), the temperament thus extends naturally to the 2.3.5.11 subgroup, sometimes known as porkypine.
The second comma of the normal comma list defines which 7-limit family member we are looking at. That means
- 64/63, the archytas comma, for septimal porcupine,
- 36/35, the septimal quarter tone, for hystrix,
- 50/49, the jubilisma, for hedgehog, and
- 49/48, the slendro diesis, for nautilus.
Temperaments discussed elsewhere include jamesbond.
Porcupine
Subgroup: 2.3.5
Comma list: 250/243
Mapping: [⟨1 2 3], ⟨0 -3 -5]]
- mapping generators: ~2, ~10/9
- 5-odd-limit diamond monotone: ~10/9 = [150.000, 171.429] (1\8 to 1\7)
- 5-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
Optimal ET sequence: 7, 15, 22, 95c
Badness: 0.030778
2.3.5.11 subgroup (porkypine)
Subgroup: 2.3.5.11
Comma list: 55/54, 100/99
Sval mapping: [⟨1 2 3 4], ⟨0 -3 -5 -4]]
Gencom mapping: [⟨1 2 3 0 4], ⟨0 -3 -5 0 -4]]
- gencom: [2 10/9; 55/54, 100/99]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 163.8867
- POTE: ~2 = 1\1, ~11/10 = 164.0777
Optimal ET sequence: 7, 15, 22, 73ce, 95ce
Badness: 0.0097
Undecimation
Subgroup: 2.3.5.11.13
Comma list: 55/54, 100/99, 512/507
Sval mapping: [⟨1 5 8 8 2], ⟨0 -6 -10 -8 3]]
- sval mapping generators: ~2, ~65/44
Optimal tunings:
- CTE: ~2 = 1\1, ~88/65 = 518.0865
- POTE: ~2 = 1\1, ~88/65 = 518.2094
Optimal ET sequence: 7, 23bc, 30, 37, 44
Badness: 0.0305
Septimal porcupine
Septimal porcupine uses six of its minor tone generator steps to get to 7/4. For this to work you need a small minor tone such as 22edo provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.
Subgroup: 2.3.5.7
Comma list: 64/63, 250/243
Mapping: [⟨1 2 3 2], ⟨0 -3 -5 6]]
Wedgie: ⟨⟨ 3 5 -6 1 -18 -28 ]]
- 7-odd-limit: ~10/9 = [3/5 0 -1/5⟩
- 9-odd-limit: ~10/9 = [1/6 -1/6 0 1/12⟩
- 7- and 9-odd-limit diamond monotone: ~10/9 = [160.000, 163.636] (2\15 to 3\22)
- 7-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
- 9-odd-limit diamond tradeoff: ~10/9 = [157.821, 182.404]
Optimal ET sequence: 7, 15, 22, 37, 59, 81bd
Badness: 0.041057
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 64/63, 100/99
Mapping: [⟨1 2 3 2 4], ⟨0 -3 -5 6 -4]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 163.1055
- POTE: ~2 = 1\1, ~11/10 = 162.747
Minimax tuning:
- 11-odd-limit: ~11/10 = [1/6 -1/6 0 1/12⟩
- eigenmonzo (unchanged-interval) basis: 2.9/7
Tuning ranges:
- 11-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
- 11-odd-limit diamond tradeoff: ~11/10 = [150.637, 182.404]
Optimal ET sequence: 7, 15, 22, 37, 59
Badness: 0.021562
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 55/54, 64/63, 66/65
Mapping: [⟨1 2 3 2 4 4], ⟨0 -3 -5 6 -4 -2]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 163.4425
- POTE: ~2 = 1\1, ~11/10 = 162.708
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [1 0 0 0 -1/4⟩
- eigenmonzo (unchanged-interval) basis: 2.11
Tuning ranges:
- 13-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
- 15-odd-limit diamond monotone: ~11/10 = 163.636 (3\22)
- 13- and 15-odd-limit diamond tradeoff: ~11/10 = [138.573, 182.404]
Optimal ET sequence: 7, 15, 22f, 37f
Badness: 0.021276
Porcupinefish
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 91/90, 100/99
Mapping: [⟨1 2 3 2 4 6], ⟨0 -3 -5 6 -4 -17]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 162.6361
- POTE: ~2 = 1\1, ~11/10 = 162.277
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [2/13 0 0 0 1/13 -1/13⟩
- eigenmonzo (unchanged-interval) basis: 2.13/11
Tuning ranges:
- 13-odd-limit diamond monotone: ~10/9 = [160.000, 162.162] (2\15 to 5\37)
- 15-odd-limit diamond monotone: ~10/9 = 162.162 (5\37)
- 13- and 15-odd-limit diamond tradeoff: ~10/9 = [150.637, 182.404]
Optimal ET sequence: 15, 22, 37
Badness: 0.025314
Pourcup
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 100/99, 196/195
Mapping: [⟨1 2 3 2 4 1], ⟨0 -3 -5 6 -4 20]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 163.3781
- POTE: ~2 = 1\1, ~11/10 = 162.482
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [1/14 0 0 -1/14 0 1/14⟩
- eigenmonzo (unchanged-interval) basis: 2.13/7
Optimal ET sequence: 15f, 22f, 37, 59f
Badness: 0.035130
Porkpie
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 65/63, 100/99
Mapping: [⟨1 2 3 2 4 3], ⟨0 -3 -5 6 -4 5]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 163.6778
- POTE: ~2 = 1\1, ~11/10 = 163.688
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [1/6 -1/6 0 1/12⟩
- eigenmonzo (unchanged-interval) basis: 2.9/7
Optimal ET sequence: 7, 15f, 22
Badness: 0.026043
Opossum
Opossum can be described as 7d & 8d. Tempering out 28/27, the perfect fifth of three generator steps is conflated with not 32/21 as in porcupine but 14/9. Three such fifths or nine generator steps octave reduced give a flat 7/4. 2\15 is a good generator.
Subgroup: 2.3.5.7
Comma list: 28/27, 126/125
Mapping: [⟨1 2 3 4], ⟨0 -3 -5 -9]]
Wedgie: ⟨⟨ 3 5 9 1 6 7 ]]
Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 161.3063
Optimal ET sequence: 7d, 8d, 15
Badness: 0.040650
11-limit
Subgroup: 2.3.5.7.11
Comma list: 28/27, 55/54, 77/75
Mapping: [⟨1 2 3 4 4], ⟨0 -3 -5 -9 -4]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 161.3646
Minimax tuning:
- 11-odd-limit eigenmonzo (unchanged-interval) basis: 2.7
Optimal ET sequence: 7d, 8d, 15
Badness: 0.022325
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 28/27, 40/39, 55/54, 66/65
Mapping: [⟨1 2 3 4 4 4], ⟨0 -3 -5 -9 -4 -2]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 161.6312
Minimax tuning:
- 13- and 15-odd-limit eigenmonzo (unchanged-interval) basis: 2.7
Optimal ET sequence: 7d, 8d, 15, 38bceff
Badness: 0.019389
Porky
Porky can be described as 7d & 22, suggesting a less sharp perfect fifth. 7\51 is a good generator.
Subgroup: 2.3.5.7
Comma list: 225/224, 250/243
Mapping: [⟨1 2 3 5], ⟨0 -3 -5 -16]]
Wedgie: ⟨⟨ 3 5 16 1 17 23 ]]
- 7- and 9-odd-limit: ~10/9 = [2/11 0 1/11 -1/11⟩
Optimal ET sequence: 7d, 15d, 22, 29, 51, 73c
Badness: 0.054389
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 225/224
Mapping: [⟨1 2 3 5 4], ⟨0 -3 -5 -16 -4]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 164.3207
- POTE: ~2 = 1\1, ~11/10 = 164.552
Minimax tuning:
- 11-odd-limit: ~11/10 = [2/11 0 1/11 -1/11⟩
- eigenmonzo (unchanged-interval) basis: 2.7/5
Optimal ET sequence: 7d, 15d, 22, 51
Badness: 0.027268
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 91/90, 100/99
Mapping: [⟨1 2 3 5 4 3], ⟨0 -3 -5 -16 -4 5]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 164.4782
- POTE: ~2 = 1\1, ~11/10 = 164.953
Optimal ET sequence: 7d, 22, 29, 51f, 80cdeff
Badness: 0.026543
Coendou
Coendou can be described as 7 & 29, suggesting an even less sharp or near-just perfect fifth. 9\65 is a good generator.
Subgroup: 2.3.5.7
Comma list: 250/243, 525/512
Mapping: [⟨1 2 3 1], ⟨0 -3 -5 13]]
Wedgie: ⟨⟨ 3 5 -13 1 -29 -44 ]]
- 7- and 9-odd-limit: ~10/9 = [2/3 -1/3⟩
Optimal ET sequence: 7, 22d, 29, 65c, 94cd
Badness: 0.118344
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 525/512
Mapping: [⟨1 2 3 1 4], ⟨0 -3 -5 13 -4]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 165.9246
- POTE: ~2 = 1\1, ~11/10 = 165.981
Minimax tuning:
- 11-odd-limit: ~11/10 = [2/3 -1/3⟩
- eigenmonzo (unchanged-interval) basis: 2.3
Optimal ET sequence: 7, 22d, 29, 65ce
Badness: 0.049669
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 100/99, 105/104
Mapping: [⟨1 2 3 1 4 3], ⟨0 -3 -5 13 -4 5]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 166.0459
- POTE: ~2 = 1\1, ~11/10 = 165.974
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [2/3 -1/3⟩
- eigenmonzo (unchanged-interval) basis: 2.3
Optimal ET sequence: 7, 22d, 29, 65cef
Badness: 0.030233
Hystrix
Hystrix provides a less complex avenue to the 7-limit, with the generator taking on the role of approximating 8/7. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried 15edo. They can try the even sharper fifth of hystrix in 68edo and see how that suits.
Subgroup: 2.3.5.7
Comma list: 36/35, 160/147
Mapping: [⟨1 2 3 3], ⟨0 -3 -5 -1]]
Wedgie: ⟨⟨ 3 5 1 1 -7 -12 ]]
- 7- and 9-odd-limit: ~10/9 = [3/5 0 -1/5⟩
Optimal ET sequence: 7, 8d, 15d
Badness: 0.044944
11-limit
Subgroup: 2.3.5.7.11
Comma list: 22/21, 36/35, 80/77
Mapping: [⟨1 2 3 3 4], ⟨0 -3 -5 -1 -4]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 164.7684
- POTE: ~2 = 1\1, ~11/10 = 158.750
Optimal ET sequence: 7, 8d, 15d
Badness: 0.026790
Oxygen
Oxygen is perhaps not meant to be used as a serious temperament of harmony. Its comma basis suggests potential utility to construct Fokker blocks.
Subgroup: 2.3.5.7
Comma list: 21/20, 175/162
Mapping: [⟨1 2 3 3], ⟨0 -3 -5 -2]]
Wedgie: ⟨⟨ 3 5 2 1 -5 -9 ]]
Badness: 0.059866
Hedgehog
Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out 245/243, the sensamagic comma. It is a strong extension of BPS (as BPS has no 2 or sqrt(2)). 22edo provides the obvious (i.e the only patent val) tuning, but if you are looking for an alternative you could try the ⟨146 232 338 411] (146bccdd) val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14-note mos gives scope for harmony while stopping well short of 22. A related temperament is echidna, which offers much more accuracy. They merge on 22edo.
Subgroup: 2.3.5.7
Comma list: 50/49, 245/243
Mapping: [⟨2 1 1 2], ⟨0 3 5 5]]
- mapping generators: ~7/5, ~9/7
Wedgie: ⟨⟨ 6 10 10 2 -1 -5 ]]
Optimal ET sequence: 8d, 14c, 22
Badness: 0.043983
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 55/54, 99/98
Mapping: [⟨2 1 1 2 4], ⟨0 3 5 5 4]]
Optimal tunings:
- CTE: ~7/5 = 1\2, ~9/7 = 435.5281
- POTE: ~7/5 = 1\2, ~9/7 = 435.386
Optimal ET sequence: 8d, 14c, 22, 58ce
Badness: 0.023095
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 55/54, 65/63, 99/98
Mapping: [⟨2 1 1 2 4 3], ⟨0 3 5 5 4 6]]
Optimal tunings:
- CTE: ~7/5 = 1\2, ~9/7 = 436.3087
- POTE: ~7/5 = 1\2, ~9/7 = 435.861
Optimal ET sequence: 8d, 14cf, 22
Badness: 0.021516
Urchin
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 50/49, 55/54, 66/65
Mapping: [⟨2 1 1 2 4 6], ⟨0 3 5 5 4 2]]
Optimal tunings:
- CTE: ~7/5 = 1\2, ~9/7 = 435.1856
- POTE: ~7/5 = 1\2, ~9/7 = 437.078
Badness: 0.025233
Hedgepig
Subgroup: 2.3.5.7.11
Comma list: 50/49, 245/243, 385/384
Mapping: [⟨2 1 1 2 12], ⟨0 3 5 5 -7]]
Optimal tunings:
- CTE: ~7/5 = 1\2, ~9/7 = 435.3289
- POTE: ~7/5 = 1\2, ~9/7 = 435.425
Optimal ET sequence: 22
Badness: 0.068406
- Music
- Phobos Light by Chris Vaisvil in hedgehog[14] to 22edo.
Nautilus
Subgroup: 2.3.5.7
Comma list: 49/48, 250/243
Mapping: [⟨1 2 3 3], ⟨0 -6 -10 -3]]
- mapping generators: ~2, ~21/20
Wedgie: ⟨⟨ 6 10 3 2 -12 -21 ]]
Optimal ET sequence: 14c, 15, 29, 44d
Badness: 0.057420
11-limit
Subgroup: 2.3.5.7.11
Comma list: 49/48, 55/54, 245/242
Mapping: [⟨1 2 3 3 4], ⟨0 -6 -10 -3 -8]]
Optimal tunings:
- CTE: ~2 = 1\1, ~21/20 = 81.8017
- POTE: ~2 = 1\1, ~21/20 = 82.504
Optimal ET sequence: 14c, 15, 29, 44d
Badness: 0.026023
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 55/54, 91/90, 100/99
Mapping: [⟨1 2 3 3 4 5], ⟨0 -6 -10 -3 -8 -19]]
Optimal tunings:
- CTE: ~2 = 1\1, ~21/20 = 81.9123
- POTE: ~2 = 1\1, ~21/20 = 82.530
Optimal ET sequence: 14cf, 15, 29, 44d
Badness: 0.022285
Belauensis
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 49/48, 55/54, 66/65
Mapping: [⟨1 2 3 3 4 4], ⟨0 -6 -10 -3 -8 -4]]
Optimal tunings:
- CTE: ~2 = 1\1, ~21/20 = 82.0342
- POTE: ~2 = 1\1, ~21/20 = 81.759
Optimal ET sequence: 14c, 15, 29f, 44dff
Badness: 0.029816
- Music
Ammonite
Subgroup: 2.3.5.7
Comma list: 250/243, 686/675
Mapping: [⟨1 5 8 10], ⟨0 -9 -15 -19]]
- mapping generators: ~2, ~9/7
Wedgie: ⟨⟨ 9 15 19 3 5 2 ]]
Optimal ET sequence: 8d, 21cd, 29, 37, 66
Badness: 0.107686
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 686/675
Mapping: [⟨1 5 8 10 8], ⟨0 -9 -15 -19 -12]]
Optimal tunings:
- CTE: ~2 = 1\1, ~9/7 = 454.5050
- POTE: ~2 = 1\1, ~9/7 = 454.512
Optimal ET sequence: 8d, 21cde, 29, 37, 66
Badness: 0.045694
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 91/90, 100/99, 169/168
Mapping: [⟨1 5 8 10 8 9], ⟨0 -9 -15 -19 -12 -14]]
Optimal tunings:
- CTE: ~2 = 1\1, ~13/10 = 454.4798
- POTE: ~2 = 1\1, ~13/10 = 454.529
Optimal ET sequence: 8d, 21cdef, 29, 37, 66
Badness: 0.027168
Ceratitid
Subgroup: 2.3.5.7
Comma list: 250/243, 1728/1715
Mapping: [⟨1 2 3 3], ⟨0 -9 -15 -4]]
- mapping generators: ~2, ~36/35
Wedgie: ⟨⟨ 9 15 4 3 -19 -33 ]]
Optimal ET sequence: 1c, 21c, 22
Badness: 0.115304
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 352/343
Mapping: [⟨1 2 3 3 4], ⟨0 -9 -15 -4 -12]]
Optimal tunings:
- CTE: ~2 = 1\1, ~36/35 = 54.7019
- POTE: ~2 = 1\1, ~36/35 = 54.376
Optimal ET sequence: 1ce, 21ce, 22
Badness: 0.051319
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/63, 100/99, 352/343
Mapping: [⟨1 2 3 3 4 4], ⟨0 -9 -15 -4 -12 -7]]
Optimal tunings:
- CTE: ~2 = 1\1, ~36/35 = 54.5751
- POTE: ~2 = 1\1, ~36/35 = 54.665
Optimal ET sequence: 1ce, 21cef, 22
Badness: 0.044739