User:Ganaram inukshuk/Sandbox: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Ganaram inukshuk (talk | contribs)
Template testing
Ganaram inukshuk (talk | contribs)
m Template testing
Line 5: Line 5:


== Template test area==
== Template test area==
{{JI ratios in ED|ED=19|Primes=3, 5, 7, 11, 13|Denominator Limit=125}}
{{JI ratios in ED|ED=159|Primes=3, 5, 7, 11, 13|Denominator Limit=1000|Tenney Height=50}}


=== Cell color code test===
=== Cell color code test===

Revision as of 00:50, 22 January 2024


This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)

Template test area

Intervals of 159edo (as a 5-limit temperament)
Degree Cents Approximated JI intervals
2-limit 3-limit 5-limit
0 0.000 1/1
1 7.547
2 15.094
3 22.642
4 30.189
5 37.736
6 45.283
7 52.830
8 60.377
9 67.925
10 75.472
11 83.019
12 90.566
13 98.113
14 105.660
15 113.208 16/15
16 120.755
17 128.302
18 135.849
19 143.396
20 150.943
21 158.491
22 166.038
23 173.585
24 181.132 10/9
25 188.679
26 196.226
27 203.774 9/8
28 211.321
29 218.868
30 226.415
31 233.962
32 241.509
33 249.057
34 256.604
35 264.151
36 271.698
37 279.245
38 286.792
39 294.340 32/27
40 301.887
41 309.434
42 316.981 6/5
43 324.528
44 332.075
45 339.623
46 347.170
47 354.717
48 362.264
49 369.811
50 377.358
51 384.906 5/4
52 392.453
53 400.000
54 407.547
55 415.094
56 422.642
57 430.189
58 437.736
59 445.283
60 452.830
61 460.377
62 467.925
63 475.472
64 483.019
65 490.566
66 498.113 4/3
67 505.660
68 513.208
69 520.755 27/20
70 528.302
71 535.849
72 543.396
73 550.943
74 558.491
75 566.038
76 573.585
77 581.132
78 588.679 45/32
79 596.226
80 603.774
81 611.321 64/45
82 618.868
83 626.415
84 633.962
85 641.509
86 649.057
87 656.604
88 664.151
89 671.698
90 679.245 40/27
91 686.792
92 694.340
93 701.887 3/2
94 709.434
95 716.981
96 724.528
97 732.075
98 739.623
99 747.170
100 754.717
101 762.264
102 769.811
103 777.358
104 784.906
105 792.453
106 800.000
107 807.547
108 815.094 8/5
109 822.642
110 830.189
111 837.736
112 845.283
113 852.830
114 860.377
115 867.925
116 875.472
117 883.019 5/3
118 890.566
119 898.113
120 905.660 27/16
121 913.208
122 920.755
123 928.302
124 935.849
125 943.396
126 950.943
127 958.491
128 966.038
129 973.585
130 981.132
131 988.679
132 996.226 16/9
133 1003.774
134 1011.321
135 1018.868 9/5
136 1026.415
137 1033.962
138 1041.509
139 1049.057
140 1056.604
141 1064.151
142 1071.698
143 1079.245
144 1086.792 15/8
145 1094.340
146 1101.887
147 1109.434
148 1116.981
149 1124.528
150 1132.075
151 1139.623
152 1147.170
153 1154.717
154 1162.264
155 1169.811
156 1177.358
157 1184.906
158 1192.453
159 1200.000 2/1


Cell color code test

Examples 0
Augmented size Aug.
Large size Maj.
Small size Min.
Diminished size Dim.

MOS mode degrees (5L 2s)

Scale degrees of the modes of 5L 2s
UDP Cyclic
order
Step
pattern
Scale degree (diadegree)
0 1 2 3 4 5 6 7
6|0 1 LLLsLLs Perf. Maj. Maj. Aug. Perf. Maj. Maj. Perf.
5|1 5 LLsLLLs Perf. Maj. Maj. Perf. Perf. Maj. Maj. Perf.
4|2 2 LLsLLsL Perf. Maj. Maj. Perf. Perf. Maj. Min. Perf.
3|3 6 LsLLLsL Perf. Maj. Min. Perf. Perf. Maj. Min. Perf.
2|4 3 LsLLsLL Perf. Maj. Min. Perf. Perf. Min. Min. Perf.
1|5 7 sLLLsLL Perf. Min. Min. Perf. Perf. Min. Min. Perf.
0|6 4 sLLsLLL Perf. Min. Min. Perf. Dim. Min. Min. Perf.
Scale degrees of the modes of 5L 2s (LsLLsAs)
UDP and
alterations
Cyclic
order
Step
pattern
Scale degree (diadegree)
0 1 2 3 4 5 6 7
2|4 M6md 1 LsLLsAs Perf. Maj. Min. Perf. Perf. Min. Maj. Perf.
0|6 M5md 2 sLLsAsL Perf. Min. Min. Perf. Dim. Maj. Min. Perf.
5|1 A4md 3 LLsAsLs Perf. Maj. Maj. Perf. Aug. Maj. Maj. Perf.
3|3 A3md 4 LsAsLsL Perf. Maj. Min. Aug. Perf. Maj. Min. Perf.
1|5 M2md 5 sAsLsLL Perf. Min. Maj. Perf. Perf. Min. Min. Perf.
6|0 A1md 6 AsLsLLs Perf. Aug. Maj. Aug. Perf. Maj. Maj. Perf.
0|6 d3md d6md 7 sLsLLsA Perf. Min. Min. Dim. Dim. Min. Dim. Perf.
Scale degrees of the modes of 5L 2s (LLsLsAs)
UDP and
alterations
Cyclic
order
Step
pattern
Scale degree (diadegree)
0 1 2 3 4 5 6 7
5|1 m5md 1 LLsLsAs Perf. Maj. Maj. Perf. Perf. Min. Maj. Perf.
3|3 d4md 2 LsLsAsL Perf. Maj. Min. Perf. Dim. Maj. Min. Perf.
1|5 d3md 3 sLsAsLL Perf. Min. Min. Dim. Perf. Min. Min. Perf.
6|0 m2md 4 LsAsLLs Perf. Maj. Min. Aug. Perf. Maj. Maj. Perf.
4|2 m1md 5 sAsLLsL Perf. Min. Maj. Perf. Perf. Maj. Min. Perf.
6|0 A1md A4md 6 AsLLsLs Perf. Aug. Maj. Aug. Aug. Maj. Maj. Perf.
0|6 d6md 7 sLLsLsA Perf. Min. Min. Perf. Dim. Min. Dim. Perf.
Scale degrees of the modes of 5L 2s (LsLLLLs)
UDP and
alterations
Cyclic
order
Step
pattern
Scale degree (diadegree)
0 1 2 3 4 5 6 7
5|1 m2md
3|3 M6md
1 LsLLLLs Perf. Maj. Min. Perf. Perf. Maj. Maj. Perf.
3|3 m1md
1|5 M5md
2 sLLLLsL Perf. Min. Min. Perf. Perf. Maj. Min. Perf.
6|0 A4md 3 LLLLsLs Perf. Maj. Maj. Aug. Aug. Maj. Maj. Perf.
6|0 m6md
4|2 A3md
4 LLLsLsL Perf. Maj. Maj. Aug. Perf. Maj. Min. Perf.
4|2 m5md
2|4 M2md
5 LLsLsLL Perf. Maj. Maj. Perf. Perf. Min. Min. Perf.
2|4 d4md
0|6 M1md
6 LsLsLLL Perf. Maj. Min. Perf. Dim. Min. Min. Perf.
0|6 d3md 7 sLsLLLL Perf. Min. Min. Dim. Dim. Min. Min. Perf.
Scale degrees of the modes of 5L 2s (sLLLLLs)
UDP and
alterations
Cyclic
order
Step
pattern
Scale degree (diadegree)
0 1 2 3 4 5 6 7
5|1 m1md m2md
1|5 M5md M6md
1 sLLLLLs Perf. Min. Min. Perf. Perf. Maj. Maj. Perf.
6|0 A4md A5md 2 LLLLLss Perf. Maj. Maj. Aug. Aug. Aug. Maj. Perf.
6|0 A4md m6md
4|2 A3md A4md
3 LLLLssL Perf. Maj. Maj. Aug. Aug. Maj. Min. Perf.
6|0 m5md m6md
2|4 M2md A3md
4 LLLssLL Perf. Maj. Maj. Aug. Perf. Min. Min. Perf.
4|2 d4md m5md
0|6 M1md M2md
5 LLssLLL Perf. Maj. Maj. Perf. Dim. Min. Min. Perf.
2|4 d3md d4md
0|6 M1md d3md
6 LssLLLL Perf. Maj. Min. Dim. Dim. Min. Min. Perf.
0|6 d2md d3md 7 ssLLLLL Perf. Min. Dim. Dim. Dim. Min. Min. Perf.


Scale degrees of the modes of 5L 2s (LLLLLLd)
UDP and
alterations
Cyclic
order
Step
pattern
Scale degree (diadegree)
0 1 2 3 4 5 6 7
6|0 A4md A5md A6md 1 LLLLLLd Perf. Maj. Maj. Aug. Aug. Aug. Aug. Perf.
6|0 A4md A5md m6md
4|2 A3md A4md A5md
2 LLLLLdL Perf. Maj. Maj. Aug. Aug. Aug. Min. Perf.
6|0 A4md m5md m6md
2|4 M2md A3md A4md
3 LLLLdLL Perf. Maj. Maj. Aug. Aug. Min. Min. Perf.
6|0 d4md m5md m6md
0|6 M1md M2md A3md
4 LLLdLLL Perf. Maj. Maj. Aug. Dim. Min. Min. Perf.
4|2 d3md d4md m5md
0|6 M1md M2md d3md
5 LLdLLLL Perf. Maj. Maj. Dim. Dim. Min. Min. Perf.
2|4 d2md d3md d4md
0|6 M1md d2md d3md
6 LdLLLLL Perf. Maj. Dim. Dim. Dim. Min. Min. Perf.
0|6 d1md d2md d3md 7 dLLLLLL Perf. Dim. Dim. Dim. Dim. Min. Min. Perf.


Scale degrees of the modes of 5L 2s (AAdAdAd)
UDP and
alterations
Cyclic
order
Step
pattern
Scale degree (diadegree)
0 1 2 3 4 5 6 7
6|0 A1md AA2md AA4md A6md 1 AAdAdAd Perf. Aug. 2× Aug. Aug. 2× Aug. Maj. Aug. Perf.
6|0 A1md m2md d4md d6md
0|6 A1md A3md M5md d6md
2 AdAdAdA Perf. Aug. Min. Aug. Dim. Maj. Dim. Perf.
0|6 d1md dd3md dd5md d6md 3 dAdAdAA Perf. Dim. Min. 2× Dim. Dim. 2× Dim. Dim. Perf.
6|0 A1md m2md d4md A6md
0|6 A1md A3md M5md A6md
4 AdAdAAd Perf. Aug. Min. Aug. Dim. Maj. Aug. Perf.
3|3 d1md dd3md d4md d6md
0|6 d1md dd3md M5md d6md
5 dAdAAdA Perf. Dim. Min. 2× Dim. Dim. Maj. Dim. Perf.
6|0 A1md m2md AA4md A6md
3|3 A1md A3md AA4md A6md
6 AdAAdAd Perf. Aug. Min. Aug. 2× Aug. Maj. Aug. Perf.
6|0 d1md m2md d4md d6md
0|6 d1md A3md M5md d6md
7 dAAdAdA Perf. Dim. Min. Aug. Dim. Maj. Dim. Perf.

Mos mode degrees with rotations of multiple modmosses

UDP Step pattern Mode names Scale degree (diadegree)
0 1 2 3 4 5 6 7
6|0 LLLsLLs Lydian Perf. Maj. Maj. Aug. Perf. Maj. Maj. Perf.
5|1 LLsLLLs Ionian (major) Perf. Maj. Maj. Perf. Perf. Maj. Maj. Perf.
4|2 LLsLLsL Mixolydian Perf. Maj. Maj. Perf. Perf. Maj. Min. Perf.
3|3 LsLLLsL Dorian Perf. Maj. Min. Perf. Perf. Maj. Min. Perf.
2|4 LsLLsLL Aeolian (minor) Perf. Maj. Min. Perf. Perf. Min. Min. Perf.
1|5 sLLLsLL Phrygian Perf. Min. Min. Perf. Perf. Min. Min. Perf.
0|6 sLLsLLL Locrian Perf. Min. Min. Perf. Dim. Min. Min. Perf
2|4 M6md LsLLsAs Harmonic minor Perf. Maj. Min. Perf. Perf. Min. Maj. Perf.
0|6 M5md sLLsAsL Locrian #6 Perf. Min. Min. Perf. Dim. Maj. Min. Perf.
5|1 A4md LLsAsLs Ionian augmented Perf. Maj. Maj. Perf. Aug. Maj. Maj. Perf.
3|3 A3md LsAsLsL Dorian #4 Perf. Maj. Min. Aug. Perf. Maj. Min. Perf.
1|5 M2md sAsLsLL Phrygian dominant Perf. Min. Maj. Perf. Perf. Min. Min. Perf.
6|0 A1md AsLsLLs Lydian #2 Perf. Aug. Maj. Aug. Perf. Maj. Maj. Perf.
0|6 d3md d6md sLsLLsA Locrian b4 bb7 Perf. Min. Min. Dim. Dim. Min. Dim. Perf.
5|1 m5md LLsLsAs Ionian b6 (Harmonic major) Perf. Maj. Maj. Perf. Perf. Min. Maj. Perf.
3|3 d4md LsLsAsL Dorian b5 (Dorian diminished) Perf. Maj. Min. Perf. Dim. Maj. Min. Perf.
1|5 d3md sLsAsLL Phrygian b4 Perf. Min. Min. Dim. Perf. Min. Min. Perf.
6|0 m2md LsAsLLs Lydian b3 (Lydian minor) Perf. Maj. Min. Aug. Perf. Maj. Maj. Perf.
4|2 m1md sAsLLsL Mixolydian b2 Perf. Min. Maj. Perf. Perf. Maj. Min. Perf.
6|0 A1md A4md AsLLsLs Lydian #2 #5 Perf. Aug. Maj. Aug. Aug. Maj. Maj. Perf.
0|6 d6md sLLsLsA Locrian bb7 Perf. Min. Min. Perf. Dim. Min. Dim. Perf.
5|1 m2md LsLLLLs Aeolian ♮6 ♮7 (Melodic minor) Perf. Maj. Min. Perf. Perf. Maj. Maj. Perf.
3|3 m1md sLLLLsL Dorian b2 Perf. Min. Min. Perf. Perf. Maj. Min. Perf.
6|0 A4md LLLLsLs Lydian #5 (Lydian augmented) Perf. Maj. Maj. Aug. Aug. Maj. Maj. Perf.
6|0 m6md LLLsLsL Lydian b7 (Lydian dominant) Perf. Maj. Maj. Aug. Perf. Maj. Min. Perf.
4|2 m5md LLsLsLL Mixolydian b6 Perf. Maj. Maj. Perf. Perf. Min. Min. Perf.
2|4 d4md LsLsLLL Locrian ♮2 (Half-diminished) Perf. Maj. Min. Perf. Dim. Min. Min. Perf.
0|6 d3md sLsLLLL Locrian bb4 (Altered dominant, super-locrian) Perf. Min. Min. Dim. Dim. Min. Min. Perf.
5|1 m1md m2md sLLLLLs Ionian b2 b3 (Neapolitan major) Perf. Min. Min. Perf. Perf. Maj. Maj. Perf.
6|0 A4md A5md LLLLLss Lydian #5 #6 Perf. Maj. Maj. Aug. Aug. Aug. Maj. Perf.
6|0 A4md m6md LLLLssL Lydian #5 b7 Perf. Maj. Maj. Aug. Aug. Maj. Min. Perf.
6|0 m5md m6md LLLssLL Lydian b6 b7 Perf. Maj. Maj. Aug. Perf. Min. Min. Perf.
4|2 d4md m5md LLssLLL Locrian ♮2 ♮3 (Major locrian) Perf. Maj. Maj. Perf. Dim. Min. Min. Perf.
2|4 d3md d4md LssLLLL Locrian ♮2 b4 Perf. Maj. Min. Dim. Dim. Min. Min. Perf.
0|6 d2md d3md ssLLLLL Locrian bb3 b4 Perf. Min. Dim. Dim. Dim. Min. Min. Perf.


MOS step sizes

3L 4s step sizes
Interval Basic 3L 4s

(10edo, L:s = 2:1)

Hard 3L 4s

(13edo, L:s = 3:1)

Soft 3L 4s

(17edo, L:s = 3:2)

Approx. JI ratios
Steps Cents Steps Cents Steps Cents
Large step 2 240¢ 3 276.9¢ 3 211.8¢ Hide column if no ratios given
Small step 1 120¢ 1 92.3¢ 2 141.2¢
Bright generator 3 360¢ 4 369.2¢ 5 355.6¢

Notes:

  • Allow option to show the bright generator, dark generator, or no generator.
  • JI ratios column only shows if there are any ratios to show

Expanded MOS intro

The following pieces of information may be worth adding:

  • Distinguishing between TAMNAMS names from other, noteworthy non-TAMNAMS names. Equave-agnostic names can be treated as TAMNAMS name for appropriate mosses (EG, 4L 1s).
  • The specific step pattern for the true mos. (The template will have a link to the page for rotations.)
  • Simple edos (or ed<p/q>) that support the mos.
  • Support for TAMEX names, or how the mos relates to another, ancestral TAMNAMS-named mos. Extensions include chromatic, enharmonic, subchromatic, and descendant. This requires standardizing the naming scheme for descendant mosses before it can be added.
    • TAMEX is short for temperament-agnostic moment-of-symmetry scale extension naming system.
  • Whether the mos exhibits Rothenberg propriety.

Base wording

xL ys<p/q>, named mosname (also called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), repeating every equave. Modes of this scale are based on the step pattern of step-pattern. Equal divisions of the equave that support this scale include basic-ed, hard-ed, and soft-ed. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢.

nxL nys<p/q>, named mosname (also called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale, containing nx large steps(s) and ny small step(s), with a period of x large step(s) and y small steps(s) that repeats every equave-fraction, or n times every equave. Modes of this scale are based on the step pattern of step-pattern. Equal divisions of the equave that support this scale include basic-ed, hard-ed, and soft-ed. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢.

Supplemental info

For monosmall and monosmall-per-period mosses: Scales of this form always exhibit Rothenberg propriety because there is only one small step per period.

For mosses that descend from a TAMNAMS-named mos: xL ys<p/q> is a kth-order descendant scale of zL ws<p/q>, an extension of zL ws<p/q> scales with a step-ratio-range step ratio.

Examples

5L 7s, also called p-chromatic, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 5 large steps and 7 small steps, repeating every octave. 5L 7s is a child scale of 5L 2s, expanding it by 5 tones. Generators that produce this scale range from 700 ¢ to 720 ¢, or from 480 ¢ to 500 ¢.

5L 7s, also called p-chromatic, is an octave-equivalent moment of symmetry scale containing 5 large steps and 7 small steps, repeating every octave. 5L 7s is a chromatic scale of 5L 2s, an extension of 5L 2s scales with a hard-of-basic step ratio. Equal divisions of the octave that support this scale's step pattern include 17edo, 22edo, and 29edo. Generators that produce this scale range from 700¢ to 720¢, or from 480¢ to 500¢.

Mbox template test

These would be their own templates.

Stub page:

This page is a stub. You can help the Xenharmonic Wiki by expanding it.

Page needs cleanup (with example reason):

This article may require cleanup.

Reason: page contains advanced concepts. You can edit this page to improve it.

Page under construction:

This article is being created or in the process of being rewritten, and is not yet ready for use. You are welcome to help with editing this page.

Math symbols test

Isolated symbols

[math]\displaystyle{ T := [ t_1, t_2, ..., t_m ] }[/math] [math]\displaystyle{ S := [ s_1, s_2, ..., s_m ] }[/math] [math]\displaystyle{ P := [ p_1, p_2, ..., p_n ] }[/math]

Sample text

Pulled from muddle page.

Let the target scale T be a sequence of steps [ t1, t2, t3, ... , tm ], the parent scale P be a sequence of steps [ p1, p2, p3, ... , pn ], and the resulting muddle scale S be a sequence of steps [ s1, s2, s3, ... , sm ]. Note that the number of steps in P must be equal to the sum of all ti from T. Also note that both ti and pi are both numeric values, as with si.

The first step s1 of the muddle scale is the sum of the first t1 steps from P, the next step s2 is the sum of the next t2 steps after that (after the previous t1 steps), the next step s3 is the sum of the next t3 steps after that (after the previous t1+t2 steps), and so on, where the last step sm is the sum of the last tm steps from P. For example, if s1 is made from the first 3 steps of P (p1, p2, and p3), then the next step p2 is the sum of the next t2 steps after p3, meaning the sum starts at (and includes) p4.

Interval and degree tables

The following two tables were made using a custom program (dubbed Moscalc and Modecalc) whose output is formatted for use with MediaWiki.

Intervals of 2L 5s for each mode
Mode UDP Rotational order mosunison 1-mosstep 2-mosstep 3-mosstep 4-mosstep 5-mosstep 6-mosstep mosoctave
LssLsss 6|0 0 0 L L+s L+2s 2L+2s 2L+3s 2L+4s 2L+5s
LsssLss 5|1 3 0 L L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLssLss 4|2 6 0 s L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLsssLs 3|3 2 0 s L+s L+2s L+3s L+4s 2L+4s 2L+5s
ssLssLs 2|4 5 0 s 2s L+2s L+3s L+4s 2L+4s 2L+5s
ssLsssL 1|5 1 0 s 2s L+2s L+3s L+4s L+5s 2L+5s
sssLssL 0|6 4 0 s 2s 3s L+3s L+4s L+5s 2L+5s


Degrees of 2L 5s for each mode
Mode UDP Rotational order 0-mosdegree 1-mosdegree 2-mosdegree 3-mosdegree 4-mosdegree 5-mosdegree 6-mosdegree 7-mosdegree
LssLsss 6|0 0 perfect major major perfect augmented major major perfect
LsssLss 5|1 3 perfect major major perfect perfect major major perfect
sLssLss 4|2 6 perfect minor major perfect perfect major major perfect
sLsssLs 3|3 2 perfect minor major perfect perfect minor major perfect
ssLssLs 2|4 5 perfect minor minor perfect perfect minor major perfect
ssLsssL 1|5 1 perfect minor minor perfect perfect minor minor perfect
sssLssL 0|6 4 perfect minor minor diminished perfect minor minor perfect

Note: don't merge cells on a table with sorting.

Intervals of 2L 5s for each mode (with mode names)
Mode Mode name UDP Rotational order mosunison 1-mosstep 2-mosstep 3-mosstep 4-mosstep 5-mosstep 6-mosstep mosoctave
LssLsss antilocrian 6|0 0 0 L L+s L+2s 2L+2s 2L+3s 2L+4s 2L+5s
LsssLss antiphrygian 5|1 3 0 L L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLssLss anti-aeolian 4|2 6 0 s L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLsssLs antidorian 3|3 2 0 s L+s L+2s L+3s L+4s 2L+4s 2L+5s
ssLssLs antimixolydian 2|4 5 0 s 2s L+2s L+3s L+4s 2L+4s 2L+5s
ssLsssL anti-ionian 1|5 1 0 s 2s L+2s L+3s L+4s L+5s 2L+5s
sssLssL antilydian 0|6 4 0 s 2s 3s L+3s L+4s L+5s 2L+5s
Degrees of 2L 5s for each mode (with mode names)
Mode Mode name UDP Rotational order 0-mosdegree 1-mosdegree 2-mosdegree 3-mosdegree 4-mosdegree 5-mosdegree 6-mosdegree 7-mosdegree
LssLsss antilocrian 6|0 0 perfect major major perfect augmented major major perfect
LsssLss antiphrygian 5|1 3 perfect major major perfect perfect major major perfect
sLssLss anti-aeolian 4|2 6 perfect minor major perfect perfect major major perfect
sLsssLs antidorian 3|3 2 perfect minor major perfect perfect minor major perfect
ssLssLs antimixolydian 2|4 5 perfect minor minor perfect perfect minor major perfect
ssLsssL anti-ionian 1|5 1 perfect minor minor perfect perfect minor minor perfect
sssLssL antilydian 0|6 4 perfect minor minor diminished perfect minor minor perfect

Alternate mos tables

Pattern Number of notes Number of periods Name Prefix
1L 1s 2 1 trivial triv-
1L 1s 2 1 monowood monowd-
1L 2s 3 1 antrial atri-
2L 1s 3 1 trial tri-
1L 3s 4 1 antetric atetra-
2L 2s 4 2 biwood biwd-
3L 1s 4 1 tetric tetra-
1L 4s 5 1 pedal ped-
2L 3s 5 1 pentic pent-
3L 2s 5 1 antipentic apent-
4L 1s 5 1 manual manu-
1L 5s 6 1 antimachinoid amech-
2L 4s 6 2 anticitric acitro-
3L 3s 6 3 triwood triwd-
4L 2s 6 2 citric citro-
5L 1s 6 1 machinoid mech-
1L 6s 7 1 onyx on-
2L 5s 7 1 antidiatonic pel-
3L 4s 7 1 mosh mosh-
4L 3s 7 1 smitonic smi-
5L 2s 7 1 diatonic none
6L 1s 7 1 arch(a)eotonic arch-
1L 7s 8 1 antipine apine-
2L 6s 8 2 antiekic anek-
3L 5s 8 1 checkertonic check-
4L 4s 8 4 tetrawood; diminished tetwd-
5L 3s 8 1 oneirotonic neiro-
6L 2s 8 2 ekic ek-
7L 1s 8 1 pine pine-
1L 8s 9 1 antisubneutralic ablu-
2L 7s 9 1 balzano bal- /bæl/
3L 6s 9 3 tcherepnin cher-
4L 5s 9 1 gramitonic gram-
5L 4s 9 1 semiquartal cthon-
6L 3s 9 3 hyrulic hyru-
7L 2s 9 1 superdiatonic arm-
8L 1s 9 1 subneutralic blu-
1L 9s 10 1 antisinatonic asina-
2L 8s 10 2 jaric jara-
3L 7s 10 1 sephiroid seph-
4L 6s 10 2 lime lime-
5L 5s 10 5 pentawood penwd-
6L 4s 10 2 lemon lem-
7L 3s 10 1 dicoid /'daɪkɔɪd/ dico-
8L 2s 10 2 taric tara-
9L 1s 10 1 sinatonic sina-

Scale trees of 1L 1s, 1L 2s, and 2L 1s (sandbox)

Generator Bright gen. Dark gen. L s L/s Ranges of mosses
1\2 600.000 600.000 1 1 1.000
6\11 654.545 545.455 6 5 1.200 2L 5s range (includes 2L 7s and 7L 2s)
5\9 666.667 533.333 5 4 1.250
9\16 675.000 525.000 9 7 1.286
4\7 685.714 514.286 4 3 1.333 Basic 2L 3s
11\19 694.737 505.263 11 8 1.375 5L 2s range (includes 7L 5s and 5L 7s)
7\12 700.000 500.000 7 5 1.400
10\17 705.882 494.118 10 7 1.429
3\5 720.000 480.000 3 2 1.500 Basic 2L 1s
11\18 733.333 466.667 11 7 1.571 5L 3s range
8\13 738.462 461.538 8 5 1.600
13\21 742.857 457.143 13 8 1.625
5\8 750.000 450.000 5 3 1.667 Basic 3L 2s
12\19 757.895 442.105 12 7 1.714 3L 5s range
7\11 763.636 436.364 7 4 1.750
9\14 771.429 428.571 9 5 1.800
2\3 800.000 400.000 2 1 2.000 Basic 1L 1s (dividing line between 2L 1s and 1L 2s)
9\13 830.769 369.231 9 4 2.250 3L 4s range (includes 3L 7s and 7L 3s)
7\10 840.000 360.000 7 3 2.333
12\17 847.059 352.941 12 5 2.400
5\7 857.143 342.857 5 2 2.500 Basic 3L 1s
13\18 866.667 333.333 13 5 2.600 4L 3s range
8\11 872.727 327.273 8 3 2.667
11\15 880.000 320.000 11 4 2.750
3\4 900.000 300.000 3 1 3.000 Basic 1L 2s
10\13 923.077 276.923 10 3 3.333 Range of 1L 4s (includes 4L 5s and 5L 4s)
7\9 933.333 266.667 7 2 3.500
11\14 942.857 257.143 11 3 3.667
4\5 960.000 240.000 4 1 4.000 Basic 1L 4s
9\11 981.818 218.182 9 2 4.500 Range of 4L 1s (includes 5L 1s and 1L 5s)
5\6 1000.000 200.000 5 1 5.000
6\7 1028.571 171.429 6 1 6.000
1\1 1200.000 0.000 1 0 → inf

Module and template sandbox

Mos ancestors and descendants

2nd ancestor 1st ancestor Mos 1st descendants 2nd descendants
uL vs zL ws xL ys xL (x+y)s xL (2x+y)s
(2x+y)L xs
(x+y)L xs (2x+y)L (x+y)s
(x+y)L (2x+y)s