198edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Regular temperament properties: +hemichromat, +semiwitch, +hitch
Address a name change; -redundant categories
Line 7: Line 7:
Like 99, it tempers out [[2401/2400]], [[3136/3125]], [[4375/4374]], [[5120/5103]], [[6144/6125]] and [[10976/10935]] in the 7-limit. In the 11-limit, [[3025/3024]], [[3388/3375]], [[9801/9800]], [[14641/14580]], and [[16384/16335]]; in the 13-limit, [[352/351]], [[676/675]], [[847/845]], [[1001/1000]], [[1716/1715]], [[2080/2079]], [[2200/2197]] and [[6656/6655]].  
Like 99, it tempers out [[2401/2400]], [[3136/3125]], [[4375/4374]], [[5120/5103]], [[6144/6125]] and [[10976/10935]] in the 7-limit. In the 11-limit, [[3025/3024]], [[3388/3375]], [[9801/9800]], [[14641/14580]], and [[16384/16335]]; in the 13-limit, [[352/351]], [[676/675]], [[847/845]], [[1001/1000]], [[1716/1715]], [[2080/2079]], [[2200/2197]] and [[6656/6655]].  


It provides the [[optimal patent val]] for the 13-limit rank-5 temperament tempering out 352/351, plus other temperaments of lower rank also tempering it out, such as [[hemimist]] and [[namaka]]. Besides [[minthmic chords]], it enables [[essentially tempered chords]] including [[cuthbert chords]], [[sinbadmic chords]], and [[petrmic chords]] in the 13-odd-limit, in addition to [[island chords]] in the 15-odd-limit.  
It provides the [[optimal patent val]] for the 13-limit rank-5 temperament tempering out 352/351, plus other temperaments of lower rank also tempering it out, such as [[hemimist]] and [[namaka]]. Besides [[major minthmic chords]], it enables [[essentially tempered chords]] including [[cuthbert chords]], [[sinbadmic chords]], and [[petrmic chords]] in the 13-odd-limit, in addition to [[island chords]] in the 15-odd-limit.  


Notably, it is the last edo to map [[64/63]] and [[81/80]] to the same step consistently.  
Notably, it is the last edo to map [[64/63]] and [[81/80]] to the same step consistently.  
Line 178: Line 178:


[[Category:99edo]]
[[Category:99edo]]
[[Category:198edo]]
[[Category:Major minthmic]]
[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
[[Category:Minthmic]]
[[Category:Namaka]]
[[Category:Namaka]]

Revision as of 14:58, 15 January 2024

← 197edo 198edo 199edo →
Prime factorization 2 × 32 × 11
Step size 6.06061 ¢ 
Fifth 116\198 (703.03 ¢) (→ 58\99)
Semitones (A1:m2) 20:14 (121.2 ¢ : 84.85 ¢)
Consistency limit 15
Distinct consistency limit 15

Template:EDO intro

Theory

198edo is distinctly consistent through the 15-odd-limit with harmonics of 3 through 13 all tuned sharp. It is enfactored in the 7-limit, with the same tuning as 99edo, but makes for a good 11- and 13-limit system.

Like 99, it tempers out 2401/2400, 3136/3125, 4375/4374, 5120/5103, 6144/6125 and 10976/10935 in the 7-limit. In the 11-limit, 3025/3024, 3388/3375, 9801/9800, 14641/14580, and 16384/16335; in the 13-limit, 352/351, 676/675, 847/845, 1001/1000, 1716/1715, 2080/2079, 2200/2197 and 6656/6655.

It provides the optimal patent val for the 13-limit rank-5 temperament tempering out 352/351, plus other temperaments of lower rank also tempering it out, such as hemimist and namaka. Besides major minthmic chords, it enables essentially tempered chords including cuthbert chords, sinbadmic chords, and petrmic chords in the 13-odd-limit, in addition to island chords in the 15-odd-limit.

Notably, it is the last edo to map 64/63 and 81/80 to the same step consistently.

The 198b val supports a septimal meantone close to the CTE tuning, although 229edo is even closer, and besides, the 198be val supports an undecimal meantone almost identical to the POTE tuning.

Prime harmonics

Approximation of prime harmonics in 198edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +1.08 +1.57 +0.87 +0.20 +1.90 -1.93 -0.54 +2.03 +0.73 +0.42
Relative (%) +0.0 +17.7 +25.8 +14.4 +3.3 +31.3 -31.8 -9.0 +33.5 +12.0 +6.9
Steps
(reduced)
198
(0)
314
(116)
460
(64)
556
(160)
685
(91)
733
(139)
809
(17)
841
(49)
896
(104)
962
(170)
981
(189)

Subsets and supersets

198 factors into 2 × 32 × 11, and has divisors 2, 3, 6, 9, 11, 18, 22, 33, 66 and 99.

A step of 198edo is exactly 50 purdals or 62 primas.

Intervals

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3.5.7.11 2401/2400, 3025/3024, 3136/3125, 4375/4374 [198 314 460 556 685]] -0.344 0.291 4.80
2.3.5.7.11.13 352/351, 676/675, 847/845, 1716/1715, 3025/3024 [198 314 460 556 685 733]] -0.372 0.273 4.50
  • 198et has a lower absolute error in the 13-limit than any previous equal temperaments, past 190 and followed by 224.

Rank-2 temperaments

Note: temperaments supported by 99et are not included.

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 7\198 42.42 40/39 Humorous
1 19\198 115.15 77/72 Semigamera
1 23\198 139.39 13/12 Quasijerome
1 65\198 393.93 49/39 Hitch
1 83\198 503.03 147/110 Quadrawürschmidt
2 14\198 84.85 21/20 Floral
2 31\198 187.87 39/35 Semiwitch
2 38\198 230.30 8/7 Hemigamera
2 40\198 242.42 121/105 Semiseptiquarter
2 43\198 260.61 64/55 Hemiamity
2 52\198
(47\198)
315.15
(284.85)
6/5
(33/28)
Semiparakleismic
2 58\198
(41\198)
351.52
(248.48)
49/40
(15/13)
Semihemi
2 67\198
(32\198)
406.06
(193.94)
495/392
(28/25)
Semihemiwürschmidt
2 74\198
(25\198)
448.48
(151.51)
35/27
(12/11)
Neusec
3 5\198 30.30 55/54 Hemichromat
3 41\198
(25\198)
248.48
(151.51)
15/13
(12/11)
Hemimist
6 82\198
(16\198)
496.97
(96.97)
4/3
(200/189)
Semimist
18 52\198
(3\198)
315.15
(18.18)
6/5
(99/98)
Hemiennealimmal
22 82\198
(1\198)
496.97
(6.06)
4/3
(385/384)
Icosidillic