Hemifamity temperaments

From Xenharmonic Wiki
(Redirected from Semiseptiquarter)
Jump to navigation Jump to search

This is a collection of rank-2 temperaments tempering out the hemifamity comma, [10 -6 1 -1 = 5120/5103. These temperaments divide an exact or approximate septimal quartertone, 36/35 into two equal steps, each representing 81/80~64/63, the syntonic comma or the septimal comma. Therefore, classical and septimal intervals are found by the same chain of fifths inflected by the syntonic~septimal comma to the opposite sides. In addition we may identify 10/7 by the augmented fourth and 50/49 by the Pythagorean comma.

Temperaments belonging to this category and generated by the fifth are dominant, garibaldi, kwai, undecental, and leapday. Dominant has 5/4 mapped to M3. Garibaldi has 5/4 mapped to d4. Kwai has 5/4 mapped to 4A7. Undecental has 5/4 mapped to 5d7. Leapday has 5/4 mapped to 3A1.

Diaschismic is generated by the fifth with a semi-octave period. Hemififths has the fifth sliced into two and 5/4 mapped to the hemififth + Pyth. comma. Hemidromeda has the fourth sliced into two and 5/4 mapped to the hemifourth + 3d4. Rodan has the fifth sliced into three as does slendric. Trimot has the twelfth sliced into three as does tricot. Monkey has the fifth sliced into four as does tetracot. Buzzard has the twelfth sliced into four as does vulture. Misty is generated by the fifth with a 1/3-octave period. Supers has the fifth sliced into three with a semi-octave period. Undim is generated by the fifth with a 1/4-octave period. Quinticosiennic and quintakwai have the fourth sliced into five. Amity has the eleventh sliced into five. Countercata has the twelfth sliced into six as does hanson. Warrior has the 6th harmonic sliced into seven as does sensi. Finally, alphaquarter has the fourth sliced into nine as does escapade.

Temperaments considered below are undecental, leapday, hemidromeda, mystery, quanic, septiquarter, countriton, artoneutral and ketchup. Discussed elsewhere are:

Undecental

Undecental adds the triwellisma to the comma list and may be described as the 29 & 70 temperament. 5/4 is mapped to the quintuple diminished seventh (5d7) or equivalently the perfect fourth (P4) - 3 Pyth. commas. 58\99 is an almost perfect generator, just as the name suggests. Another interesting choice is the argent fifth, 2(2 - sqrt (2)).

Subgroup: 2.3.5.7

Comma list: 5120/5103, 235298/234375

Mapping[1 0 61 71], 0 1 -37 -43]]

Wedgie⟨⟨ 1 -37 -43 -61 -71 4 ]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 703.039

Optimal ET sequence29, 70, 99, 722bc, 821bc, 920bc, 1019bc, 1118bbcc, 1217bbcc, 1316bbccd

Badness: 0.094603

Leapday

For the 5-limit version of this temperament, see High badness temperaments #Leapday.

Leapday tempers out the leapday comma, [31 -21 1, in the 5-limit, mapping 5/4 to the triple-augmented unison (3A1) or equivalently the minor third (m3) + 2 Pyth. commas. This temperament can be described as the 29 & 46 temperament, which tempers out the hemifamity and 686/675 (senga). The alternative extension polypyth (46 & 121) tempers out the same 5-limit comma as the leapday, but with the porwell (6144/6125) rather than the hemifamity tempered out.

Subgroup: 2.3.5.7

Comma list: 686/675, 5120/5103

Mapping[1 0 -31 -21], 0 1 21 15]]

Wedgie⟨⟨ 1 21 15 31 21 -24 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 704.2257
  • POTE: ~2 = 1\1, ~3/2 = 704.263

Optimal ET sequence17c, 29, 46

Badness: 0.096123

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 441/440, 686/675

Mapping: [1 0 -31 -21 -14], 0 1 21 15 11]]

Wedgie⟨⟨ 1 21 15 11 31 21 14 -24 -47 -21 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 704.2625
  • POTE: ~2 = 1\1, ~3/2 = 704.250

Optimal ET sequence17c, 29, 46

Badness: 0.038624

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 121/120, 169/168, 352/351

Mapping: [1 0 -31 -21 -14 -9], 0 1 21 15 11 8]]

Wedgie⟨⟨ 1 21 15 11 8 31 21 14 9 -24 -47 -59 -21 -33 -13 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 704.2924
  • POTE: ~2 = 1\1, ~3/2 = 704.214

Optimal ET sequence17c, 29, 46, 121def

Badness: 0.024732

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 91/90, 121/120, 136/135, 154/153, 169/168

Mapping: [1 0 -31 -21 -14 -9 -34], 0 1 21 15 11 8 24]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 704.3098
  • POTE: ~2 = 1\1, ~3/2 = 704.229

Optimal ET sequence17cg, 29g, 46, 121defg

Badness: 0.017863

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 91/90, 121/120, 133/132, 136/135, 154/153, 169/168

Mapping: [1 0 -31 -21 -14 -9 -34 9], 0 1 21 15 11 8 24 -3]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 704.2990
  • POTE: ~2 = 1\1, ~3/2 = 704.135

Optimal ET sequence17cg, 29g, 46, 75dfgh, 121defgh

Badness: 0.017356

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 91/90, 121/120, 133/132, 136/135, 154/153, 161/160, 169/168

Mapping: [1 0 -31 -21 -14 -9 -34 9 -5], 0 1 21 15 11 8 24 -3 6]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 704.3035
  • POTE: ~2 = 1\1, ~3/2 = 704.141

Optimal ET sequence17cg, 29g, 46, 75dfgh, 121defgh

Badness: 0.014065

Leapling

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 77/76, 91/90, 121/120, 136/135, 153/152, 169/168

Mapping: [1 0 -31 -21 -14 -9 -34 -37], 0 1 21 15 11 8 24 26]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 704.2037
  • POTE: ~2 = 1\1, ~3/2 = 704.123

Optimal ET sequence17cgh, 29g, 46h, 75dfg

Badness: 0.019065

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 77/76, 91/90, 115/114, 121/120, 136/135, 153/152, 161/160

Mapping: [1 0 -31 -21 -14 -9 -34 -37 -5], 0 1 21 15 11 8 24 26 6]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 704.2082
  • POTE: ~2 = 1\1, ~3/2 = 704.114

Optimal ET sequence17cgh, 29g, 46h, 75dfg

Badness: 0.016067

Hemidromeda

The name hemidromeda comes from "hemi-" (Ancient Greek for "one half") and "Andromeda", because the generator is 1/2 of the andromeda fourth (~4/3, about 497.6 cents).

Subgroup: 2.3.5.7

Comma list: 5120/5103, 52734375/52706752

Mapping[1 0 38 48], 0 2 -45 -57]]

Mapping generator: ~2, ~12500/7203

Wedgie⟨⟨ 2 -45 -57 -76 -96 -6 ]]

Optimal tuning (CTE): ~2 = 1\1, ~7203/6250 = 248.581

Optimal ET sequence29, 82cd, 111, 140, 531, 671, 811b, 951b

Badness: 0.115803

11-limit

Subgroup: 2.3.5.7.11

Comma list: 1331/1323, 1375/1372, 5120/5103

Mapping: [1 0 38 48 32], 0 2 -45 -57 -36]]

Optimal tuning (CTE): ~2 = 1\1, ~405/352 = 248.589

Optimal ET sequence: 29, 82cd, 111, 140, 251, 391e

Badness: 0.060808

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 676/675, 847/845, 1331/1323

Mapping: [1 0 38 48 32 37], 0 2 -45 -57 -36 -42]]

Optimal tuning (CTE): ~2 = 1\1, ~15/13 = 248.588

Optimal ET sequence: 29, 82cdf, 111, 140, 391e, 531e

Badness: 0.028632

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 352/351, 442/441, 561/560, 676/675, 715/714

Mapping: [1 0 38 48 32 37 58], 0 2 -45 -57 -36 -42 -68]]

Optimal tuning (CTE): ~2 = 1\1, ~15/13 = 248.591

Optimal ET sequence: 29g, 82cdfg, 111, 140, 251, 391e

Badness: 0.019054

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 286/285, 352/351, 363/361, 442/441, 476/475, 561/560

Mapping: [1 0 38 48 32 37 58 32], 0 2 -45 -57 -36 -42 -68 -35]]

Optimal tuning (CTE): ~2 = 1\1, ~15/13 = 248.587

Optimal ET sequence: 29g, 82cdfgh, 111, 140, 391ehh, 531ehh

Badness: 0.016609

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 253/252, 286/285, 352/351, 363/361, 391/390, 442/441, 460/459

Mapping: [1 0 38 48 32 37 58 32 18], 0 2 -45 -57 -36 -42 -68 -35 -17]]

Optimal tuning (CTE): ~2 = 1\1, ~15/13 = 248.588

Optimal ET sequence: 29g, 82cdfgh, 111, 140, 391ehhi, 531ehhii

Badness: 0.015361

Mystery

For the 5-limit version of this temperament, see 29th-octave temperaments #Mystery.

Mystery has a 1\29 period and primes 5, 7, 11 and 13 are all reached by one generator step. 145edo or 232edo are good candidates for tunings.

Subgroup: 2.3.5.7

Comma list: 5120/5103, 50421/50000

Mapping[29 46 0 14], 0 0 1 1]]

Wedgie⟨⟨ 0 29 29 46 46 -14 ]]

Optimal tuning (POTE): ~50/49 = 1\29, ~5/4 = 388.646

Optimal ET sequence29, 58, 87, 145

Badness: 0.103734

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 896/891, 3388/3375

Mapping: [29 46 0 14 33], 0 0 1 1 1]]

Wedgie⟨⟨ 0 29 29 29 46 46 46 -14 -33 -19 ]]

Optimal tuning (POTE): ~45/44 = 1\29, ~5/4 = 388.460

Optimal ET sequence29, 58, 87, 145

Badness: 0.034291

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351, 364/363, 676/675

Mapping: [29 46 0 14 33 40], 0 0 1 1 1 1]]

Wedgie⟨⟨ 0 29 29 29 29 46 46 46 46 -14 -33 -40 -19 -26 -7 ]]

Optimal tuning (POTE): ~45/44 = 1\29, ~5/4 = 388.354

Optimal ET sequence29, 58, 87, 145, 232, 377cef

Badness: 0.018591

Quanic

Subgroup: 2.3.5.7

Comma list: 5120/5103, 5832000/5764801

Mapping[1 1 -4 0], 0 5 54 24]]

Optimal tuning (POTE): ~2 = 1\1, ~160/147 = 140.493

Optimal ET sequence94, 111, 205

Badness: 0.179475

11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 1331/1323, 5120/5103

Mapping: [1 1 -4 0 1], 0 5 54 24 21]]

Optimal tuning (POTE): ~2 = 1\1, ~88/81 = 140.489

Optimal ET sequence94, 111, 205

Badness: 0.058678

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 540/539, 729/728, 1331/1323

Mapping: [1 1 -4 0 1 3], 0 5 54 24 21 6]]

Optimal tuning (POTE): ~2 = 1\1, ~13/12 = 140.496

Optimal ET sequence94, 111, 205

Badness: 0.032481

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 352/351, 442/441, 540/539, 715/714, 847/845

Mapping: [1 1 -4 0 1 3 -2], 0 5 54 24 21 6 52]]

Optimal tuning (POTE): ~2 = 1\1, ~13/12 = 140.497

Optimal ET sequence94, 111, 205

Badness: 0.021112

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 352/351, 400/399, 442/441, 456/455, 495/494, 715/714

Mapping: [1 1 -4 0 1 3 -2 -5], 0 5 54 24 21 6 52 79]]

Optimal tuning (POTE): ~2 = 1\1, ~13/12 = 140.496

Optimal ET sequence94, 111, 205

Badness: 0.017273

Septiquarter

Subgroup: 2.3.5.7

Comma list: 5120/5103, 420175/419904

Mapping[1 3 10 2], 0 -7 -38 4]]

Wedgie⟨⟨ 7 38 -4 44 -26 -116 ]]

Optimal tuning (POTE): ~2 = 1\1, ~147/128 = 242.453

Optimal ET sequence94, 99, 292, 391, 881bd, 1272bcd

Badness: 0.053760

Semiseptiquarter

Subgroup: 2.3.5.7.11

Comma list: 5120/5103, 9801/9800, 14641/14580

Mapping: [2 6 20 4 15], 0 -7 -38 4 -20]]

Optimal tuning (POTE): ~2 = 1\1, ~121/105 = 242.4511

Optimal ET sequence94, 198, 292, 490

Badness: 0.064160

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 847/845, 1716/1715, 14641/14580

Mapping: [2 6 20 4 15 7], 0 -7 -38 4 -20 1]]

Optimal tuning (POTE): ~2 = 1\1, ~121/105 = 242.4448

Optimal ET sequence94, 198, 490f

Badness: 0.034834

Countriton

For the 5-limit version of this temperament, see Schismic-Mercator equivalence continuum #Countritonic and High badness temperaments #Countritonic.

Subgroup: 2.3.5.7

Comma list: 5120/5103, 7558272/7503125

Mapping[1 6 19 -7], 0 -9 -34 20]]

Wedgie⟨⟨ 9 34 -20 33 -57 -142 ]]

Optimal tuning (POTE): ~2 = 1\1, ~1728/1225 = 588.582

Optimal ET sequence53, 157, 210

Badness: 0.131191

11-limit

Subgroup: 2.3.5.7.11

Comma list: 176/175, 5120/5103, 41503/41472

Mapping: [1 6 19 -7 27], 0 -9 -34 20 -48]]

Optimal tuning (POTE): ~2 = 1\1, ~108/77 = 588.545

Optimal ET sequence: 53, 104c, 157

Badness: 0.084782

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 176/175, 351/350, 847/845, 2197/2187

Mapping: [1 6 19 -7 27 14], 0 -9 -34 20 -48 -21]]

Optimal tuning (POTE): ~2 = 1\1, ~108/77 = 588.544

Optimal ET sequence: 53, 104c, 157

Badness: 0.042321

Artoneutral

Artoneutral is generated by an artoneutral third of ~11/9 (or a tendoneutral sixth of ~18/11) and can be described as the 87 & 94 temperament. 181edo is a recommendable tuning.

Subgroup: 2.3.5.7

Comma list: 5120/5103, 3828125/3779136

Mapping[1 8 18 -20], 0 -9 -22 32]]

mapping generators: ~2, ~105/64

Optimal tuning (CTE): ~2 = 1\1, ~105/64 = 855.2452

Optimal ET sequence87, 94, 181

Badness: 0.157120

11-limit

Subgroup: 2.3.5.7.11

Comma list: 385/384, 2200/2187, 4000/3993

Mapping: [1 8 18 -20 17], 0 -9 -22 32 -19]]

Optimal tuning (CTE): ~2 = 1\1, ~18/11 = 855.2397

Optimal ET sequence: 87, 181

Badness: 0.045920

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 352/351, 385/384, 1575/1573

Mapping: [1 8 18 -20 17 -2], 0 -9 -22 32 -19 8]]

Optimal tuning (CTE): ~2 = 1\1, ~18/11 = 855.2369

Optimal ET sequence: 87, 181

Badness: 0.026257

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 325/324, 352/351, 375/374, 385/384, 595/594

Mapping: [1 8 18 -20 17 -2 44], 0 -9 -22 32 -19 8 -56]]

Optimal tuning (CTE): ~2 = 1\1, ~18/11 = 855.2495

Optimal ET sequence: 87, 94, 181

Badness: 0.022749

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 325/324, 352/351, 375/374, 385/384, 400/399, 595/594

Mapping: [1 8 18 -20 17 -2 44 52], 0 -9 -22 32 -19 8 -56 -67]]

Optimal tuning (CTE): ~2 = 1\1, ~18/11 = 855.2534

Optimal ET sequence: 87, 94, 181

Badness: 0.019585

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 300/299, 325/324, 352/351, 375/374, 385/384, 400/399, 484/483

Mapping: [1 8 18 -20 17 -2 44 52 48], 0 -9 -22 32 -19 8 -56 -67 -61]]

Optimal tuning (CTE): ~2 = 1\1, ~18/11 = 855.2576

Optimal ET sequence: 87, 94, 181

Badness: 0.016332

Ketchup

Subgroup: 2.3.5.7

Comma list: 5120/5103, 1071875/1062882

Mapping[2 3 4 6], 0 4 15 -9]]

Wedgie⟨⟨ 8 30 -18 29 -51 -126 ]]

Optimal tuning (POTE): ~1225/864 = 1\2, ~64/63 = 25.719

Optimal ET sequence46, 94, 140

Badness: 0.084538

11-limit

Subgroup: 2.3.5.7.11

Comma list: 385/384, 1331/1323, 2200/2187

Mapping: [2 3 4 6 7], 0 4 15 -9 -2]]

Optimal tuning (POTE): ~99/70 = 1\2, ~64/63 = 25.693

Optimal ET sequence: 46, 94, 140

Badness: 0.039555

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 352/351, 385/384, 1331/1323

Mapping: [2 3 4 6 7 8], 0 4 15 -9 -2 -14]]

Optimal tuning (POTE): ~99/70 = 1\2, ~66/65 = 25.697

Optimal ET sequence: 46, 94, 140

Badness: 0.024824

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 289/288, 325/324, 352/351, 385/384, 561/560

Mapping: [2 3 4 6 7 8 8], 0 4 15 -9 -2 -14 4]]

Optimal tuning (POTE): ~17/12 = 1\2, ~66/65 = 25.701

Optimal ET sequence: 46, 94, 140

Badness: 0.016591

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 190/189, 209/208, 289/288, 352/351, 385/384, 561/560

Mapping: [2 3 4 6 7 8 8 9], 0 4 15 -9 -2 -14 4 -12]]

Optimal tuning (POTE): ~17/12 = 1\2, ~66/65 = 25.660

Optimal ET sequence: 46, 94, 140h, 234eh

Badness: 0.018170

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 190/189, 209/208, 253/252, 289/288, 323/322, 352/351, 385/384

Mapping: [2 3 4 6 7 8 8 9 9], 0 4 15 -9 -2 -14 4 -12 1]]

Optimal tuning (POTE): ~17/12 = 1\2, ~66/65 = 25.661

Optimal ET sequence: 46, 94, 140h, 234ehi

Badness: 0.014033