Sensamagic clan: Difference between revisions
Tags: Mobile edit Mobile web edit |
Cleanup |
||
Line 17: | Line 17: | ||
* ''[[Fourfives]]'', {245/243, 235298/234375} → [[Fifive family #Fourfives|Fifive family]] | * ''[[Fourfives]]'', {245/243, 235298/234375} → [[Fifive family #Fourfives|Fifive family]] | ||
Tempering out 245/243 alone in the full 7-limit leads to a [[Planar temperament|rank-3 temperament]], [[sensamagic]], for which [[283edo | Tempering out 245/243 alone in the full 7-limit leads to a [[Planar temperament|rank-3 temperament]], [[sensamagic]], for which [[283edo]] is the [[optimal patent val]]. | ||
== BPS == | == BPS == | ||
The ''BPS'', for ''Bohlen–Pierce–Stearns'', is the 3.5.7 subgroup temperament tempering out 245/243. This subgroup temperament was formerly called | The ''BPS'', for ''Bohlen–Pierce–Stearns'', is the 3.5.7 subgroup temperament tempering out 245/243. This subgroup temperament was formerly called the ''lambda'' temperament, which was named after the [[4L 5s (tritave-equivalent)|lambda scale]]. | ||
Subgroup: 3.5.7 | [[Subgroup]]: 3.5.7 | ||
[[Comma list]]: 245/243 | [[Comma list]]: 245/243 | ||
Line 30: | Line 30: | ||
Sval mapping generators: ~3, ~9/7 | Sval mapping generators: ~3, ~9/7 | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~3 = 1\1edt, ~9/7 = 440.4881 | ||
[[Optimal GPV sequence]]: [[4edt|b4]], [[9edt|b9]], [[13edt|b13]], [[56edt|b56]], [[69edt|b69]], [[82edt|b82]], [[95edt|b95]] | [[Optimal GPV sequence]]: [[4edt|b4]], [[9edt|b9]], [[13edt|b13]], [[56edt|b56]], [[69edt|b69]], [[82edt|b82]], [[95edt|b95]] | ||
Line 51: | Line 51: | ||
{{Multival|legend=1| 7 9 13 -2 1 5 }} | {{Multival|legend=1| 7 9 13 -2 1 5 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 443.383 | ||
{{Val list|legend=1| 19, 27, 46, 157d, 203cd, 249cdd, 295ccdd }} | {{Val list|legend=1| 19, 27, 46, 157d, 203cd, 249cdd, 295ccdd }} | ||
Line 68: | Line 68: | ||
Gencom: [2 9/7; 91/90 126/125 169/168] | Gencom: [2 9/7; 91/90 126/125 169/168] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.322 | ||
Optimal GPV sequence: {{Val list| 19, 27, 46, 111de, 157de }} | Optimal GPV sequence: {{Val list| 19, 27, 46, 111de, 157de }} | ||
Line 79: | Line 79: | ||
Mapping: [{{val| 1 -1 -1 -2 9 }}, {{val| 0 7 9 13 -15 }}] | Mapping: [{{val| 1 -1 -1 -2 9 }}, {{val| 0 7 9 13 -15 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.294 | ||
Optimal GPV sequence: {{Val list| 19, 27, 46, 111d, 157d, 268cdd }} | Optimal GPV sequence: {{Val list| 19, 27, 46, 111d, 157d, 268cdd }} | ||
Line 92: | Line 92: | ||
Mapping: [{{val| 1 -1 -1 -2 9 0 }}, {{val| 0 7 9 13 -15 10 }}] | Mapping: [{{val| 1 -1 -1 -2 9 0 }}, {{val| 0 7 9 13 -15 10 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.321 | ||
Optimal GPV sequence: {{Val list| 19, 27, 46, 111df, 157df }} | Optimal GPV sequence: {{Val list| 19, 27, 46, 111df, 157df }} | ||
Line 105: | Line 105: | ||
Mapping: [{{val| 1 -1 -1 -2 9 0 10 }}, {{val| 0 7 9 13 -15 10 -16 }}] | Mapping: [{{val| 1 -1 -1 -2 9 0 10 }}, {{val| 0 7 9 13 -15 10 -16 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.365 | ||
Optimal GPV sequence: {{Val list| 19, 27, 46, 157df, 203cdff, 249cddff }} | Optimal GPV sequence: {{Val list| 19, 27, 46, 157df, 203cdff, 249cddff }} | ||
Line 118: | Line 118: | ||
Mapping: [{{val| 1 -1 -1 -2 2 }}, {{val| 0 7 9 13 4 }}] | Mapping: [{{val| 1 -1 -1 -2 2 }}, {{val| 0 7 9 13 4 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.962 | ||
Optimal GPV sequence: {{Val list| 8d, 19, 27e, 73ee }} | Optimal GPV sequence: {{Val list| 8d, 19, 27e, 73ee }} | ||
Line 131: | Line 131: | ||
Mapping: [{{val| 1 -1 -1 -2 2 0 }}, {{val| 0 7 9 13 4 10 }}] | Mapping: [{{val| 1 -1 -1 -2 2 0 }}, {{val| 0 7 9 13 4 10 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.945 | ||
Optimal GPV sequence: {{Val list| 19, 27e, 46e, 73ee }} | Optimal GPV sequence: {{Val list| 19, 27e, 46e, 73ee }} | ||
Line 144: | Line 144: | ||
Mapping: [{{val| 1 -1 -1 -2 -8 }}, {{val| 0 7 9 13 31 }}] | Mapping: [{{val| 1 -1 -1 -2 -8 }}, {{val| 0 7 9 13 31 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.626 | ||
Optimal GPV sequence: {{Val list| 19e, 27e, 46, 119c, 165c }} | Optimal GPV sequence: {{Val list| 19e, 27e, 46, 119c, 165c }} | ||
Line 157: | Line 157: | ||
Mapping: [{{val| 1 -1 -1 -2 -8 0 }}, {{val| 0 7 9 13 31 10 }}] | Mapping: [{{val| 1 -1 -1 -2 -8 0 }}, {{val| 0 7 9 13 31 10 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.559 | ||
Optimal GPV sequence: {{Val list| 19e, 27e, 46, 165cf, 211bccf, 257bccff, 303bccdff }} | Optimal GPV sequence: {{Val list| 19e, 27e, 46, 165cf, 211bccf, 257bccff, 303bccdff }} | ||
Line 170: | Line 170: | ||
Mapping: [{{val| 1 -1 -1 -2 -8 0 -7 }}, {{val| 0 7 9 13 31 10 30 }}] | Mapping: [{{val| 1 -1 -1 -2 -8 0 -7 }}, {{val| 0 7 9 13 31 10 30 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.551 | ||
Optimal GPV sequence: {{Val list| 19eg, 27eg, 46 }} | Optimal GPV sequence: {{Val list| 19eg, 27eg, 46 }} | ||
Line 183: | Line 183: | ||
Mapping: [{{val| 1 -1 -1 -2 -1 }}, {{val| 0 7 9 13 12 }}] | Mapping: [{{val| 1 -1 -1 -2 -1 }}, {{val| 0 7 9 13 12 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.518 | ||
Optimal GPV sequence: {{Val list| 19e, 27, 46ee }} | Optimal GPV sequence: {{Val list| 19e, 27, 46ee }} | ||
Line 196: | Line 196: | ||
Mapping: [{{val| 1 -1 -1 -2 -1 0 }}, {{val| 0 7 9 13 12 11 }}] | Mapping: [{{val| 1 -1 -1 -2 -1 0 }}, {{val| 0 7 9 13 12 11 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.506 | ||
Optimal GPV sequence: {{Val list| 19e, 27, 46ee }} | Optimal GPV sequence: {{Val list| 19e, 27, 46ee }} | ||
Line 209: | Line 209: | ||
Mapping: [{{val| 1 -1 -1 -2 -3 }}, {{val| 0 14 18 26 35 }}] | Mapping: [{{val| 1 -1 -1 -2 -3 }}, {{val| 0 14 18 26 35 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~25/22 = 221.605 | ||
Optimal GPV sequence: {{Val list| 27e, 38d, 65, 157de, 222cde }} | Optimal GPV sequence: {{Val list| 27e, 38d, 65, 157de, 222cde }} | ||
Line 222: | Line 222: | ||
Mapping: [{{val| 1 -1 -1 -2 -3 0 }}, {{val| 0 14 18 26 35 30 }}] | Mapping: [{{val| 1 -1 -1 -2 -3 0 }}, {{val| 0 14 18 26 35 30 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~25/22 = 221.556 | ||
Optimal GPV sequence: {{Val list| 27e, 38df, 65f }} | Optimal GPV sequence: {{Val list| 27e, 38df, 65f }} | ||
Line 235: | Line 235: | ||
Mapping: [{{val| 2 5 7 9 9 }}, {{val| 0 -7 -9 -13 -8 }}] | Mapping: [{{val| 2 5 7 9 9 }}, {{val| 0 -7 -9 -13 -8 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 156.692 | ||
Optimal GPV sequence: {{Val list| 8d, …, 38d, 46, 176dde, 222cdde, 268cddee }} | Optimal GPV sequence: {{Val list| 8d, …, 38d, 46, 176dde, 222cdde, 268cddee }} | ||
Line 248: | Line 248: | ||
Mapping: [{{val| 2 5 7 9 9 10 }}, {{val| 0 -7 -9 -13 -8 -10 }}] | Mapping: [{{val| 2 5 7 9 9 10 }}, {{val| 0 -7 -9 -13 -8 -10 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 156.725 | ||
Optimal GPV sequence: {{Val list| 8d, …, 38df, 46 }} | Optimal GPV sequence: {{Val list| 8d, …, 38df, 46 }} | ||
Line 256: | Line 256: | ||
== Bohpier == | == Bohpier == | ||
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Bohpier]].'' | : ''For the 5-limit version of this temperament, see [[High badness temperaments #Bohpier]].'' | ||
{{ | {{Main| Bohpier }} | ||
'''[[Bohpier]]''' is named after its [[Relationship between Bohlen-Pierce and octave-ful temperaments|interesting relationship with the non-octave Bohlen-Pierce equal temperament]]. | '''[[Bohpier]]''' is named after its [[Relationship between Bohlen-Pierce and octave-ful temperaments|interesting relationship with the non-octave Bohlen-Pierce equal temperament]]. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 245/243, 3125/3087 | [[Comma list]]: 245/243, 3125/3087 | ||
Line 268: | Line 268: | ||
{{Multival|legend=1| 13 19 23 0 0 0 }} | {{Multival|legend=1| 13 19 23 0 0 0 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 146.474 | |||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* 7-odd-limit: ~27/25 = {{monzo| 0 0 1/19 }} | * 7-odd-limit: ~27/25 = {{monzo| 0 0 1/19 }} | ||
: | : [[Eigenmonzo basis]]: 2.5 | ||
* 9-odd-limit: ~27/25 = {{monzo| 0 1/13 }} | * 9-odd-limit: ~27/25 = {{monzo| 0 1/13 }} | ||
: | : [[Eigenmonzo basis]]: 2.3 | ||
{{Val list|legend=1| 41, 131, 172, 213c }} | {{Val list|legend=1| 41, 131, 172, 213c }} | ||
Line 287: | Line 287: | ||
Mapping: [{{val| 1 0 0 0 2 }}, {{val| 0 13 19 23 12 }}] | Mapping: [{{val| 1 0 0 0 2 }}, {{val| 0 13 19 23 12 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 146.545 | ||
Minimax tuning: | Minimax tuning: | ||
* 11-odd-limit: ~12/11 = {{monzo| 1/7 1/7 0 0 -1/14 }} | * 11-odd-limit: ~12/11 = {{monzo| 1/7 1/7 0 0 -1/14 }} | ||
: | : Eigenmonzo basis: 2.11/9 | ||
Optimal GPV sequence: {{Val list| 41, 90e, 131e }} | Optimal GPV sequence: {{Val list| 41, 90e, 131e }} | ||
Line 304: | Line 304: | ||
Mapping: [{{val| 1 0 0 0 2 2 }}, {{val| 0 13 19 23 12 14 }}] | Mapping: [{{val| 1 0 0 0 2 2 }}, {{val| 0 13 19 23 12 14 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 146.603 | ||
Minimax tuning: | Minimax tuning: | ||
* 13- and 15-odd-limit: ~12/11 = {{monzo| 0 0 1/19 }} | * 13- and 15-odd-limit: ~12/11 = {{monzo| 0 0 1/19 }} | ||
: | : Eigenmonzo basis: 2.5 | ||
Optimal GPV sequence: {{Val list| 41, 90ef, 131ef, 221bdeff }} | Optimal GPV sequence: {{Val list| 41, 90ef, 131ef, 221bdeff }} | ||
Line 328: | Line 328: | ||
Mapping: [{{val| 1 0 0 0 0 }}, {{val| 0 39 57 69 85 }}] | Mapping: [{{val| 1 0 0 0 0 }}, {{val| 0 39 57 69 85 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~77/75 = 48.828 | ||
Optimal GPV sequence: {{Val list| 49, 123ce, 172 }} | Optimal GPV sequence: {{Val list| 49, 123ce, 172 }} | ||
Line 341: | Line 341: | ||
Mapping: [{{val| 1 0 0 0 0 0 }}, {{val| 0 39 57 69 85 91 }}] | Mapping: [{{val| 1 0 0 0 0 0 }}, {{val| 0 39 57 69 85 91 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~77/75 = 48.822 | ||
Optimal GPV sequence: {{Val list| 49f, 123ce, 172f, 295ce, 467bccef }} | Optimal GPV sequence: {{Val list| 49f, 123ce, 172f, 295ce, 467bccef }} | ||
Line 348: | Line 348: | ||
== Escaped == | == Escaped == | ||
{{ | {{See also| Escapade family #Escaped }} | ||
This temperament is also | This temperament is also known as "sensa" because it tempers out 245/243, 352/351, and 385/384 as a sensamagic temperament. ''Not to be confused with the 19e & 27 temperament (sensi extension).'' | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 245/243, 65625/65536 | [[Comma list]]: 245/243, 65625/65536 | ||
Line 360: | Line 360: | ||
{{Multival|legend=1| 9 -7 26 -32 16 80 }} | {{Multival|legend=1| 9 -7 26 -32 16 80 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~28/27 = 55.122 | ||
{{Val list|legend=1| 22, 65, 87, 196, 283 }} | {{Val list|legend=1| 22, 65, 87, 196, 283 }} | ||
Line 373: | Line 373: | ||
Mapping: [{{val| 1 2 2 4 3 }}, {{val| 0 -9 7 -26 10 }}] | Mapping: [{{val| 1 2 2 4 3 }}, {{val| 0 -9 7 -26 10 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~28/27 = 55.126 | ||
Optimal GPV sequence: {{Val list| 22, 65, 87, 196, 283 }} | Optimal GPV sequence: {{Val list| 22, 65, 87, 196, 283 }} | ||
Line 386: | Line 386: | ||
Mapping: [{{val| 1 2 2 4 3 2 }}, {{val| 0 -9 7 -26 10 37 }}] | Mapping: [{{val| 1 2 2 4 3 2 }}, {{val| 0 -9 7 -26 10 37 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~28/27 = 55.138 | ||
Optimal GPV sequence: {{Val list| 22, 65, 87, 283 }} | Optimal GPV sequence: {{Val list| 22, 65, 87, 283 }} | ||
Line 393: | Line 393: | ||
== Salsa == | == Salsa == | ||
{{ | {{See also| Schismatic family }} | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 245/243, 32805/32768 | [[Comma list]]: 245/243, 32805/32768 | ||
Line 403: | Line 403: | ||
{{Multival|legend=1| 2 -16 13 -30 15 75 }} | {{Multival|legend=1| 2 -16 13 -30 15 75 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~128/105 = 351.049 | ||
{{Val list|legend=1| 17, 24, 41, 106d, 147d, 188cd, 335cd }} | {{Val list|legend=1| 17, 24, 41, 106d, 147d, 188cd, 335cd }} | ||
Line 416: | Line 416: | ||
Mapping: [{{val| 1 1 7 -1 2 }}, {{val| 0 2 -16 13 5 }}] | Mapping: [{{val| 1 1 7 -1 2 }}, {{val| 0 2 -16 13 5 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 351.014 | ||
Optimal GPV sequence: {{Val list| 17, 24, 41, 106d, 147d }} | Optimal GPV sequence: {{Val list| 17, 24, 41, 106d, 147d }} | ||
Line 429: | Line 429: | ||
Mapping: [{{val| 1 1 7 -1 2 4 }}, {{val| 0 2 -16 13 5 -1 }}] | Mapping: [{{val| 1 1 7 -1 2 4 }}, {{val| 0 2 -16 13 5 -1 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 351.025 | ||
Optimal GPV sequence: {{Val list| 17, 24, 41, 106df, 147df }} | Optimal GPV sequence: {{Val list| 17, 24, 41, 106df, 147df }} | ||
Line 436: | Line 436: | ||
== Pycnic == | == Pycnic == | ||
{{ | {{See also| High badness temperaments #Stump }} | ||
The fifth of pycnic in size is a meantone fifth, but four of them are not used to reach 5. This has the effect of making the Pythagorean major third, nominally 81/64, very close to 5/4 in tuning, being a cent sharp of it in the POTE tuning for instance. Pycnic has | The fifth of pycnic in size is a meantone fifth, but four of them are not used to reach 5. This has the effect of making the Pythagorean major third, nominally 81/64, very close to 5/4 in tuning, being a cent sharp of it in the POTE tuning for instance. Pycnic has [[mos]] of size 9, 11, 13, 15, 17… which contain these alternative thirds, leading to two kinds of major triads, an official one and a nominally Pythagorean one which is actually in better tune. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 245/243, 525/512 | [[Comma list]]: 245/243, 525/512 | ||
Line 448: | Line 448: | ||
{{Multival|legend=1| 3 -7 11 -18 9 45 }} | {{Multival|legend=1| 3 -7 11 -18 9 45 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~45/32 = 567.720 | ||
{{Val list|legend=1| 17, 19, 55c, 74cd, 93cdd }} | {{Val list|legend=1| 17, 19, 55c, 74cd, 93cdd }} | ||
Line 455: | Line 455: | ||
== Cohemiripple == | == Cohemiripple == | ||
{{ | {{See also| Ripple family }} | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 245/243, 1323/1250 | [[Comma list]]: 245/243, 1323/1250 | ||
Line 465: | Line 465: | ||
{{Multival|legend=1| 10 16 17 2 -1 -5 }} | {{Multival|legend=1| 10 16 17 2 -1 -5 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~7/5 = 549.944 | ||
{{Val list|legend=1| 11cd, 13cd, 24 }} | {{Val list|legend=1| 11cd, 13cd, 24 }} | ||
Line 478: | Line 478: | ||
Mapping: [{{val| 1 -3 -5 -5 -8 }}, {{val| 0 10 16 17 25 }}] | Mapping: [{{val| 1 -3 -5 -5 -8 }}, {{val| 0 10 16 17 25 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 549.945 | ||
Optimal GPV sequence: {{Val list| 11cdee, 13cdee, 24 }} | Optimal GPV sequence: {{Val list| 11cdee, 13cdee, 24 }} | ||
Line 491: | Line 491: | ||
Mapping: [{{val| 1 -3 -5 -5 -8 -5 }}, {{val| 0 -10 -16 -17 -25 -19 }}] | Mapping: [{{val| 1 -3 -5 -5 -8 -5 }}, {{val| 0 -10 -16 -17 -25 -19 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 549.958 | ||
Optimal GPV sequence: {{Val list| 11cdeef, 13cdeef, 24 }} | Optimal GPV sequence: {{Val list| 11cdeef, 13cdeef, 24 }} | ||
Line 498: | Line 498: | ||
== Superthird == | == Superthird == | ||
{{ | {{See also| Shibboleth family }} | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 245/243, 78125/76832 | [[Comma list]]: 245/243, 78125/76832 | ||
Line 508: | Line 508: | ||
{{Multival|legend=1| 18 20 35 -10 5 25 }} | {{Multival|legend=1| 18 20 35 -10 5 25 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 439.076 | ||
{{Val list|legend=1| 11cd, 30d, 41, 317bcc, 358bcc, 399bcc }} | {{Val list|legend=1| 11cd, 30d, 41, 317bcc, 358bcc, 399bcc }} | ||
Line 521: | Line 521: | ||
Mapping: [{{val| 1 -5 -5 -10 2 }}, {{val| 0 18 20 35 4 }}] | Mapping: [{{val| 1 -5 -5 -10 2 }}, {{val| 0 18 20 35 4 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 439.152 | ||
Optimal GPV sequence: {{Val list| 11cd, 30d, 41, 153be, 194be, 235bcee }} | Optimal GPV sequence: {{Val list| 11cd, 30d, 41, 153be, 194be, 235bcee }} | ||
Line 534: | Line 534: | ||
Mapping: [{{val| 1 -5 -5 -10 2 -8 }}, {{val| 0 18 20 35 4 32 }}] | Mapping: [{{val| 1 -5 -5 -10 2 -8 }}, {{val| 0 18 20 35 4 32 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 439.119 | ||
Optimal GPV sequence: {{Val list| 11cdf, 30df, 41 }} | Optimal GPV sequence: {{Val list| 11cdf, 30df, 41 }} | ||
Line 541: | Line 541: | ||
== Superenneadecal == | == Superenneadecal == | ||
Superenneadecal is a cousin of [[enneadecal]] but sharper fifth is used to temper 245/243. | Superenneadecal is a cousin of [[enneadecal]] but sharper fifth is used to temper 245/243. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 245/243, 395136/390625 | [[Comma list]]: 245/243, 395136/390625 | ||
Mapping: [ | [[Mapping]]: [{{val| 19 0 14 -7 }}, {{val| 0 1 1 2 }}] | ||
{{Val list|legend=1| 19, 76bcd, 95, 114, 133, 247b, 380bcd }} | {{Val list|legend=1| 19, 76bcd, 95, 114, 133, 247b, 380bcd }} | ||
Line 555: | Line 554: | ||
Subgroup: 2.3.5.7.11 | Subgroup: 2.3.5.7.11 | ||
Comma list: 245/243, 2560/2541, 3773/3750 | |||
Mapping: [ | Mapping: [{{val| 19 0 14 -7 96 }}, {{val| 0 1 1 2 -1 }}] | ||
{{Val list|legend=1| 19, 76bcd, 95, 114e }} | {{Val list|legend=1| 19, 76bcd, 95, 114e }} | ||
Line 564: | Line 563: | ||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: 196/195, 245/243, 832/825, 1001/1000 | |||
Mapping: [ | Mapping: [{{val| 19 0 14 -7 96 10 }}, {{val| 0 1 1 2 -1 2 }}] | ||
{{Val list|legend=1| 19, 76bcdf, 95, 114e }} | {{Val list|legend=1| 19, 76bcdf, 95, 114e }} | ||
Line 573: | Line 572: | ||
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Magus]].'' | : ''For the 5-limit version of this temperament, see [[High badness temperaments #Magus]].'' | ||
Magus temperament tempers out 50331648/48828125 (salegu) in the 5-limit. This temperament can be described as 46&49 temperament, which tempers out the sensamagic and 28672/28125 (sazoquingu). | Magus temperament tempers out 50331648/48828125 (salegu) in the 5-limit. This temperament can be described as 46 & 49 temperament, which tempers out the sensamagic and 28672/28125 (sazoquingu). The alternative extension [[Starling temperaments #Amigo|amigo]] (43 & 46) tempers out the same 5-limit comma as the magus, but with the [[126/125|starling comma]] (126/125) rather than the sensamagic tempered out. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 245/243, 28672/28125 | [[Comma list]]: 245/243, 28672/28125 | ||
Line 583: | Line 582: | ||
{{Multival|legend=1| 11 1 27 -24 12 60 }} | {{Multival|legend=1| 11 1 27 -24 12 60 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~5/4 = 391.465 | ||
{{Val list|legend=1| 46, 95, 141bc, 187bc, 328bbcc }} | {{Val list|legend=1| 46, 95, 141bc, 187bc, 328bbcc }} | ||
Line 596: | Line 595: | ||
Mapping: [{{val| 1 -2 2 -6 -6 }}, {{val| 0 11 1 27 29 }}] | Mapping: [{{val| 1 -2 2 -6 -6 }}, {{val| 0 11 1 27 29 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 391.503 | ||
Optimal GPV sequence: {{Val list| 46, 95, 141bc }} | Optimal GPV sequence: {{Val list| 46, 95, 141bc }} | ||
Line 609: | Line 608: | ||
Mapping: [{{val| 1 -2 2 -6 -6 5 }}, {{val| 0 11 1 27 29 -4 }}] | Mapping: [{{val| 1 -2 2 -6 -6 5 }}, {{val| 0 11 1 27 29 -4 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 391.366 | ||
Optimal GPV sequence: {{Val list| 46, 233bcff, 279bccff }} | Optimal GPV sequence: {{Val list| 46, 233bcff, 279bccff }} | ||
Line 618: | Line 617: | ||
''Not to be confused with scales produced by leap week calendars such as [[Symmetry454]].'' | ''Not to be confused with scales produced by leap week calendars such as [[Symmetry454]].'' | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 245/243, 2097152/2066715 | [[Comma list]]: 245/243, 2097152/2066715 | ||
Line 624: | Line 623: | ||
[[Mapping]]: [{{val| 1 1 17 -6 }}, {{val| 0 1 -25 15 }}] | [[Mapping]]: [{{val| 1 1 17 -6 }}, {{val| 0 1 -25 15 }}] | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 704.536 | ||
{{Val list|legend=1| 17, 29c, 46, 109, 155, 264b, 419b }} | {{Val list|legend=1| 17, 29c, 46, 109, 155, 264b, 419b }} | ||
Line 637: | Line 636: | ||
Mapping: [{{val| 1 1 17 -6 -3 }}, {{val| 0 1 -25 15 11 }}] | Mapping: [{{val| 1 1 17 -6 -3 }}, {{val| 0 1 -25 15 11 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.554 | ||
Optimal GPV sequence: {{Val list| 17, 29c, 46, 109, 264b, 373b, 637bbe }} | Optimal GPV sequence: {{Val list| 17, 29c, 46, 109, 264b, 373b, 637bbe }} | ||
Line 650: | Line 649: | ||
Mapping: [{{val| 1 1 17 -6 -3 -1 }}, {{val| 0 1 -25 15 11 8 }}] | Mapping: [{{val| 1 1 17 -6 -3 -1 }}, {{val| 0 1 -25 15 11 8 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.571 | ||
Optimal GPV sequence: {{Val list| 17, 29c, 46, 63, 109 }} | Optimal GPV sequence: {{Val list| 17, 29c, 46, 63, 109 }} | ||
Line 663: | Line 662: | ||
Mapping: [{{val| 1 1 17 -6 -3 -1 -10 }}, {{val| 0 1 -25 15 11 8 24 }}] | Mapping: [{{val| 1 1 17 -6 -3 -1 -10 }}, {{val| 0 1 -25 15 11 8 24 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.540 | ||
Optimal GPV sequence: {{Val list| 17g, 29cg, 46, 109, 155f, 264bfg }} | Optimal GPV sequence: {{Val list| 17g, 29cg, 46, 109, 155f, 264bfg }} | ||
Line 676: | Line 675: | ||
Mapping: [{{val| 1 1 17 -6 -3 -1 17 }}, {{val| 0 1 -25 15 11 8 -22 }}] | Mapping: [{{val| 1 1 17 -6 -3 -1 17 }}, {{val| 0 1 -25 15 11 8 -22 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.537 | ||
Optimal GPV sequence: {{Val list| 17, 29c, 46, 109g, 155fg, 264bfgg }} | Optimal GPV sequence: {{Val list| 17, 29c, 46, 109g, 155fg, 264bfgg }} |
Revision as of 05:46, 16 January 2023
The sensamagic clan tempers out the sensamagic comma, 245/243, a triprime comma with no factors of 2, ⟨0 -5 1 2] to be exact.
For full 7-limit extensions, we have sensi, bohpier, escaped, salsa, pycnic, cohemiripple, superthird, magus and leapweek discussed below, as well as
- Father, {16/15, 28/27} → Father family
- Sidi, {25/24, 245/243} → Dicot family
- Godzilla, {49/48, 81/80} → Meantone family
- Hedgehog, {50/49, 245/243} → Porcupine family
- Superpyth, {64/63, 245/243} → Archytas clan
- Hemiaug, {128/125, 245/243} → Augmented family
- Magic, {225/224, 245/243} → Magic family
- Rodan, {245/243, 1029/1024} → Gamelismic clan
- Shrutar, {245/243, 2048/2025} → Diaschismic family
- Octacot, {245/243, 2401/2400} → Tetracot family
- Clyde, {245/243, 3136/3125} → Kleismic family
- Pental, {245/243, 16807/16384} → Pental family
- Bamity, {245/243, 64827/64000} → Amity family
- Fourfives, {245/243, 235298/234375} → Fifive family
Tempering out 245/243 alone in the full 7-limit leads to a rank-3 temperament, sensamagic, for which 283edo is the optimal patent val.
BPS
The BPS, for Bohlen–Pierce–Stearns, is the 3.5.7 subgroup temperament tempering out 245/243. This subgroup temperament was formerly called the lambda temperament, which was named after the lambda scale.
Subgroup: 3.5.7
Comma list: 245/243
Sval mapping: [⟨1 1 2], ⟨0 -2 1]]
Sval mapping generators: ~3, ~9/7
Optimal tuning (POTE): ~3 = 1\1edt, ~9/7 = 440.4881
Optimal GPV sequence: b4, b9, b13, b56, b69, b82, b95
Sensi
Sensi tempers out 126/125, 686/675 and 4375/4374 in addition to 245/243, and can be described as the 19&27 temperament. It has as a generator half the size of a slightly wide major sixth, which gives an interval sharp of 9/7 and flat of 13/10, both of which can be used to identify it, as 2.3.5.7.13 sensi (sensation) tempers out 91/90. 22/17, in the middle, is even closer to the generator. 46edo is an excellent sensi tuning, and MOS of size 11, 19 and 27 are available. The name "sensi" is a play on the words "semi-" and "sixth."
Septimal sensi
Subgroup: 2.3.5.7
Comma list: 126/125, 245/243
Mapping: [⟨1 -1 -1 -2], ⟨0 7 9 13]]
Mapping generators: ~2, ~9/7
Wedgie: ⟨⟨ 7 9 13 -2 1 5 ]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.383
Badness: 0.025622
Sensation
Subgroup: 2.3.5.7.13
Comma list: 91/90, 126/125, 169/168
Sval mapping: [⟨1 -1 -1 -2 0], ⟨0 7 9 13 10]]
Gencom mapping: [⟨1 -1 -1 -2 0 0], ⟨0 7 9 13 0 10]]
Gencom: [2 9/7; 91/90 126/125 169/168]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.322
Optimal GPV sequence: Template:Val list
Sensor
Subgroup: 2.3.5.7.11
Comma list: 126/125, 245/243, 385/384
Mapping: [⟨1 -1 -1 -2 9], ⟨0 7 9 13 -15]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.294
Optimal GPV sequence: Template:Val list
Badness: 0.037942
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 91/90, 126/125, 169/168, 385/384
Mapping: [⟨1 -1 -1 -2 9 0], ⟨0 7 9 13 -15 10]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.321
Optimal GPV sequence: Template:Val list
Badness: 0.025575
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 91/90, 126/125, 154/153, 169/168, 256/255
Mapping: [⟨1 -1 -1 -2 9 0 10], ⟨0 7 9 13 -15 10 -16]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.365
Optimal GPV sequence: Template:Val list
Badness: 0.022908
Sensis
Subgroup: 2.3.5.7.11
Comma list: 56/55, 100/99, 245/243
Mapping: [⟨1 -1 -1 -2 2], ⟨0 7 9 13 4]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.962
Optimal GPV sequence: Template:Val list
Badness: 0.028680
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 56/55, 78/77, 91/90, 100/99
Mapping: [⟨1 -1 -1 -2 2 0], ⟨0 7 9 13 4 10]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.945
Optimal GPV sequence: Template:Val list
Badness: 0.020017
Sensus
Subgroup: 2.3.5.7.11
Comma list: 126/125, 176/175, 245/243
Mapping: [⟨1 -1 -1 -2 -8], ⟨0 7 9 13 31]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.626
Optimal GPV sequence: Template:Val list
Badness: 0.029486
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 91/90, 126/125, 169/168, 352/351
Mapping: [⟨1 -1 -1 -2 -8 0], ⟨0 7 9 13 31 10]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.559
Optimal GPV sequence: Template:Val list
Badness: 0.020789
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 91/90, 126/125, 136/135, 154/153, 169/168
Mapping: [⟨1 -1 -1 -2 -8 0 -7], ⟨0 7 9 13 31 10 30]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.551
Optimal GPV sequence: Template:Val list
Badness: 0.016238
Sensa
Subgroup: 2.3.5.7.11
Comma list: 55/54, 77/75, 99/98
Mapping: [⟨1 -1 -1 -2 -1], ⟨0 7 9 13 12]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.518
Optimal GPV sequence: Template:Val list
Badness: 0.036835
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 66/65, 77/75, 143/140
Mapping: [⟨1 -1 -1 -2 -1 0], ⟨0 7 9 13 12 11]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 443.506
Optimal GPV sequence: Template:Val list
Badness: 0.023258
Hemisensi
Subgroup: 2.3.5.7.11
Comma list: 126/125, 243/242, 245/242
Mapping: [⟨1 -1 -1 -2 -3], ⟨0 14 18 26 35]]
Optimal tuning (POTE): ~2 = 1\1, ~25/22 = 221.605
Optimal GPV sequence: Template:Val list
Badness: 0.048714
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 91/90, 126/125, 169/168, 243/242
Mapping: [⟨1 -1 -1 -2 -3 0], ⟨0 14 18 26 35 30]]
Optimal tuning (POTE): ~2 = 1\1, ~25/22 = 221.556
Optimal GPV sequence: Template:Val list
Badness: 0.033016
Bisensi
Subgroup: 2.3.5.7.11
Comma list: 121/120, 126/125, 245/243
Mapping: [⟨2 5 7 9 9], ⟨0 -7 -9 -13 -8]]
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 156.692
Optimal GPV sequence: Template:Val list
Badness: 0.041723
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 91/90, 121/120, 126/125, 169/168
Mapping: [⟨2 5 7 9 9 10], ⟨0 -7 -9 -13 -8 -10]]
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 156.725
Optimal GPV sequence: Template:Val list
Badness: 0.026339
Bohpier
- For the 5-limit version of this temperament, see High badness temperaments #Bohpier.
Bohpier is named after its interesting relationship with the non-octave Bohlen-Pierce equal temperament.
Subgroup: 2.3.5.7
Comma list: 245/243, 3125/3087
Mapping: [⟨1 0 0 0], ⟨0 13 19 23]]
Wedgie: ⟨⟨ 13 19 23 0 0 0 ]]
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 146.474
- 7-odd-limit: ~27/25 = [0 0 1/19⟩
- Eigenmonzo basis: 2.5
- 9-odd-limit: ~27/25 = [0 1/13⟩
- Eigenmonzo basis: 2.3
Badness: 0.068237
11-limit
Subgroup: 2.3.5.7.11
Comma list: 100/99, 245/243, 1344/1331
Mapping: [⟨1 0 0 0 2], ⟨0 13 19 23 12]]
Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 146.545
Minimax tuning:
- 11-odd-limit: ~12/11 = [1/7 1/7 0 0 -1/14⟩
- Eigenmonzo basis: 2.11/9
Optimal GPV sequence: Template:Val list
Badness: 0.033949
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 100/99, 144/143, 196/195, 275/273
Mapping: [⟨1 0 0 0 2 2], ⟨0 13 19 23 12 14]]
Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 146.603
Minimax tuning:
- 13- and 15-odd-limit: ~12/11 = [0 0 1/19⟩
- Eigenmonzo basis: 2.5
Optimal GPV sequence: Template:Val list
Badness: 0.024864
- Music
by Chris Vaisvil:
Triboh
Triboh is named after "Triple Bohlen-Pierce scale", which divides each step of the equal-tempered Bohlen-Pierce scale into three equal parts.
Subgroup: 2.3.5.7.11
Comma list: 245/243, 1331/1323, 3125/3087
Mapping: [⟨1 0 0 0 0], ⟨0 39 57 69 85]]
Optimal tuning (POTE): ~2 = 1\1, ~77/75 = 48.828
Optimal GPV sequence: Template:Val list
Badness: 0.162592
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 245/243, 275/273, 847/845, 1331/1323
Mapping: [⟨1 0 0 0 0 0], ⟨0 39 57 69 85 91]]
Optimal tuning (POTE): ~2 = 1\1, ~77/75 = 48.822
Optimal GPV sequence: Template:Val list
Badness: 0.082158
Escaped
This temperament is also known as "sensa" because it tempers out 245/243, 352/351, and 385/384 as a sensamagic temperament. Not to be confused with the 19e & 27 temperament (sensi extension).
Subgroup: 2.3.5.7
Comma list: 245/243, 65625/65536
Mapping: [⟨1 2 2 4], ⟨0 -9 7 -26]]
Wedgie: ⟨⟨ 9 -7 26 -32 16 80 ]]
Optimal tuning (POTE): ~2 = 1\1, ~28/27 = 55.122
Badness: 0.088746
11-limit
Subgroup: 2.3.5.7.11
Comma list: 245/243, 385/384, 4000/3993
Mapping: [⟨1 2 2 4 3], ⟨0 -9 7 -26 10]]
Optimal tuning (POTE): ~2 = 1\1, ~28/27 = 55.126
Optimal GPV sequence: Template:Val list
Badness: 0.035844
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 245/243, 352/351, 385/384, 625/624
Mapping: [⟨1 2 2 4 3 2], ⟨0 -9 7 -26 10 37]]
Optimal tuning (POTE): ~2 = 1\1, ~28/27 = 55.138
Optimal GPV sequence: Template:Val list
Badness: 0.031366
Salsa
Subgroup: 2.3.5.7
Comma list: 245/243, 32805/32768
Mapping: [⟨1 1 7 -1], ⟨0 2 -16 13]]
Wedgie: ⟨⟨ 2 -16 13 -30 15 75 ]]
Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 351.049
Badness: 0.080152
11-limit
Subgroup: 2.3.5.7.11
Comma list: 243/242, 245/242, 385/384
Mapping: [⟨1 1 7 -1 2], ⟨0 2 -16 13 5]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 351.014
Optimal GPV sequence: Template:Val list
Badness: 0.039444
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 144/143, 243/242, 245/242
Mapping: [⟨1 1 7 -1 2 4], ⟨0 2 -16 13 5 -1]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 351.025
Optimal GPV sequence: Template:Val list
Badness: 0.030793
Pycnic
The fifth of pycnic in size is a meantone fifth, but four of them are not used to reach 5. This has the effect of making the Pythagorean major third, nominally 81/64, very close to 5/4 in tuning, being a cent sharp of it in the POTE tuning for instance. Pycnic has mos of size 9, 11, 13, 15, 17… which contain these alternative thirds, leading to two kinds of major triads, an official one and a nominally Pythagorean one which is actually in better tune.
Subgroup: 2.3.5.7
Comma list: 245/243, 525/512
Mapping: [⟨1 3 -1 8], ⟨0 -3 7 -11]]
Wedgie: ⟨⟨ 3 -7 11 -18 9 45 ]]
Optimal tuning (POTE): ~2 = 1\1, ~45/32 = 567.720
Badness: 0.073735
Cohemiripple
Subgroup: 2.3.5.7
Comma list: 245/243, 1323/1250
Mapping: [⟨1 -3 -5 -5], ⟨0 10 16 17]]
Wedgie: ⟨⟨ 10 16 17 2 -1 -5 ]]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 549.944
Badness: 0.190208
11-limit
Subgroup: 2.3.5.7.11
Comma list: 77/75, 243/242, 245/242
Mapping: [⟨1 -3 -5 -5 -8], ⟨0 10 16 17 25]]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 549.945
Optimal GPV sequence: Template:Val list
Badness: 0.082716
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 66/65, 77/75, 147/143, 243/242
Mapping: [⟨1 -3 -5 -5 -8 -5], ⟨0 -10 -16 -17 -25 -19]]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 549.958
Optimal GPV sequence: Template:Val list
Badness: 0.049933
Superthird
Subgroup: 2.3.5.7
Comma list: 245/243, 78125/76832
Mapping: [⟨1 -5 -5 -10], ⟨0 18 20 35]]
Wedgie: ⟨⟨ 18 20 35 -10 5 25 ]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 439.076
Badness: 0.139379
11-limit
Subgroup: 2.3.5.7.11
Comma list: 100/99, 245/243, 78125/76832
Mapping: [⟨1 -5 -5 -10 2], ⟨0 18 20 35 4]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 439.152
Optimal GPV sequence: Template:Val list
Badness: 0.070917
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 100/99, 144/143, 196/195, 1375/1352
Mapping: [⟨1 -5 -5 -10 2 -8], ⟨0 18 20 35 4 32]]
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 439.119
Optimal GPV sequence: Template:Val list
Badness: 0.052835
Superenneadecal
Superenneadecal is a cousin of enneadecal but sharper fifth is used to temper 245/243.
Subgroup: 2.3.5.7
Comma list: 245/243, 395136/390625
Mapping: [⟨19 0 14 -7], ⟨0 1 1 2]]
11-limit
Subgroup: 2.3.5.7.11
Comma list: 245/243, 2560/2541, 3773/3750
Mapping: [⟨19 0 14 -7 96], ⟨0 1 1 2 -1]]
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 196/195, 245/243, 832/825, 1001/1000
Mapping: [⟨19 0 14 -7 96 10], ⟨0 1 1 2 -1 2]]
Magus
- For the 5-limit version of this temperament, see High badness temperaments #Magus.
Magus temperament tempers out 50331648/48828125 (salegu) in the 5-limit. This temperament can be described as 46 & 49 temperament, which tempers out the sensamagic and 28672/28125 (sazoquingu). The alternative extension amigo (43 & 46) tempers out the same 5-limit comma as the magus, but with the starling comma (126/125) rather than the sensamagic tempered out.
Subgroup: 2.3.5.7
Comma list: 245/243, 28672/28125
Mapping: [⟨1 -2 2 -6], ⟨0 11 1 27]]
Wedgie: ⟨⟨ 11 1 27 -24 12 60 ]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 391.465
Badness: 0.108417
11-limit
Subgroup: 2.3.5.7.11
Comma list: 176/175, 245/243, 1331/1323
Mapping: [⟨1 -2 2 -6 -6], ⟨0 11 1 27 29]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 391.503
Optimal GPV sequence: Template:Val list
Badness: 0.045108
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 91/90, 176/175, 245/243, 1331/1323
Mapping: [⟨1 -2 2 -6 -6 5], ⟨0 11 1 27 29 -4]]
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 391.366
Optimal GPV sequence: Template:Val list
Badness: 0.043024
Leapweek
Not to be confused with scales produced by leap week calendars such as Symmetry454.
Subgroup: 2.3.5.7
Comma list: 245/243, 2097152/2066715
Mapping: [⟨1 1 17 -6], ⟨0 1 -25 15]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.536
Badness: 0.140577
11-limit
Subgroup: 2.3.5.7.11
Comma list: 245/243, 385/384, 1331/1323
Mapping: [⟨1 1 17 -6 -3], ⟨0 1 -25 15 11]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.554
Optimal GPV sequence: Template:Val list
Badness: 0.050679
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 245/243, 352/351, 364/363
Mapping: [⟨1 1 17 -6 -3 -1], ⟨0 1 -25 15 11 8]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.571
Optimal GPV sequence: Template:Val list
Badness: 0.032727
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 154/153, 169/168, 245/243, 256/255, 273/272
Mapping: [⟨1 1 17 -6 -3 -1 -10], ⟨0 1 -25 15 11 8 24]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.540
Optimal GPV sequence: Template:Val list
Badness: 0.026243
Leapweeker
Subgroup: 2.3.5.7.11.13.17
Comma list: 136/135, 169/168, 221/220, 245/243, 364/363
Mapping: [⟨1 1 17 -6 -3 -1 17], ⟨0 1 -25 15 11 8 -22]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.537
Optimal GPV sequence: Template:Val list
Badness: 0.026774
Semiwolf
Subgroup: 3/2.7/4.5/2
Comma list: 245/243
Mapping: [⟨1 1 3], ⟨0 1 -2]]
POL2 generator: ~7/6 = 262.1728
Optimal GPV sequence: 3edf, 5edf, 8edf
Semilupine
Subgroup: 3/2.7/4.5/2.11/4
Comma list: 100/99, 245/243
Mapping: [⟨1 1 3 4], ⟨0 1 -2 -4]]
POL2 generator: ~7/6 = 264.3771
Optimal GPV sequence: 8edf, 13edf
Hemilycan
Subgroup: 3/2.7/4.5/2.11/4
Comma list: 245/243, 441/440
Mapping: [⟨1 1 3 1], ⟨0 1 -2 4]]
POL2 generator: ~7/6 = 261.5939