5L 7s: Difference between revisions
mNo edit summary |
The chroma-positive generator is the fifth not the fourth |
||
Line 3: | Line 3: | ||
| nLargeSteps = 5 | | nLargeSteps = 5 | ||
| nSmallSteps = 7 | | nSmallSteps = 7 | ||
| Equalized = | | Equalized = 7 | ||
| Paucitonic = | | Paucitonic = 3 | ||
| Pattern = ssLsLssLsLsL | | Pattern = ssLsLssLsLsL | ||
| Name = p-chromatic | | Name = p-chromatic | ||
}} | }} | ||
'''5L 7s''' is the MOS pattern of the [[Pythagorean tuning|Pythagorean]]/[[Schismatic family|schismic]] chromatic scale, and also the [[superpyth]] chromatic scale. In contrast to the [[7L 5s|meantone chromatic scale]], in which diatonic | '''5L 7s''' is the MOS pattern of the [[Pythagorean tuning|Pythagorean]]/[[Schismatic family|schismic]] chromatic scale, and also the [[superpyth]] chromatic scale. In contrast to the [[7L 5s|meantone chromatic scale]], in which the diatonic semitone is larger than the chromatic semitone, here the reverse is true: the diatonic semitone is smaller than the chromatic semitone, so the [[5L 2s|diatonic scale]] subset is actually [[Rothenberg propriety|improper]]. | ||
The two distinct harmonic entropy minima with this MOS pattern are, on the one hand, scales very close to Pythagorean such that [[64/63]] is not tempered out, such as the schismatic temperaments known as | The two distinct harmonic entropy minima with this MOS pattern are, on the one hand, scales very close to Pythagorean such that [[64/63]] is not tempered out, such as the schismatic temperaments known as Helmholtz and Garibaldi, and on the other hand, the much simpler and less accurate scale known as superpyth in which 64/63 is tempered out. | ||
The Pythagorean/schismatic version is proper, but the superpyth version is improper (it | The Pythagorean/schismatic version is proper, but the superpyth version is improper (it does not become proper until you add 5 more notes to form the superpyth enharmonic scale, superpyth[17]). | ||
== Modes == | == Modes == | ||
Line 40: | Line 40: | ||
{| class="wikitable center-all" | {| class="wikitable center-all" | ||
! colspan="6" | Generator | ! colspan="6" | Generator | ||
! | ! Cents | ||
! L | ! L | ||
! s | ! s | ||
Line 48: | Line 48: | ||
| 7\12 || || || || || || 700.000 || 1 || 1 || 1.000 || | | 7\12 || || || || || || 700.000 || 1 || 1 || 1.000 || | ||
|- | |- | ||
| || || || || || 38\65 || 701.539 || 6 || 5 || 1.200 || [[Photia]] / [[ | | || || || || || 38\65 || 701.539 || 6 || 5 || 1.200 || [[Photia]] / [[pontiac]] / [[grackle]]↑ | ||
|- | |- | ||
| || || || || 31\53 || || 701.887 || 5 || 4 || 1.250 || [[Helmholtz]] | | || || || || 31\53 || || 701.887 || 5 || 4 || 1.250 || [[Helmholtz]], [[Pythagorean tuning]] (701.9550¢) | ||
|- | |- | ||
| || || || || || 55\94 || 702.128 || 9 || 7 || 1.286 || [[Garibaldi]] / [[ | | || || || || || 55\94 || 702.128 || 9 || 7 || 1.286 || [[Garibaldi]] / [[cassandra]] | ||
|- | |- | ||
| || || || 24\41 || || || 702.409 || 4 || 3 || 1.333 || Garibaldi / [[ | | || || || 24\41 || || || 702.409 || 4 || 3 || 1.333 || Garibaldi / [[andromeda]] | ||
|- | |- | ||
| || || || || || 65\111 || 702.703 || 11 || 8 || 1.375 || [[Kwai]] | | || || || || || 65\111 || 702.703 || 11 || 8 || 1.375 || [[Kwai]] | ||
Line 68: | Line 68: | ||
| || || || || 44\75 || || 704.000 || 8 || 5 || 1.600 || | | || || || || 44\75 || || 704.000 || 8 || 5 || 1.600 || | ||
|- | |- | ||
| || || || || || 71\121 || 704.132 || 13 || 8 || 1.625 || Golden neogothic ( | | || || || || || 71\121 || 704.132 || 13 || 8 || 1.625 || Golden neogothic (704.0956¢) | ||
|- | |- | ||
| || || || 27\46 || || || 704.348 || 5 || 3 || 1.667 || [[Leapday]] / [[ | | || || || 27\46 || || || 704.348 || 5 || 3 || 1.667 || [[Leapday]] / [[polypyth]] | ||
|- | |- | ||
| || || || || || 64\109 || 704.587 || 12 || 7 || 1.714 || [[Leapweek]] | | || || || || || 64\109 || 704.587 || 12 || 7 || 1.714 || [[Leapweek]] | ||
Line 78: | Line 78: | ||
| || || || || || 47\80 || 705.000 || 9 || 5 || 1.800 || | | || || || || || 47\80 || 705.000 || 9 || 5 || 1.800 || | ||
|- | |- | ||
| || 10\17 || || || || || 705.882 || 2 || 1 || 2.000 || Basic p-chromatic <br>( | | || 10\17 || || || || || 705.882 || 2 || 1 || 2.000 || Basic p-chromatic <br>(Generators smaller than this are proper) | ||
|- | |- | ||
| || || || || || 43\73 || 706.849 || 9 || 4 || 2.250 || | | || || || || || 43\73 || 706.849 || 9 || 4 || 2.250 || | ||
Line 88: | Line 88: | ||
| || || || 23\39 || || || 707.692 || 5 || 2 || 2.500 || | | || || || 23\39 || || || 707.692 || 5 || 2 || 2.500 || | ||
|- | |- | ||
| || || || || || 59\100 || 708.000 || 13 || 5 || 2.600 || Golden supra ( | | || || || || || 59\100 || 708.000 || 13 || 5 || 2.600 || Golden supra (708.0539¢) | ||
|- | |- | ||
| || || || || 36\61 || || 708.197 || 8 || 3 || 2.667 || [[Quasisuper]] / [[quasisupra]] | | || || || || 36\61 || || 708.197 || 8 || 3 || 2.667 || [[Quasisuper]] / [[quasisupra]] | ||
Line 108: | Line 108: | ||
| || || || || 19\32 || || 712.500 || 5 || 1 || 5.000 || | | || || || || 19\32 || || 712.500 || 5 || 1 || 5.000 || | ||
|- | |- | ||
| || || || || || 22\37 || 713.514 || 6 || 1 || 6.000 || [[Oceanfront]] / [[ | | || || || || || 22\37 || 713.514 || 6 || 1 || 6.000 || [[Oceanfront]]↓ / [[ultrapyth]]↓ | ||
|- | |- | ||
| 3\5 || || || || || || 720.000 || 1 || 0 || → inf || | | 3\5 || || || || || || 720.000 || 1 || 0 || → inf || |
Revision as of 22:52, 12 February 2022
↖ 4L 6s | ↑ 5L 6s | 6L 6s ↗ |
← 4L 7s | 5L 7s | 6L 7s → |
↙ 4L 8s | ↓ 5L 8s | 6L 8s ↘ |
┌╥┬╥┬╥┬┬╥┬╥┬┬┐ │║│║│║││║│║│││ ││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┘
ssLsLssLsLsL
5L 7s is the MOS pattern of the Pythagorean/schismic chromatic scale, and also the superpyth chromatic scale. In contrast to the meantone chromatic scale, in which the diatonic semitone is larger than the chromatic semitone, here the reverse is true: the diatonic semitone is smaller than the chromatic semitone, so the diatonic scale subset is actually improper.
The two distinct harmonic entropy minima with this MOS pattern are, on the one hand, scales very close to Pythagorean such that 64/63 is not tempered out, such as the schismatic temperaments known as Helmholtz and Garibaldi, and on the other hand, the much simpler and less accurate scale known as superpyth in which 64/63 is tempered out.
The Pythagorean/schismatic version is proper, but the superpyth version is improper (it does not become proper until you add 5 more notes to form the superpyth enharmonic scale, superpyth[17]).
Modes
- 11|0 LsLsLssLsLss
- 10|1 LsLssLsLsLss
- 9|2 LsLssLsLssLs
- 8|3 LssLsLsLssLs
- 7|4 LssLsLssLsLs
- 6|5 sLsLsLssLsLs
- 5|6 sLsLssLsLsLs
- 4|7 sLsLssLsLssL
- 3|8 sLssLsLsLssL
- 2|9 sLssLsLssLsL
- 1|10 ssLsLsLssLsL
- 0|11 ssLsLssLsLsL
Scales
- Pythagorean12 – Pythagorean tuning
- Cotoneum12 – 217edo tuning
- Garibaldi12 – 94edo tuning
- Supra12 – 56edo tuning
- Archy12 – 472edo tuning
- 12-22a – 22edo tuning
Scale tree
Generator | Cents | L | s | L/s | Comments | |||||
---|---|---|---|---|---|---|---|---|---|---|
7\12 | 700.000 | 1 | 1 | 1.000 | ||||||
38\65 | 701.539 | 6 | 5 | 1.200 | Photia / pontiac / grackle↑ | |||||
31\53 | 701.887 | 5 | 4 | 1.250 | Helmholtz, Pythagorean tuning (701.9550¢) | |||||
55\94 | 702.128 | 9 | 7 | 1.286 | Garibaldi / cassandra | |||||
24\41 | 702.409 | 4 | 3 | 1.333 | Garibaldi / andromeda | |||||
65\111 | 702.703 | 11 | 8 | 1.375 | Kwai | |||||
41\70 | 702.857 | 7 | 5 | 1.400 | ||||||
58\99 | 703.030 | 10 | 7 | 1.428 | Undecental | |||||
17\29 | 703.448 | 3 | 2 | 1.500 | Edson | |||||
61\104 | 703.846 | 11 | 7 | 1.571 | ||||||
44\75 | 704.000 | 8 | 5 | 1.600 | ||||||
71\121 | 704.132 | 13 | 8 | 1.625 | Golden neogothic (704.0956¢) | |||||
27\46 | 704.348 | 5 | 3 | 1.667 | Leapday / polypyth | |||||
64\109 | 704.587 | 12 | 7 | 1.714 | Leapweek | |||||
37\63 | 704.762 | 7 | 4 | 1.750 | ||||||
47\80 | 705.000 | 9 | 5 | 1.800 | ||||||
10\17 | 705.882 | 2 | 1 | 2.000 | Basic p-chromatic (Generators smaller than this are proper) | |||||
43\73 | 706.849 | 9 | 4 | 2.250 | ||||||
33\56 | 707.143 | 7 | 3 | 2.333 | Supra | |||||
56\95 | 707.368 | 12 | 5 | 2.400 | ||||||
23\39 | 707.692 | 5 | 2 | 2.500 | ||||||
59\100 | 708.000 | 13 | 5 | 2.600 | Golden supra (708.0539¢) | |||||
36\61 | 708.197 | 8 | 3 | 2.667 | Quasisuper / quasisupra | |||||
49\83 | 708.434 | 11 | 4 | 2.750 | ||||||
13\22 | 709.091 | 3 | 1 | 3.000 | Suprapyth | |||||
42\71 | 709.859 | 10 | 3 | 3.333 | ||||||
29\49 | 710.204 | 7 | 2 | 3.500 | Superpyth | |||||
45\76 | 710.526 | 11 | 3 | 3.667 | ||||||
16\27 | 711.111 | 4 | 1 | 4.000 | ||||||
35\59 | 711.864 | 9 | 2 | 4.500 | ||||||
19\32 | 712.500 | 5 | 1 | 5.000 | ||||||
22\37 | 713.514 | 6 | 1 | 6.000 | Oceanfront↓ / ultrapyth↓ | |||||
3\5 | 720.000 | 1 | 0 | → inf |