User:FloraC/Sandbox: Difference between revisions
→Scale tree: update |
Update |
||
Line 1: | Line 1: | ||
== Temperament pages == | |||
Databoxes has been canceled, but the cleanup will continue | |||
Note: | |||
# Order: subgroup, [[comma list]], [[mapping]], mapping generators, gencom mapping, [[gencom]], map to lattice, lattice basis, [[wedgie]], [[minimax tuning]], [[tuning ranges]], [[algebraic generator]], vals, [[badness]], [[complexity spectrum]]. | |||
# Comma list shows the simplest commas sufficient to define the temperament, stated in [[Normal lists #Normal interval list]]. | |||
# Mapping generators should show all the ratios as used in the mapping, including the period. | |||
# Minimax tuning are based on tonality diamond, so it should explicitly state the ''odd'' limit, or a diamond function of ratios. | |||
# Use [[Template:Val list]]. | |||
# For subgroup temperaments, "mapping" becomes "sval mapping", add "gencom mapping" and "gencom". If TE is TE is TE (''sic''), simply show "POTE", otherwise show "POL2" or "POT2" instead of "POTE". | |||
Get a family for: | |||
* <s>Ripple (3 different 7-limit extensions)</s> | |||
* <s>Smate (2 different 7-limit extensions)</s> | |||
* Maybe [[parakleismic]] (2 different 7-limit extensions) | |||
* Maybe [[superpyth]] (2 different 7-limit extensions) | |||
Who's next? | |||
* <s>Meantone family</s> | |||
* <s>Archytas clan</s> | |||
* <s>Father family</s> | |||
* <s>Trienstonic clan</s> | |||
* <s>Septisemi temperaments</s> | |||
* <s>Archytas family</s> | |||
* <s>Slendro clan</s> | |||
* <s>Semiphore family</s> | |||
* <s>Marvel temperaments</s> | |||
* <s>Marvel family</s> | |||
* <s>Mint temperaments</s> | |||
* <s>Mint family</s> | |||
* [[Gamelismic clan]] | |||
* <s>Gamelismic family</s> | |||
* <s>Jubilismic clan</s> | |||
* <s>Jubilismic family</s> | |||
* <s>Didymus rank three family</s> | |||
* <s>Kleismic family</s> | |||
* [[Kleismic rank three family]] | |||
* <s>Shibboleth family</s> | |||
* <s>Keemic temperaments</s> | |||
* <s>Keemic family</s> | |||
* <s>Schismatic family</s> | |||
* <s>Hemimean clan</s> | |||
* <s>Hemimean family</s> | |||
* <s>Luna family</s> | |||
* <s>Canousmic temperaments</s> | |||
* <s>Canou family</s> | |||
* [[Starling temperaments]] | |||
* [[Starling family]] | |||
* <s>Sensipent family</s> | |||
* [[Sensamagic clan]] | |||
* [[Sensamagic family]] | |||
* [[Magic family]] | |||
* [[Unicorn family]] | |||
* [[Trisedodge family]] | |||
== Septimal meantone == | |||
<span style="display: block; text-align: right;">[[:de:septimal-mitteltönig|Deutsch]]</span> | |||
{{main| Meantone }} | |||
{{see also| Wikipedia: Septimal meantone temperament }} | |||
The [[7/4]] of septimal meantone is the augmented sixth, C-A#, and other septimal intervals are [[7/6]], C-D#, the augmented second, [[7/5]], C-F#, the tritone, and [[21/16]], C-E#, the augmented third. Septimal meantone tempers out the common 7-limit commas [[126/125]] and [[225/224]] and in fact can be defined as the 7-limit temperament that tempers out any two of 81/80, 126/125 and 225/224. | |||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 81/80, 126/125 | |||
[[Mapping]]: [{{val|1 0 -4 -13}}, {{val|0 1 4 10}}] | |||
Mapping generators: ~2, ~3 | |||
{{Multival|legend=1| 1 4 10 4 13 12 }} | |||
[[POTE generator]]: ~3/2 = 696.495 | |||
[[Minimax tuning]]: | |||
* 7- and [[9-odd-limit]] | |||
: [{{Monzo| 1 0 0 0 }}, {{Monzo| 1 0 1/4 0 }}, {{Monzo| 0 0 1 0 }}, {{Monzo| -3 0 5/2 0 }}] | |||
: [[Eigenmonzo]]s: 2, 5 | |||
[[Tuning ranges]]: | |||
* valid range: [694.737, 700.000] (11\19 to 7\12) | |||
* nice range: [694.786, 701.955] | |||
* strict range: [694.786, 700.000] | |||
[[Algebraic generator]]: Cybozem, the real root of 15''x''<sup>3</sup> - 10''x''<sup>2</sup> - 18, 503.4257 cents. The recurrence converges quickly. | |||
{{Val list|legend=1| 12, 19, 31, 81, 112b, 143b }} | |||
[[Badness]]: 0.0137 | |||
Scales: [[meantone5]], [[meantone7]], [[meantone12]] | |||
== Archytas == | |||
{{main| Archytas }} | |||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 64/63 | |||
[[Mapping]]: [{{val| 1 0 0 6 }}, {{val| 0 1 0 -2 }}, {{val| 0 0 1 0 }}] | |||
Mapping generators: ~2, ~3, ~5 | |||
Map to lattice: [{{val| 0 1 0 -2 }}, {{val| 0 0 1 0 }}] | |||
Lattice basis: | |||
: 3/2 length = 1.0508, 5/4 length = 2.3219 | |||
: Angle (3/2, 5/4) = 90 degrees | |||
[[POTE generator]]s: ~3/2 = 709.3213, ~5/4 = 393.3747 | |||
[[Minimax tuning]]: | |||
* [[7-odd-limit]] | |||
: [{{monzo| 1 0 0 0 }}, {{monzo| 2 1/3 0 -1/3 }}, {{monzo| 2 -2/3 1 -1/3 }}, {{monzo| 2 -2/3 0 2/3 }}] | |||
: [[Eigenmonzo]]s: 2, 6/5, 7/5 | |||
* [[9-odd-limit]] | |||
: [{{monzo| 1 0 0 0 }}, {{monzo| 3/2 1/2 0 -1/4 }}, {{monzo| 3/2 -1/2 1 -1/4 }}, {{monzo| 3 -1 0 1/2 }}] | |||
: [[Eigenmonzo]]s: 2, 6/5, 9/7 | |||
{{Val list|legend=1| 5, 7, 10, 12, 15, 22, 27, 49 }} | |||
Scales: [[archytas12]], [[archytas12synch]] | |||
== Scale tree == | == Scale tree == | ||
(Bounded by branch depth = 7) | |||
{| class="wikitable center-all" | {| class="wikitable center-all" | ||
Line 96: | Line 220: | ||
| || || || || || 44\75 || || 704.000 || 13 || 5 || 2.600 || | | || || || || || 44\75 || || 704.000 || 13 || 5 || 2.600 || | ||
|- | |- | ||
| || || || || || || 71\121 || 704.132 || 21 || 8 || 2.625 || Golden | | || || || || || || 71\121 || 704.132 || 21 || 8 || 2.625 || Golden neogothic | ||
|- | |- | ||
| || || || || 27\46 || || || 704.348 || 8 || 3 || 2.667 || | | || || || || 27\46 || || || 704.348 || 8 || 3 || 2.667 || | ||
Line 140: | Line 264: | ||
| 3\5 || || || || || || || 720.000 || 1 || 0 || → inf || | | 3\5 || || || || || || || 720.000 || 1 || 0 || → inf || | ||
|} | |} | ||
== Commas == | == Commas == |
Revision as of 10:13, 13 April 2021
Temperament pages
Databoxes has been canceled, but the cleanup will continue
Note:
- Order: subgroup, comma list, mapping, mapping generators, gencom mapping, gencom, map to lattice, lattice basis, wedgie, minimax tuning, tuning ranges, algebraic generator, vals, badness, complexity spectrum.
- Comma list shows the simplest commas sufficient to define the temperament, stated in Normal lists #Normal interval list.
- Mapping generators should show all the ratios as used in the mapping, including the period.
- Minimax tuning are based on tonality diamond, so it should explicitly state the odd limit, or a diamond function of ratios.
- Use Template:Val list.
- For subgroup temperaments, "mapping" becomes "sval mapping", add "gencom mapping" and "gencom". If TE is TE is TE (sic), simply show "POTE", otherwise show "POL2" or "POT2" instead of "POTE".
Get a family for:
Ripple (3 different 7-limit extensions)Smate (2 different 7-limit extensions)- Maybe parakleismic (2 different 7-limit extensions)
- Maybe superpyth (2 different 7-limit extensions)
Who's next?
Meantone familyArchytas clanFather familyTrienstonic clanSeptisemi temperamentsArchytas familySlendro clanSemiphore familyMarvel temperamentsMarvel familyMint temperamentsMint family- Gamelismic clan
Gamelismic familyJubilismic clanJubilismic familyDidymus rank three familyKleismic family- Kleismic rank three family
Shibboleth familyKeemic temperamentsKeemic familySchismatic familyHemimean clanHemimean familyLuna familyCanousmic temperamentsCanou family- Starling temperaments
- Starling family
Sensipent family- Sensamagic clan
- Sensamagic family
- Magic family
- Unicorn family
- Trisedodge family
Septimal meantone
The 7/4 of septimal meantone is the augmented sixth, C-A#, and other septimal intervals are 7/6, C-D#, the augmented second, 7/5, C-F#, the tritone, and 21/16, C-E#, the augmented third. Septimal meantone tempers out the common 7-limit commas 126/125 and 225/224 and in fact can be defined as the 7-limit temperament that tempers out any two of 81/80, 126/125 and 225/224.
Subgroup: 2.3.5.7
Comma list: 81/80, 126/125
Mapping: [⟨1 0 -4 -13], ⟨0 1 4 10]]
Mapping generators: ~2, ~3
Wedgie: ⟨⟨ 1 4 10 4 13 12 ]]
POTE generator: ~3/2 = 696.495
- 7- and 9-odd-limit
- [[1 0 0 0⟩, [1 0 1/4 0⟩, [0 0 1 0⟩, [-3 0 5/2 0⟩]
- Eigenmonzos: 2, 5
- valid range: [694.737, 700.000] (11\19 to 7\12)
- nice range: [694.786, 701.955]
- strict range: [694.786, 700.000]
Algebraic generator: Cybozem, the real root of 15x3 - 10x2 - 18, 503.4257 cents. The recurrence converges quickly.
Badness: 0.0137
Scales: meantone5, meantone7, meantone12
Archytas
Subgroup: 2.3.5.7
Comma list: 64/63
Mapping: [⟨1 0 0 6], ⟨0 1 0 -2], ⟨0 0 1 0]]
Mapping generators: ~2, ~3, ~5
Map to lattice: [⟨0 1 0 -2], ⟨0 0 1 0]]
Lattice basis:
- 3/2 length = 1.0508, 5/4 length = 2.3219
- Angle (3/2, 5/4) = 90 degrees
POTE generators: ~3/2 = 709.3213, ~5/4 = 393.3747
- [[1 0 0 0⟩, [2 1/3 0 -1/3⟩, [2 -2/3 1 -1/3⟩, [2 -2/3 0 2/3⟩]
- Eigenmonzos: 2, 6/5, 7/5
- [[1 0 0 0⟩, [3/2 1/2 0 -1/4⟩, [3/2 -1/2 1 -1/4⟩, [3 -1 0 1/2⟩]
- Eigenmonzos: 2, 6/5, 9/7
Scales: archytas12, archytas12synch
Scale tree
(Bounded by branch depth = 7)
Generator | Cents | L | s | L/s | Comments | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
4\7 | 685.714 | 1 | 1 | 1.000 | |||||||
27\47 | 689.362 | 7 | 6 | 1.167 | |||||||
23\40 | 690.000 | 6 | 5 | 1.200 | |||||||
42\73 | 690.411 | 11 | 9 | 1.222 | |||||||
19\33 | 690.909 | 5 | 4 | 1.250 | |||||||
53\92 | 691.304 | 14 | 11 | 1.273 | |||||||
34\59 | 691.525 | 9 | 7 | 1.286 | |||||||
49\85 | 691.765 | 13 | 10 | 1.300 | |||||||
15\26 | 692.308 | 4 | 3 | 1.333 | |||||||
56\97 | 692.784 | 15 | 11 | 1.364 | |||||||
41\71 | 692.958 | 11 | 8 | 1.375 | |||||||
67\116 | 693.103 | 18 | 13 | 1.385 | |||||||
26\45 | 693.333 | 7 | 5 | 1.400 | |||||||
63\109 | 693.578 | 17 | 12 | 1.417 | |||||||
37\64 | 693.750 | 10 | 7 | 1.429 | |||||||
48\83 | 693.976 | 13 | 9 | 1.444 | |||||||
11\19 | 694.737 | 3 | 2 | 1.500 | L/s = 3/2 | ||||||
51\88 | 695.455 | 14 | 9 | 1.556 | |||||||
40\69 | 695.652 | 11 | 7 | 1.571 | |||||||
69\119 | 695.798 | 19 | 12 | 1.583 | |||||||
29\50 | 696.000 | 8 | 5 | 1.600 | |||||||
66\131 | 696.183 | 21 | 13 | 1.615 | Golden meantone | ||||||
47\81 | 696.296 | 13 | 8 | 1.625 | |||||||
65\112 | 696.429 | 18 | 11 | 1.636 | |||||||
18\31 | 696.774 | 5 | 3 | 1.667 | Meantone is in this region | ||||||
61\105 | 697.143 | 17 | 10 | 1.700 | |||||||
43\74 | 697.297 | 12 | 7 | 1.714 | |||||||
68\117 | 697.436 | 19 | 11 | 1.727 | |||||||
25\43 | 697.674 | 7 | 4 | 1.750 | |||||||
57\98 | 697.959 | 16 | 9 | 1.778 | |||||||
32\55 | 698.182 | 9 | 5 | 1.800 | |||||||
39\67 | 698.507 | 11 | 6 | 1.833 | |||||||
7\12 | 700.000 | 2 | 1 | 2.000 | Basic diatonic (Generators smaller than this are proper) | ||||||
38\65 | 701.539 | 11 | 5 | 2.200 | |||||||
31\53 | 701.887 | 9 | 4 | 2.250 | |||||||
55\94 | 702.128 | 16 | 7 | 2.286 | |||||||
24\41 | 702.409 | 7 | 3 | 2.333 | |||||||
65\111 | 702.703 | 19 | 8 | 2.375 | |||||||
41\70 | 702.857 | 12 | 5 | 2.400 | |||||||
58\99 | 703.030 | 17 | 7 | 2.428 | |||||||
17\29 | 703.448 | 5 | 2 | 2.500 | |||||||
61\104 | 703.846 | 18 | 7 | 2.571 | |||||||
44\75 | 704.000 | 13 | 5 | 2.600 | |||||||
71\121 | 704.132 | 21 | 8 | 2.625 | Golden neogothic | ||||||
27\46 | 704.348 | 8 | 3 | 2.667 | |||||||
64\109 | 704.587 | 19 | 7 | 2.714 | |||||||
37\63 | 704.762 | 11 | 4 | 2.750 | |||||||
47\80 | 705.000 | 14 | 5 | 2.800 | |||||||
10\17 | 705.882 | 3 | 1 | 3.000 | L/s = 3/1 | ||||||
43\73 | 706.849 | 13 | 4 | 3.250 | |||||||
33\56 | 707.143 | 10 | 3 | 3.333 | |||||||
56\95 | 707.368 | 17 | 5 | 3.400 | |||||||
23\39 | 707.692 | 7 | 2 | 3.500 | |||||||
59\100 | 708.000 | 18 | 5 | 3.600 | |||||||
36\61 | 708.197 | 11 | 3 | 3.667 | |||||||
49\83 | 708.434 | 15 | 4 | 3.750 | |||||||
13\22 | 709.091 | 4 | 1 | 4.000 | Archy is in this region | ||||||
42\71 | 709.859 | 13 | 3 | 4.333 | |||||||
29\49 | 710.204 | 9 | 2 | 4.500 | |||||||
45\76 | 710.526 | 14 | 3 | 4.667 | |||||||
16\27 | 711.111 | 5 | 1 | 5.000 | |||||||
35\59 | 711.864 | 11 | 2 | 5.500 | |||||||
19\32 | 712.500 | 6 | 1 | 6.000 | |||||||
22\37 | 713.514 | 7 | 1 | 7.000 | |||||||
3\5 | 720.000 | 1 | 0 | → inf |
Commas
41edo tempers out the following commas using its patent val, ⟨41 65 95 115 142 152 168 174 185 199 203].
Prime limit |
Ratio[1] | Name(s) |
---|---|---|
3 | [65 -41⟩ | 41-comma |
5 | [-5 -10 9⟩ | Shibboleth |
5 | [-25 7 6⟩ | Ampersand |
5 | 3125/3072 | Magic comma |
5 | [5 -9 4⟩ | Tetracot comma |
5 | [20 -17 3⟩ | Roda |
5 | [-15 8 1⟩ | Schisma |
7 | [0 -7 6 -1⟩ | Great BP diesis |
7 | [-10 7 8 -7⟩ | Blackjackisma |
7 | 875/864 | Keema |
7 | 3125/3087 | Gariboh |
7 | [10 -11 2 1⟩ | Tolerma |
7 | [-15 3 2 2⟩ | Mirwomo comma |
7 | 245/243 | Sensamagic |
7 | 4000/3969 | Octagar |
7 | [-15 0 -2 7⟩ | Quince |
7 | 1029/1024 | Gamelisma |
7 | 225/224 | Marvel comma |
7 | [0 3 4 -5⟩ | Mirkwai |
7 | [5 -7 -1 3⟩ | Hemimage |
7 | 5120/5103 | Hemifamity |
7 | [25 -14 0 -1⟩ | Garischisma |
7 | 2401/2400 | Breedsma |
11 | [15 0 1 0 -5⟩ | Thuja comma |
11 | 245/242 | Cassacot |
11 | 100/99 | Ptolemisma |
11 | 1344/1331 | Hemimin |
11 | 896/891 | Pentacircle |
11 | [16 0 0 -2 -3⟩ | Orgonisma |
11 | 243/242 | Rastma |
11 | 385/384 | Keenanisma |
11 | 441/440 | Werckisma |
11 | 1375/1372 | Moctdel |
11 | 540/539 | Swetisma |
11 | 3025/3024 | Lehmerisma |
11 | [-1 2 -4 5 -2⟩ | Odiheim |
13 | 343/338 | |
13 | 105/104 | Animist comma |
13 | [12 -7 0 1 0 -1⟩ | Secorian |
13 | 275/273 | Gassorma |
13 | 144/143 | Grossma |
13 | 196/195 | Mynucuma |
13 | 640/637 | Huntma |
13 | 1188/1183 | Kestrel comma |
13 | 325/324 | Marveltwin |
13 | 352/351 | Minthma |
13 | 364/363 | Gentle comma |
13 | 847/845 | Cuthbert |
13 | 729/728 | Squbema |
13 | 4096/4095 | Schismina |
13 | [3 -2 0 -1 3 -2⟩ | Harmonisma |
17 | 2187/2176 | Septendecimal schisma |
17 | 256/255 | Septendecimal kleisma |
17 | 715/714 | Septendecimal bridge comma |
19 | 210/209 | Spleen comma |
19 | 361/360 | Go comma |
19 | 513/512 | Undevicesimal comma |
19 | 1216/1215 | Eratosthenes' comma |
23 | 736/729 | Vicesimotertial comma |
29 | 145/144 | 29th-partial chroma |
- ↑ Ratios with more than 9 digits are presented in monzos