List of superparticular intervals: Difference between revisions
replaced inline Monzos in table cells with template:monzo by simplified markup for table cells and links |
m replaced inline spans for styling of exponents by superscript tag <sup>x</sup> |
||
Line 35: | Line 35: | ||
| [[4/3]] | | [[4/3]] | ||
| 498.045 | | 498.045 | ||
| 2< | | 2<sup>2</sup>/3 | ||
| {{Monzo|2 -1}} | | {{Monzo|2 -1}} | ||
| perfect fourth, 3rd subharmonic (octave reduced), diatessaron | | perfect fourth, 3rd subharmonic (octave reduced), diatessaron | ||
Line 41: | Line 41: | ||
| [[9/8]] | | [[9/8]] | ||
| 203.910 | | 203.910 | ||
| 3< | | 3<sup>2</sup>/2<sup>3</sup> | ||
| {{Monzo|-3 2}} | | {{Monzo|-3 2}} | ||
| (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, 9th harmonic or harmonic ninth (octave reduced) | | (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, 9th harmonic or harmonic ninth (octave reduced) | ||
Line 49: | Line 49: | ||
| [[5/4]] | | [[5/4]] | ||
| 386.314 | | 386.314 | ||
| 5/2< | | 5/2<sup>2</sup> | ||
| {{Monzo|-2 0 1}} | | {{Monzo|-2 0 1}} | ||
| (classic) (5-limit) major third, 5th harmonic (octave reduced) | | (classic) (5-limit) major third, 5th harmonic (octave reduced) | ||
Line 61: | Line 61: | ||
| [[10/9]] | | [[10/9]] | ||
| 182.404 | | 182.404 | ||
| (2*5)/3< | | (2*5)/3<sup>2</sup> | ||
| {{Monzo|1 -2 1}} | | {{Monzo|1 -2 1}} | ||
| classic (whole) tone, classic major second, minor whole tone | | classic (whole) tone, classic major second, minor whole tone | ||
Line 67: | Line 67: | ||
| [[16/15]] | | [[16/15]] | ||
| 111.713 | | 111.713 | ||
| 2< | | 2<sup>4</sup>/(3*5) | ||
| {{Monzo|4 -1 -1}} | | {{Monzo|4 -1 -1}} | ||
| minor diatonic semitone, 15th subharmonic | | minor diatonic semitone, 15th subharmonic | ||
Line 73: | Line 73: | ||
| [[25/24]] | | [[25/24]] | ||
| 70.672 | | 70.672 | ||
| 5< | | 5<sup>2</sup>/(2<sup>3</sup>*3) | ||
| {{Monzo|-3 -1 2}} | | {{Monzo|-3 -1 2}} | ||
| chroma, (classic) chromatic semitone, Zarlinian semitone | | chroma, (classic) chromatic semitone, Zarlinian semitone | ||
Line 79: | Line 79: | ||
| [[81/80]] | | [[81/80]] | ||
| 21.506 | | 21.506 | ||
| (3/2)< | | (3/2)<sup>4</sup>/5 | ||
| {{Monzo|-4 4 -1}} | | {{Monzo|-4 4 -1}} | ||
| syntonic comma, Didymus comma | | syntonic comma, Didymus comma | ||
Line 93: | Line 93: | ||
| [[8/7]] | | [[8/7]] | ||
| 231.174 | | 231.174 | ||
| 2< | | 2<sup>3</sup>/7 | ||
| {{Monzo|3 0 0 -1}} | | {{Monzo|3 0 0 -1}} | ||
| (septimal) supermajor second, septimal whole tone, diminished third, 7th subharmonic | | (septimal) supermajor second, septimal whole tone, diminished third, 7th subharmonic | ||
Line 105: | Line 105: | ||
| [[21/20]] | | [[21/20]] | ||
| 84.467 | | 84.467 | ||
| (3*7)/(2< | | (3*7)/(2<sup>2</sup>*5) | ||
| {{Monzo|-2 1 -1 1}} | | {{Monzo|-2 1 -1 1}} | ||
| minor semitone, large septimal chromatic semitone | | minor semitone, large septimal chromatic semitone | ||
Line 111: | Line 111: | ||
| [[28/27]] | | [[28/27]] | ||
| 62.961 | | 62.961 | ||
| (2< | | (2<sup>2</sup>*7)/3<sup>3</sup> | ||
| {{Monzo|2 -3 0 1}} | | {{Monzo|2 -3 0 1}} | ||
| septimal chroma, small septimal chromatic semitone, Archytas' 1/3-tone | | septimal chroma, small septimal chromatic semitone, Archytas' 1/3-tone | ||
Line 117: | Line 117: | ||
| [[36/35]] | | [[36/35]] | ||
| 48.770 | | 48.770 | ||
| (2< | | (2<sup>2</sup>*3<sup>3</sup>)/(5*7) | ||
| {{Monzo|2 2 -1 -1}} | | {{Monzo|2 2 -1 -1}} | ||
| septimal quarter tone, septimal diesis | | septimal quarter tone, septimal diesis | ||
Line 123: | Line 123: | ||
| [[49/48]] | | [[49/48]] | ||
| 35.697 | | 35.697 | ||
| 7< | | 7<sup>2</sup>/(2<sup>4</sup>*3) | ||
| {{Monzo|-4 -1 0 2}} | | {{Monzo|-4 -1 0 2}} | ||
| large septimal diesis, slendro diesis, septimal 1/6-tone | | large septimal diesis, slendro diesis, septimal 1/6-tone | ||
Line 129: | Line 129: | ||
| [[50/49]] | | [[50/49]] | ||
| 34.976 | | 34.976 | ||
| 2*(5/7)< | | 2*(5/7)<sup>2</sup> | ||
| {{Monzo|1 0 2 -2}} | | {{Monzo|1 0 2 -2}} | ||
| septimal sixth-tone, jubilisma, small septimal diesis, tritonic diesis, Erlich's decatonic comma | | septimal sixth-tone, jubilisma, small septimal diesis, tritonic diesis, Erlich's decatonic comma | ||
Line 135: | Line 135: | ||
| [[64/63]] | | [[64/63]] | ||
| 27.264 | | 27.264 | ||
| 2< | | 2<sup>6</sup>/(3<sup>2</sup>*7) | ||
| {{Monzo|6 -2 0 -1}} | | {{Monzo|6 -2 0 -1}} | ||
| septimal comma, Archytas' comma | | septimal comma, Archytas' comma | ||
Line 141: | Line 141: | ||
| [[126/125]] | | [[126/125]] | ||
| 13.795 | | 13.795 | ||
| (2*3< | | (2*3<sup>2</sup>*7)/5<sup>3</sup> | ||
| {{Monzo|1 2 -3 1}} | | {{Monzo|1 2 -3 1}} | ||
| starling comma, septimal semicomma | | starling comma, septimal semicomma | ||
Line 147: | Line 147: | ||
| [[225/224]] | | [[225/224]] | ||
| 7.7115 | | 7.7115 | ||
| (3*5)< | | (3*5)<sup>2</sup>/(2<sup>5</sup>*7) | ||
| {{Monzo|-5 2 2 -1}} | | {{Monzo|-5 2 2 -1}} | ||
| marvel comma, septimal kleisma | | marvel comma, septimal kleisma | ||
Line 153: | Line 153: | ||
| [[2401/2400]] | | [[2401/2400]] | ||
| 0.72120 | | 0.72120 | ||
| 7< | | 7<sup>4</sup>/(2<sup>5</sup>*3*5<sup>2</sup>) | ||
| {{Monzo|-5 -1 -2 4}} | | {{Monzo|-5 -1 -2 4}} | ||
| breedsma | | breedsma | ||
Line 159: | Line 159: | ||
| [[4375/4374]] | | [[4375/4374]] | ||
| 0.39576 | | 0.39576 | ||
| (5< | | (5<sup>4</sup>*7)/(2*3<sup>7</sup>) | ||
| {{Monzo|-1 -7 4 1}} | | {{Monzo|-1 -7 4 1}} | ||
| ragisma | | ragisma | ||
Line 173: | Line 173: | ||
| [[12/11]] | | [[12/11]] | ||
| 150.637 | | 150.637 | ||
| (2< | | (2<sup>2</sup>*3)/11 | ||
| {{Monzo|2 1 0 0 -1}} | | {{Monzo|2 1 0 0 -1}} | ||
| (small) (undecimal) neutral second, 3/4-tone | | (small) (undecimal) neutral second, 3/4-tone | ||
Line 185: | Line 185: | ||
| [[33/32]] | | [[33/32]] | ||
| 53.273 | | 53.273 | ||
| (3*11)/2< | | (3*11)/2<sup>5</sup> | ||
| {{Monzo|-5 1 0 0 1}} | | {{Monzo|-5 1 0 0 1}} | ||
| undecimal quarter tone, undecimal diesis, al-Farabi's 1/4-tone, 33rd harmonic (octave reduced) | | undecimal quarter tone, undecimal diesis, al-Farabi's 1/4-tone, 33rd harmonic (octave reduced) | ||
Line 191: | Line 191: | ||
| [[45/44]] | | [[45/44]] | ||
| 38.906 | | 38.906 | ||
| (3/2)< | | (3/2)<sup>2</sup>*(5/11) | ||
| {{Monzo|-2 2 1 0 -1}} | | {{Monzo|-2 2 1 0 -1}} | ||
| 1/5-tone | | 1/5-tone | ||
Line 197: | Line 197: | ||
| [[55/54]] | | [[55/54]] | ||
| 31.767 | | 31.767 | ||
| (5*11)/(2*3< | | (5*11)/(2*3<sup>3</sup>) | ||
| {{Monzo|-1 -3 1 0 1}} | | {{Monzo|-1 -3 1 0 1}} | ||
| undecimal diasecundal comma, eleventyfive comma | | undecimal diasecundal comma, eleventyfive comma | ||
Line 203: | Line 203: | ||
| [[56/55]] | | [[56/55]] | ||
| 31.194 | | 31.194 | ||
| (2< | | (2<sup>3</sup>*7)/(5*11) | ||
| {{Monzo|3 0 -1 1 -1}} | | {{Monzo|3 0 -1 1 -1}} | ||
| undecimal tritonic comma, konbini comma | | undecimal tritonic comma, konbini comma | ||
Line 209: | Line 209: | ||
| [[99/98]] | | [[99/98]] | ||
| 17.576 | | 17.576 | ||
| (3/7)< | | (3/7)<sup>2</sup>*(11/2) | ||
| {{Monzo|-1 2 0 -2 1}} | | {{Monzo|-1 2 0 -2 1}} | ||
| small undecimal comma, mothwellsma | | small undecimal comma, mothwellsma | ||
Line 215: | Line 215: | ||
| [[100/99]] | | [[100/99]] | ||
| 17.399 | | 17.399 | ||
| (2*5/3)< | | (2*5/3)<sup>2</sup>/11) | ||
| {{Monzo|2 -2 2 0 -1}} | | {{Monzo|2 -2 2 0 -1}} | ||
| Ptolemy's comma, ptolemisma | | Ptolemy's comma, ptolemisma | ||
Line 221: | Line 221: | ||
| [[121/120]] | | [[121/120]] | ||
| 14.376 | | 14.376 | ||
| 11< | | 11<sup>2</sup>/(2<sup>3</sup>*3*5) | ||
| {{Monzo|-3 -1 -1 0 2}} | | {{Monzo|-3 -1 -1 0 2}} | ||
| undecimal seconds comma, biyatisma | | undecimal seconds comma, biyatisma | ||
Line 227: | Line 227: | ||
| [[176/175]] | | [[176/175]] | ||
| 9.8646 | | 9.8646 | ||
| (2< | | (2<sup>4</sup>*11)/(5<sup>2</sup>*7) | ||
| {{Monzo|4 0 -2 -1 1}} | | {{Monzo|4 0 -2 -1 1}} | ||
| valinorsma | | valinorsma | ||
Line 233: | Line 233: | ||
| [[243/242]] | | [[243/242]] | ||
| 7.1391 | | 7.1391 | ||
| 3< | | 3<sup>5</sup>/(2*11<sup>2</sup>) | ||
| {{Monzo|-1 5 0 0 -2}} | | {{Monzo|-1 5 0 0 -2}} | ||
| neutral third comma, rastma | | neutral third comma, rastma | ||
Line 239: | Line 239: | ||
| [[385/384]] | | [[385/384]] | ||
| 4.5026 | | 4.5026 | ||
| (5*7*11)/(2< | | (5*7*11)/(2<sup>7</sup>*3) | ||
| {{Monzo|-7 -1 1 1 1}} | | {{Monzo|-7 -1 1 1 1}} | ||
| keenanisma | | keenanisma | ||
Line 245: | Line 245: | ||
| [[441/440]] | | [[441/440]] | ||
| 3.9302 | | 3.9302 | ||
| (3*7)< | | (3*7)<sup>2</sup>/(2<sup>3</sup>*5*11) | ||
| {{Monzo|-3 2 -1 2 -1}} | | {{Monzo|-3 2 -1 2 -1}} | ||
| Werckmeister's undecimal septenarian schisma, werckisma | | Werckmeister's undecimal septenarian schisma, werckisma | ||
Line 251: | Line 251: | ||
| [[540/539]] | | [[540/539]] | ||
| 3.2090 | | 3.2090 | ||
| (2/7)< | | (2/7)<sup>2</sup>*3<sup>3</sup>*5/11 | ||
| {{Monzo|2 3 1 -2 -1}} | | {{Monzo|2 3 1 -2 -1}} | ||
| Swets' comma, swetisma | | Swets' comma, swetisma | ||
Line 257: | Line 257: | ||
| [[3025/3024]] | | [[3025/3024]] | ||
| 0.57240 | | 0.57240 | ||
| (5*11)< | | (5*11)<sup>2</sup>/(2<sup>4</sup>*3<sup>2</sup>*7) | ||
| {{Monzo|-4 -3 2 -1 2}} | | {{Monzo|-4 -3 2 -1 2}} | ||
| Lehmerisma | | Lehmerisma | ||
Line 263: | Line 263: | ||
| [[9801/9800]] | | [[9801/9800]] | ||
| 0.17665 | | 0.17665 | ||
| [11/(5*7)]< | | [11/(5*7)]<sup>2</sup>*3<sup>4</sup>/2<sup>3</sup> | ||
| {{Monzo|-3 4 -2 -2 2}} | | {{Monzo|-3 4 -2 -2 2}} | ||
| Gauss comma, kalisma | | Gauss comma, kalisma | ||
Line 271: | Line 271: | ||
| [[13/12]] | | [[13/12]] | ||
| 138.573 | | 138.573 | ||
| 13/(2< | | 13/(2<sup>2</sup>*3) | ||
| {{Monzo|-2 -1 0 0 0 1}} | | {{Monzo|-2 -1 0 0 0 1}} | ||
| tridecimal 2/3-tone | | tridecimal 2/3-tone | ||
Line 283: | Line 283: | ||
| [[26/25]] | | [[26/25]] | ||
| 67.900 | | 67.900 | ||
| (2*13)/5< | | (2*13)/5<sup>2</sup> | ||
| {{Monzo|1 0 -2 0 0 1}} | | {{Monzo|1 0 -2 0 0 1}} | ||
| tridecimal 1/3-tone | | tridecimal 1/3-tone | ||
Line 289: | Line 289: | ||
| [[27/26]] | | [[27/26]] | ||
| 65.337 | | 65.337 | ||
| 3< | | 3<sup>3</sup>/(2*13) | ||
| {{Monzo|-1 3 0 0 0 -1}} | | {{Monzo|-1 3 0 0 0 -1}} | ||
| tridecimal comma | | tridecimal comma | ||
Line 295: | Line 295: | ||
| [[40/39]] | | [[40/39]] | ||
| 43.831 | | 43.831 | ||
| (2< | | (2<sup>3</sup>*5)/(3*13) | ||
| {{Monzo|3 -1 1 0 0 -1}} | | {{Monzo|3 -1 1 0 0 -1}} | ||
| tridecimal minor diesis | | tridecimal minor diesis | ||
Line 301: | Line 301: | ||
| [[65/64]] | | [[65/64]] | ||
| 26.841 | | 26.841 | ||
| (5*13)/2< | | (5*13)/2<sup>6</sup> | ||
| {{Monzo|-6 0 1 0 0 1}} | | {{Monzo|-6 0 1 0 0 1}} | ||
| wilsorma, 13th-partial chroma | | wilsorma, 13th-partial chroma | ||
Line 319: | Line 319: | ||
| [[91/90]] | | [[91/90]] | ||
| 19.130 | | 19.130 | ||
| (7*13)/(2*3< | | (7*13)/(2*3<sup>2</sup>*5) | ||
| {{Monzo|-1 -2 -1 1 0 1}} | | {{Monzo|-1 -2 -1 1 0 1}} | ||
| [[The_Biosphere|Biome]] comma, superleap comma | | [[The_Biosphere|Biome]] comma, superleap comma | ||
Line 325: | Line 325: | ||
| [[105/104]] | | [[105/104]] | ||
| 16.567 | | 16.567 | ||
| (3*5*7)/(2< | | (3*5*7)/(2<sup>3</sup>*13) | ||
| {{Monzo|-3 1 1 1 0 -1}} | | {{Monzo|-3 1 1 1 0 -1}} | ||
| small tridecimal comma, animist comma | | small tridecimal comma, animist comma | ||
Line 331: | Line 331: | ||
| [[144/143]] | | [[144/143]] | ||
| 12.064 | | 12.064 | ||
| (2< | | (2<sup>2</sup>*3)<sup>2</sup>/(11*13) | ||
| {{Monzo|4 2 0 0 -1 -1}} | | {{Monzo|4 2 0 0 -1 -1}} | ||
| grossma | | grossma | ||
Line 337: | Line 337: | ||
| [[169/168]] | | [[169/168]] | ||
| 10.274 | | 10.274 | ||
| 13< | | 13<sup>2</sup>/(2<sup>3</sup>*3*7) | ||
| {{Monzo|-3 -1 0 -1 0 2}} | | {{Monzo|-3 -1 0 -1 0 2}} | ||
| buzurgisma, dhanvantarisma | | buzurgisma, dhanvantarisma | ||
Line 343: | Line 343: | ||
| [[196/195]] | | [[196/195]] | ||
| 8.8554 | | 8.8554 | ||
| (2*7)< | | (2*7)<sup>2</sup>/(3*5*13) | ||
| {{Monzo|2 -1 -1 2 0 -1}} | | {{Monzo|2 -1 -1 2 0 -1}} | ||
| marveltwin comma | | marveltwin comma | ||
Line 349: | Line 349: | ||
| [[325/324]] | | [[325/324]] | ||
| 5.3351 | | 5.3351 | ||
| (5< | | (5<sup>2</sup>*13)/(2<sup>2</sup>*3<sup>4</sup>) | ||
| {{Monzo|-2 -4 2 0 0 1}} | | {{Monzo|-2 -4 2 0 0 1}} | ||
| | | | ||
Line 355: | Line 355: | ||
| [[351/350]] | | [[351/350]] | ||
| 4.9393 | | 4.9393 | ||
| (3/5)< | | (3/5)<sup>2</sup>*13/(2*7) | ||
| {{Monzo|-1 3 -2 -1 0 1}} | | {{Monzo|-1 3 -2 -1 0 1}} | ||
| ratwolfsma | | ratwolfsma | ||
Line 361: | Line 361: | ||
| [[352/351]] | | [[352/351]] | ||
| 4.9253 | | 4.9253 | ||
| (2< | | (2<sup>5</sup>*11)/(3<sup>2</sup>*13) | ||
| {{Monzo|5 -3 0 0 1 -1}} | | {{Monzo|5 -3 0 0 1 -1}} | ||
| minthma | | minthma | ||
Line 367: | Line 367: | ||
| [[364/363]] | | [[364/363]] | ||
| 4.7627 | | 4.7627 | ||
| (2/11)< | | (2/11)<sup>2</sup>*7*13/3 | ||
| {{Monzo|2 -1 0 1 -2 1}} | | {{Monzo|2 -1 0 1 -2 1}} | ||
| gentle comma | | gentle comma | ||
Line 441: | Line 441: | ||
| [[17/16]] | | [[17/16]] | ||
| 104.955 | | 104.955 | ||
| 17/2< | | 17/2<sup>4</sup> | ||
| {{Monzo|-4 0 0 0 0 0 1}} | | {{Monzo|-4 0 0 0 0 0 1}} | ||
| 17th harmonic (octave reduced) | | 17th harmonic (octave reduced) | ||
Line 447: | Line 447: | ||
| [[18/17]] | | [[18/17]] | ||
| 98.955 | | 98.955 | ||
| (2*3< | | (2*3<sup>2</sup>)/17 | ||
| {{Monzo|1 2 0 0 0 0 -1}} | | {{Monzo|1 2 0 0 0 0 -1}} | ||
| Arabic lute index finger | | Arabic lute index finger | ||
Line 465: | Line 465: | ||
| [[51/50]] | | [[51/50]] | ||
| 34.283 | | 34.283 | ||
| (3*17)/(2*5< | | (3*17)/(2*5<sup>2</sup>) | ||
| {{Monzo|-1 1 -2 0 0 0 1}} | | {{Monzo|-1 1 -2 0 0 0 1}} | ||
| 17th-partial chroma | | 17th-partial chroma | ||
Line 471: | Line 471: | ||
| [[52/51]] | | [[52/51]] | ||
| 33.617 | | 33.617 | ||
| (2< | | (2<sup>2</sup>*13)/(3*17) | ||
| {{Monzo|2 -1 0 0 0 1 -1}} | | {{Monzo|2 -1 0 0 0 1 -1}} | ||
| | | | ||
Line 477: | Line 477: | ||
| [[85/84]] | | [[85/84]] | ||
| 20.488 | | 20.488 | ||
| (5*17)/(2< | | (5*17)/(2<sup>2</sup>*3*7) | ||
| {{Monzo|-2 -1 1 -1 0 0 1}} | | {{Monzo|-2 -1 1 -1 0 0 1}} | ||
| | | | ||
Line 483: | Line 483: | ||
| 120/119 | | 120/119 | ||
| 14.487 | | 14.487 | ||
| (2< | | (2<sup>3</sup>*3*5)/(7*17) | ||
| {{Monzo|3 1 1 -1 0 0 -1}} | | {{Monzo|3 1 1 -1 0 0 -1}} | ||
| | | | ||
Line 489: | Line 489: | ||
| 136/135 | | 136/135 | ||
| 12.777 | | 12.777 | ||
| (2/3)< | | (2/3)<sup>3</sup>*17/5 | ||
| {{Monzo|3 -3 -1 0 0 0 1}} | | {{Monzo|3 -3 -1 0 0 0 1}} | ||
| | | | ||
Line 495: | Line 495: | ||
| 154/153 | | 154/153 | ||
| 11.278 | | 11.278 | ||
| (2*7*11)/(3< | | (2*7*11)/(3<sup>2</sup>*17) | ||
| {{Monzo|1 -2 0 1 1 0 -1}} | | {{Monzo|1 -2 0 1 1 0 -1}} | ||
| | | | ||
Line 501: | Line 501: | ||
| 170/169 | | 170/169 | ||
| 10.214 | | 10.214 | ||
| (2*5*17)/13< | | (2*5*17)/13<sup>2</sup> | ||
| {{Monzo|1 0 1 0 0 -2 1}} | | {{Monzo|1 0 1 0 0 -2 1}} | ||
| | | | ||
Line 507: | Line 507: | ||
| 221/220 | | 221/220 | ||
| 7.8514 | | 7.8514 | ||
| (13*17)/(2< | | (13*17)/(2<sup>2</sup>*5*11) | ||
| {{Monzo|-2 0 -1 0 -1 1 1}} | | {{Monzo|-2 0 -1 0 -1 1 1}} | ||
| | | | ||
Line 513: | Line 513: | ||
| 256/255 | | 256/255 | ||
| 6.7759 | | 6.7759 | ||
| (2< | | (2<sup>8</sup>)/(3*5*17) | ||
| {{Monzo|8 -1 -1 0 0 0 -1}} | | {{Monzo|8 -1 -1 0 0 0 -1}} | ||
| 255th subharmonic | | 255th subharmonic | ||
Line 519: | Line 519: | ||
| 273/272 | | 273/272 | ||
| 6.3532 | | 6.3532 | ||
| (3*7*13)/(2< | | (3*7*13)/(2<sup>4</sup>*17) | ||
| {{Monzo|-4 1 0 1 0 1 -1}} | | {{Monzo|-4 1 0 1 0 1 -1}} | ||
| | | | ||
Line 525: | Line 525: | ||
| 289/288 | | 289/288 | ||
| 6.0008 | | 6.0008 | ||
| (17/3)< | | (17/3)<sup>2</sup>/2<sup>5</sup> | ||
| {{Monzo|-5 -2 0 0 0 0 2}} | | {{Monzo|-5 -2 0 0 0 0 2}} | ||
| | | | ||
Line 531: | Line 531: | ||
| 375/374 | | 375/374 | ||
| 4.6228 | | 4.6228 | ||
| (3*5< | | (3*5<sup>3</sup>)/(2*11*17) | ||
| {{Monzo|-1 1 3 0 -1 0 -1}} | | {{Monzo|-1 1 3 0 -1 0 -1}} | ||
| | | | ||
Line 537: | Line 537: | ||
| 442/441 | | 442/441 | ||
| 3.9213 | | 3.9213 | ||
| (2*13*17)/(3*7)< | | (2*13*17)/(3*7)<sup>2</sup> | ||
| {{Monzo|1 -2 0 -2 0 1 1}} | | {{Monzo|1 -2 0 -2 0 1 1}} | ||
| | | | ||
Line 543: | Line 543: | ||
| 561/560 | | 561/560 | ||
| 3.0887 | | 3.0887 | ||
| (3*11*17)/(2< | | (3*11*17)/(2<sup>4</sup>*5*7) | ||
| {{Monzo|-4 1 -1 -1 1 0 1}} | | {{Monzo|-4 1 -1 -1 1 0 1}} | ||
| | | | ||
Line 549: | Line 549: | ||
| 595/594 | | 595/594 | ||
| 2.9121 | | 2.9121 | ||
| (5*7*17)/(2*3< | | (5*7*17)/(2*3<sup>3</sup>*11) | ||
| {{Monzo|-1 -3 1 1 -1 0 1}} | | {{Monzo|-1 -3 1 1 -1 0 1}} | ||
| | | | ||
Line 561: | Line 561: | ||
| 833/832 | | 833/832 | ||
| 2.0796 | | 2.0796 | ||
| (7< | | (7<sup>2</sup>*17)/(2<sup>6</sup>*13) | ||
| {{Monzo|-6 0 0 2 0 -1 1}} | | {{Monzo|-6 0 0 2 0 -1 1}} | ||
| | | | ||
Line 567: | Line 567: | ||
| 936/935 | | 936/935 | ||
| 1.8506 | | 1.8506 | ||
| (2< | | (2<sup>3</sup>*3<sup>2</sup>*13)/(5*11*17) | ||
| {{Monzo|3 2 -1 0 -1 1 -1}} | | {{Monzo|3 2 -1 0 -1 1 -1}} | ||
| | | | ||
Line 573: | Line 573: | ||
| 1089/1088 | | 1089/1088 | ||
| 1.5905 | | 1.5905 | ||
| (3< | | (3<sup>2</sup>*11<sup>2</sup>)/(2<sup>6</sup>*17) | ||
| {{Monzo|-6 2 0 0 2 0 -1}} | | {{Monzo|-6 2 0 0 2 0 -1}} | ||
| twosquare comma | | twosquare comma | ||
Line 579: | Line 579: | ||
| 1156/1155 | | 1156/1155 | ||
| 1.4983 | | 1.4983 | ||
| (2< | | (2<sup>2</sup>*17<sup>2</sup>)/(3*5*7*11) | ||
| {{Monzo|2 -1 -1 -1 -1 0 2}} | | {{Monzo|2 -1 -1 -1 -1 0 2}} | ||
| | | | ||
Line 585: | Line 585: | ||
| 1225/1224 | | 1225/1224 | ||
| 1.4138 | | 1.4138 | ||
| (5< | | (5<sup>2</sup>*7<sup>2</sup>)/(2<sup>3</sup>*3<sup>2</sup>*17) | ||
| {{Monzo|-3 -2 2 2 0 0 -1}} | | {{Monzo|-3 -2 2 2 0 0 -1}} | ||
| | | | ||
Line 591: | Line 591: | ||
| 1275/1274 | | 1275/1274 | ||
| 1.3584 | | 1.3584 | ||
| (3*5< | | (3*5<sup>2</sup>*17)/(2*7<sup>2</sup>*13) | ||
| {{Monzo|-1 1 2 -2 0 -1 1}} | | {{Monzo|-1 1 2 -2 0 -1 1}} | ||
| | | | ||
Line 597: | Line 597: | ||
| 1701/1700 | | 1701/1700 | ||
| 1.0181 | | 1.0181 | ||
| (3< | | (3<sup>5</sup>*7)/[(2*5)<sup>2</sup>*17] | ||
| {{Monzo|-2 5 -2 1 0 0 -1}} | | {{Monzo|-2 5 -2 1 0 0 -1}} | ||
| | | | ||
Line 603: | Line 603: | ||
| 2058/2057 | | 2058/2057 | ||
| 0.8414 | | 0.8414 | ||
| (2*3*7< | | (2*3*7<sup>3</sup>)/(11<sup>2</sup>*17) | ||
| {{Monzo|1 1 0 3 -2 0 -1}} | | {{Monzo|1 1 0 3 -2 0 -1}} | ||
| xenisma | | xenisma | ||
Line 609: | Line 609: | ||
| 2431/2430 | | 2431/2430 | ||
| 0.7123 | | 0.7123 | ||
| (11*13*17)/(2*3< | | (11*13*17)/(2*3<sup>5</sup>*5) | ||
| {{Monzo|-1 -5 -1 0 1 1 1}} | | {{Monzo|-1 -5 -1 0 1 1 1}} | ||
| | | | ||
Line 615: | Line 615: | ||
| 2500/2499 | | 2500/2499 | ||
| 0.6926 | | 0.6926 | ||
| (2< | | (2<sup>2</sup>*5<sup>4</sup>)/(3*7<sup>2</sup>*17) | ||
| {{Monzo|2 -1 4 -2 0 0 -1}} | | {{Monzo|2 -1 4 -2 0 0 -1}} | ||
| | | | ||
Line 621: | Line 621: | ||
| 2601/2600 | | 2601/2600 | ||
| 0.6657 | | 0.6657 | ||
| (3< | | (3<sup>2</sup>*17<sup>2</sup>)/(2<sup>3</sup>*5<sup>2</sup>*13) | ||
| {{Monzo|-3 2 -2 0 0 -1 2}} | | {{Monzo|-3 2 -2 0 0 -1 2}} | ||
| | | | ||
Line 627: | Line 627: | ||
| 4914/4913 | | 4914/4913 | ||
| 0.3523 | | 0.3523 | ||
| (2*3< | | (2*3<sup>3</sup>*7*13)/(17<sup>3</sup>) | ||
| {{Monzo|1 3 0 1 0 1 -3}} | | {{Monzo|1 3 0 1 0 1 -3}} | ||
| | | | ||
Line 633: | Line 633: | ||
| 5832/5831 | | 5832/5831 | ||
| 0.2969 | | 0.2969 | ||
| (2< | | (2<sup>3</sup>*3<sup>6</sup>)/(7<sup>3</sup>*17) | ||
| {{Monzo|3 6 0 -3 0 0 -1}} | | {{Monzo|3 6 0 -3 0 0 -1}} | ||
| | | | ||
Line 639: | Line 639: | ||
| 12376/12375 | | 12376/12375 | ||
| 0.1399 | | 0.1399 | ||
| (2< | | (2<sup>3</sup>*7*13*17)/(3<sup>2</sup>*5<sup>3</sup>*11) | ||
| {{Monzo|3 -2 -3 1 -1 1 1}} | | {{Monzo|3 -2 -3 1 -1 1 1}} | ||
| | | | ||
Line 645: | Line 645: | ||
| 14400/14399 | | 14400/14399 | ||
| 0.1202 | | 0.1202 | ||
| (2< | | (2<sup>6</sup>*3<sup>2</sup>*5<sup>2</sup>)/(7*11<sup>2</sup>*17) | ||
| {{Monzo|6 2 2 -1 -2 0 -1}} | | {{Monzo|6 2 2 -1 -2 0 -1}} | ||
| | | | ||
Line 651: | Line 651: | ||
| 28561/28560 | | 28561/28560 | ||
| 0.0606 | | 0.0606 | ||
| (13< | | (13<sup>4</sup>)/(2<sup>4</sup>*3*5*7*17) | ||
| {{Monzo|-4 -1 -1 -1 0 4 -1}} | | {{Monzo|-4 -1 -1 -1 0 4 -1}} | ||
| | | | ||
Line 657: | Line 657: | ||
| 31213/31212 | | 31213/31212 | ||
| 0.0555 | | 0.0555 | ||
| (7< | | (7<sup>4</sup>*13)/(2<sup>2</sup>*3<sup>3</sup>*17<sup>2</sup>) | ||
| {{Monzo|-2 -3 0 4 0 1 -2}} | | {{Monzo|-2 -3 0 4 0 1 -2}} | ||
| | | | ||
Line 663: | Line 663: | ||
| 37180/37179 | | 37180/37179 | ||
| 0.0466 | | 0.0466 | ||
| (2< | | (2<sup>2</sup>*5*11*13<sup>2</sup>)/(3<sup>7</sup>*17) | ||
| {{Monzo|2 -7 1 0 1 2 -1}} | | {{Monzo|2 -7 1 0 1 2 -1}} | ||
| | | | ||
Line 669: | Line 669: | ||
| 194481/194480 | | 194481/194480 | ||
| 0.0089 | | 0.0089 | ||
| (3< | | (3<sup>4</sup>*7<sup>4</sup>)/(2<sup>4</sup>*5*11*13*17) | ||
| {{Monzo|-4 4 -1 4 -1 -1 -1}} | | {{Monzo|-4 4 -1 4 -1 -1 -1}} | ||
| scintillisma | | scintillisma | ||
Line 675: | Line 675: | ||
| 336141/336140 | | 336141/336140 | ||
| 0.0052 | | 0.0052 | ||
| (3< | | (3<sup>2</sup>*13<sup>3</sup>*17)/(2<sup>2</sup>*5*7<sup>5</sup>) | ||
| {{Monzo|-2 2 -1 -5 0 3 1}} | | {{Monzo|-2 2 -1 -5 0 3 1}} | ||
| | | | ||
Line 683: | Line 683: | ||
| [[19/18]] | | [[19/18]] | ||
| 93.603 | | 93.603 | ||
| 19/(2*3< | | 19/(2*3<sup>2</sup>) | ||
| {{Monzo|-1 -2 0 0 0 0 0 1}} | | {{Monzo|-1 -2 0 0 0 0 0 1}} | ||
| undevicesimal semitone | | undevicesimal semitone | ||
Line 689: | Line 689: | ||
| [[20/19]] | | [[20/19]] | ||
| 88.801 | | 88.801 | ||
| (2< | | (2<sup>2</sup>*5)/19 | ||
| {{Monzo|2 0 1 0 0 0 0 -1}} | | {{Monzo|2 0 1 0 0 0 0 -1}} | ||
| small undevicesimal semitone | | small undevicesimal semitone | ||
Line 701: | Line 701: | ||
| [[57/56]] | | [[57/56]] | ||
| 30.642 | | 30.642 | ||
| (3*19)/(2< | | (3*19)/(2<sup>3</sup>*7) | ||
| {{Monzo|-3 1 0 -1 0 0 0 1}} | | {{Monzo|-3 1 0 -1 0 0 0 1}} | ||
| | | | ||
Line 707: | Line 707: | ||
| [[76/75]] | | [[76/75]] | ||
| 22.931 | | 22.931 | ||
| (2< | | (2<sup>2</sup>*19)/(3*5<sup>2</sup>) | ||
| {{Monzo|2 -1 -2 0 0 0 0 1}} | | {{Monzo|2 -1 -2 0 0 0 0 1}} | ||
| | | | ||
Line 713: | Line 713: | ||
| [[77/76]] | | [[77/76]] | ||
| 22.631 | | 22.631 | ||
| (7*11)/(2< | | (7*11)/(2<sup>2</sup>*19) | ||
| {{Monzo|-2 0 0 1 1 0 0 -1}} | | {{Monzo|-2 0 0 1 1 0 0 -1}} | ||
| | | | ||
Line 719: | Line 719: | ||
| [[96/95]] | | [[96/95]] | ||
| 18.128 | | 18.128 | ||
| (2< | | (2<sup>5</sup>*3)/(5*19) | ||
| {{Monzo|5 1 -1 0 0 0 0 -1}} | | {{Monzo|5 1 -1 0 0 0 0 -1}} | ||
| | | | ||
Line 725: | Line 725: | ||
| 133/132 | | 133/132 | ||
| 13.066 | | 13.066 | ||
| (19*7)/(2< | | (19*7)/(2<sup>2</sup>*3*11) | ||
| {{Monzo|-2 -1 0 1 -1 0 0 1}} | | {{Monzo|-2 -1 0 1 -1 0 0 1}} | ||
| | | | ||
Line 731: | Line 731: | ||
| 153/152 | | 153/152 | ||
| 11.352 | | 11.352 | ||
| (3< | | (3<sup>2</sup>*17)/(2<sup>3</sup>*19) | ||
| {{Monzo|-3 2 0 0 0 0 1 -1}} | | {{Monzo|-3 2 0 0 0 0 1 -1}} | ||
| | | | ||
Line 737: | Line 737: | ||
| 171/170 | | 171/170 | ||
| 10.154 | | 10.154 | ||
| (3< | | (3<sup>2</sup>*19)/(2*5*17) | ||
| {{Monzo|-1 2 -1 0 0 0 -1 1}} | | {{Monzo|-1 2 -1 0 0 0 -1 1}} | ||
| | | | ||
Line 743: | Line 743: | ||
| 190/189 | | 190/189 | ||
| 9.1358 | | 9.1358 | ||
| (2*5*19)/(3< | | (2*5*19)/(3<sup>3</sup>*7) | ||
| {{Monzo|1 -3 1 -1 0 0 0 1}} | | {{Monzo|1 -3 1 -1 0 0 0 1}} | ||
| | | | ||
Line 749: | Line 749: | ||
| 209/208 | | 209/208 | ||
| 8.3033 | | 8.3033 | ||
| (11*19)/(2< | | (11*19)/(2<sup>4</sup>*13) | ||
| {{Monzo|-4 0 0 0 1 -1 0 1}} | | {{Monzo|-4 0 0 0 1 -1 0 1}} | ||
| | | | ||
Line 767: | Line 767: | ||
| 324/323 | | 324/323 | ||
| 5.3516 | | 5.3516 | ||
| (2< | | (2<sup>2</sup>*3<sup>4</sup>)/(17*19) | ||
| {{Monzo|2 4 0 0 0 0 -1 -1}} | | {{Monzo|2 4 0 0 0 0 -1 -1}} | ||
| | | | ||
Line 773: | Line 773: | ||
| 343/342 | | 343/342 | ||
| 5.0547 | | 5.0547 | ||
| 7< | | 7<sup>4</sup>/(2*3<sup>3</sup>*19) | ||
| {{Monzo|-1 -2 0 3 0 0 0 -1}} | | {{Monzo|-1 -2 0 3 0 0 0 -1}} | ||
| | | | ||
Line 779: | Line 779: | ||
| 361/360 | | 361/360 | ||
| 4.8023 | | 4.8023 | ||
| 19< | | 19<sup>2</sup>/(2<sup>3</sup>*3<sup>2</sup>*5) | ||
| {{Monzo|-3 -2 -1 0 0 0 0 2}} | | {{Monzo|-3 -2 -1 0 0 0 0 2}} | ||
| | | | ||
Line 785: | Line 785: | ||
| 400/399 | | 400/399 | ||
| 4.3335 | | 4.3335 | ||
| (2< | | (2<sup>4</sup>*5<sup>2</sup>)/(3*7*19) | ||
| {{Monzo|4 -1 2 -1 0 0 0 -1}} | | {{Monzo|4 -1 2 -1 0 0 0 -1}} | ||
| | | | ||
Line 791: | Line 791: | ||
| 456/455 | | 456/455 | ||
| 3.8007 | | 3.8007 | ||
| (2< | | (2<sup>3</sup>*3*19)/(5*7*13) | ||
| {{Monzo|3 1 -1 -1 0 -1 0 1}} | | {{Monzo|3 1 -1 -1 0 -1 0 1}} | ||
| | | | ||
Line 797: | Line 797: | ||
| 476/475 | | 476/475 | ||
| 3.6409 | | 3.6409 | ||
| (2< | | (2<sup>2</sup>*7*17)/(5<sup>2</sup>*19) | ||
| {{Monzo|2 0 -2 1 0 0 1 -1}} | | {{Monzo|2 0 -2 1 0 0 1 -1}} | ||
| | | | ||
Line 803: | Line 803: | ||
| 495/494 | | 495/494 | ||
| 3.501 | | 3.501 | ||
| (3< | | (3<sup>2</sup>*5*11)/(2*13*19) | ||
| {{Monzo|-1 2 1 0 1 -1 0 -1}} | | {{Monzo|-1 2 1 0 1 -1 0 -1}} | ||
| | | | ||
Line 809: | Line 809: | ||
| 513/512 | | 513/512 | ||
| 3.378 | | 3.378 | ||
| (3< | | (3<sup>3</sup>*19)/2<sup>9</sup> | ||
| {{Monzo|-9 3 0 0 0 0 0 1}} | | {{Monzo|-9 3 0 0 0 0 0 1}} | ||
| 513th harmonic | | 513th harmonic | ||
Line 823: | Line 823: | ||
| [[24/23]] | | [[24/23]] | ||
| 73.681 | | 73.681 | ||
| (2< | | (2<sup>3</sup>*3)/23 | ||
| | | | ||
| | | | ||
Line 829: | Line 829: | ||
| [[46/45]] | | [[46/45]] | ||
| 38.051 | | 38.051 | ||
| (2*23)/(3< | | (2*23)/(3<sup>2</sup>*5) | ||
| | | | ||
| | | | ||
Line 835: | Line 835: | ||
| [[69/68]] | | [[69/68]] | ||
| 25.274 | | 25.274 | ||
| (3*23)/(2< | | (3*23)/(2<sup>2</sup>*17) | ||
| | | | ||
| | | | ||
Line 847: | Line 847: | ||
| [[92/91]] | | [[92/91]] | ||
| 18.921 | | 18.921 | ||
| (2< | | (2<sup>2</sup>*23)/(7*13) | ||
| | | | ||
| | | | ||
Line 859: | Line 859: | ||
| 161/160 | | 161/160 | ||
| 10.7865 | | 10.7865 | ||
| (7*23)/(2< | | (7*23)/(2<sup>5</sup>*5) | ||
| | | | ||
| | | | ||
Line 865: | Line 865: | ||
| 162/161 | | 162/161 | ||
| 10.720 | | 10.720 | ||
| (2*3< | | (2*3<sup>4</sup>)/(7*23) | ||
| | | | ||
| | | | ||
Line 871: | Line 871: | ||
| 208/207 | | 208/207 | ||
| 8.343 | | 8.343 | ||
| (2< | | (2<sup>4</sup>*13)/(23*9) | ||
| | | | ||
| | | | ||
Line 877: | Line 877: | ||
| 576/575 | | 576/575 | ||
| 3.008 | | 3.008 | ||
| (2< | | (2<sup>6</sup>*3<sup>2</sup>)/(23*25) | ||
| | | | ||
| | | | ||
Line 885: | Line 885: | ||
| [[29/28]] | | [[29/28]] | ||
| 60.751 | | 60.751 | ||
| 29/(2< | | 29/(2<sup>2</sup>*7) | ||
| | | | ||
| | | | ||
Line 903: | Line 903: | ||
| [[88/87]] | | [[88/87]] | ||
| 19.786 | | 19.786 | ||
| (2< | | (2<sup>3</sup>*11)/(3*29) | ||
| | | | ||
| | | | ||
Line 917: | Line 917: | ||
| [[32/31]] | | [[32/31]] | ||
| 54.964 | | 54.964 | ||
| 2< | | 2<sup>5</sup>/31 | ||
| | | | ||
| 31st subharmonic | | 31st subharmonic | ||
Line 923: | Line 923: | ||
| [[63/62]] | | [[63/62]] | ||
| 27.700 | | 27.700 | ||
| (3< | | (3<sup>2</sup>*7)/(2*31) | ||
| | | | ||
| | | | ||
Line 929: | Line 929: | ||
| [[93/92]] | | [[93/92]] | ||
| 18.716 | | 18.716 | ||
| (3*31)/(2< | | (3*31)/(2<sup>2</sup>*23) | ||
| | | | ||
| | | | ||
Line 937: | Line 937: | ||
| [[37/36]] | | [[37/36]] | ||
| 47.434 | | 47.434 | ||
| 37/(2< | | 37/(2<sup>2</sup>*3<sup>2</sup>) | ||
| | | | ||
| | | | ||
Line 949: | Line 949: | ||
| [[75/74]] | | [[75/74]] | ||
| 23.238 | | 23.238 | ||
| (3*5< | | (3*5<sup>2</sup>)/(2*37) | ||
| | | | ||
| | | | ||
Line 957: | Line 957: | ||
| [[41/40]] | | [[41/40]] | ||
| 42.749 | | 42.749 | ||
| 41/(2< | | 41/(2<sup>3</sup>*5) | ||
| | | | ||
| | | | ||
Line 969: | Line 969: | ||
| [[82/81]] | | [[82/81]] | ||
| 21.242 | | 21.242 | ||
| (2*41)/3< | | (2*41)/3<sup>4</sup> | ||
| | | | ||
| | | | ||
Line 983: | Line 983: | ||
| [[44/43]] | | [[44/43]] | ||
| 39.800 | | 39.800 | ||
| (2< | | (2<sup>2</sup>*11)/43 | ||
| | | | ||
| | | | ||
Line 1,009: | Line 1,009: | ||
| [[48/47]] | | [[48/47]] | ||
| 36.448 | | 36.448 | ||
| (2< | | (2<sup>4</sup>*3)/47 | ||
| | | | ||
| | | | ||
Line 1,029: | Line 1,029: | ||
| [[53/52]] | | [[53/52]] | ||
| 32.977 | | 32.977 | ||
| 53/(2< | | 53/(2<sup>2</sup>*13) | ||
| | | | ||
| | | | ||
Line 1,035: | Line 1,035: | ||
| [[54/53]] | | [[54/53]] | ||
| 32.360 | | 32.360 | ||
| (2*3< | | (2*3<sup>3</sup>)/53 | ||
| | | | ||
| | | | ||
Line 1,049: | Line 1,049: | ||
| [[60/59]] | | [[60/59]] | ||
| 29.097 | | 29.097 | ||
| (2< | | (2<sup>2</sup>*3*5)/59 | ||
| | | | ||
| | | | ||
Line 1,057: | Line 1,057: | ||
| [[61/60]] | | [[61/60]] | ||
| 28.616 | | 28.616 | ||
| 61/(2< | | 61/(2<sup>2</sup>*3*5) | ||
| | | | ||
| | | | ||
Line 1,077: | Line 1,077: | ||
| [[68/67]] | | [[68/67]] | ||
| 25.648 | | 25.648 | ||
| (2< | | (2<sup>2</sup>*17)/67 | ||
| | | | ||
| | | | ||
Line 1,091: | Line 1,091: | ||
| [[72/71]] | | [[72/71]] | ||
| 24.213 | | 24.213 | ||
| (2< | | (2<sup>3</sup>*3<sup>2</sup>)/71 | ||
| | | | ||
| | | | ||
Line 1,099: | Line 1,099: | ||
| [[73/72]] | | [[73/72]] | ||
| 23.879 | | 23.879 | ||
| 73/(2< | | 73/(2<sup>3</sup>*3<sup>2</sup>) | ||
| | | | ||
| | | | ||
Line 1,119: | Line 1,119: | ||
| [[80/79]] | | [[80/79]] | ||
| 21.777 | | 21.777 | ||
| (2< | | (2<sup>4</sup>*5)/79 | ||
| | | | ||
| | | | ||
Line 1,133: | Line 1,133: | ||
| [[84/83]] | | [[84/83]] | ||
| 20.734 | | 20.734 | ||
| (2< | | (2<sup>2</sup>*3*7)/83 | ||
| | | | ||
| | | | ||
Line 1,141: | Line 1,141: | ||
| [[89/88]] | | [[89/88]] | ||
| 19.562 | | 19.562 | ||
| 89/(2< | | 89/(2<sup>3</sup>*11) | ||
| | | | ||
| | | | ||
Line 1,147: | Line 1,147: | ||
| [[90/89]] | | [[90/89]] | ||
| 19.344 | | 19.344 | ||
| (2*3< | | (2*3<sup>2</sup>*5)/89 | ||
| | | | ||
| | | | ||
Line 1,155: | Line 1,155: | ||
| [[97/96]] | | [[97/96]] | ||
| 17.940 | | 17.940 | ||
| 97/(2< | | 97/(2<sup>5</sup>*3) | ||
| | | | ||
| | | | ||
Line 1,161: | Line 1,161: | ||
| [[98/97]] | | [[98/97]] | ||
| 17.756 | | 17.756 | ||
| (2*7< | | (2*7<sup>2</sup>)/97 | ||
| | | | ||
| | | | ||
Line 1,169: | Line 1,169: | ||
| [[101/100]] | | [[101/100]] | ||
| 17.226 | | 17.226 | ||
| 101/(2< | | 101/(2<sup>2</sup>*5<sup>2</sup>) | ||
| | | | ||
| | | | ||
Line 1,179: | Line 1,179: | ||
| | | | ||
|} | |} | ||
[[Category: | |||
[[Category: | [[Category:Interval list]] | ||
[[Category:Superparticular]] |
Revision as of 15:22, 25 October 2018
This list of superparticular intervals ordered by prime limit. It reaches to the 101-limit and is complete up to the 17-limit.
Superparticular numbers are ratios of the form (n+1)/n, or 1+1/n, where n is a whole number other than 1. They appear frequently in just intonation and Harmonic Series music. Adjacent tones in the harmonic series are separated by superparticular intervals: for instance, the 20th and 21st by the superparticular ratio 21/20. As the overtones get closer together, the superparticular intervals get smaller and smaller. Thus, an examination of the superparticular intervals is an examination of some of the simplest small intervals in rational tuning systems. Indeed, many but not all common commas are superparticular ratios.
The list below is ordered by harmonic limit, or the largest prime involved in the prime factorization. 36/35, for instance, is an interval of the 7-limit, as it factors to (22*32)/(5*7), while 37/36 would belong to the 37-limit.
Størmer's theorem guarantees that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than 2/1, 3/2, 4/3, and 9/8. A002071 -- OEIS gives the number of superparticular ratios in each prime limit, A145604 - OEIS shows the increment from limit to limit, and A117581 the largest numerator for each prime limit (with some exceptions, such as the 23-limit, where the largest value is smaller than that of a smaller prime limit, in this case the 19-limit).
See also gallery of just intervals. Many of the names below come from here.
Ratio | Cents | Factorization | Monzo | Name(s) |
---|---|---|---|---|
2-limit (complete) | ||||
2/1 | 1200.000 | 2/1 | [1⟩ | octave, duple; after octave reduction: (perfect) unison, unity, perfect prime, tonic |
3-limit (complete) | ||||
3/2 | 701.995 | 3/2 | [-1 1⟩ | perfect fifth, 3rd harmonic (octave reduced), diapente |
4/3 | 498.045 | 22/3 | [2 -1⟩ | perfect fourth, 3rd subharmonic (octave reduced), diatessaron |
9/8 | 203.910 | 32/23 | [-3 2⟩ | (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, 9th harmonic or harmonic ninth (octave reduced) |
5-limit (complete) | ||||
5/4 | 386.314 | 5/22 | [-2 0 1⟩ | (classic) (5-limit) major third, 5th harmonic (octave reduced) |
6/5 | 315.641 | (2*3)/5 | [1 1 -1⟩ | (classic) (5-limit) minor third |
10/9 | 182.404 | (2*5)/32 | [1 -2 1⟩ | classic (whole) tone, classic major second, minor whole tone |
16/15 | 111.713 | 24/(3*5) | [4 -1 -1⟩ | minor diatonic semitone, 15th subharmonic |
25/24 | 70.672 | 52/(23*3) | [-3 -1 2⟩ | chroma, (classic) chromatic semitone, Zarlinian semitone |
81/80 | 21.506 | (3/2)4/5 | [-4 4 -1⟩ | syntonic comma, Didymus comma |
7-limit (complete) | ||||
7/6 | 266.871 | 7/(2*3) | [-1 -1 0 1⟩ | (septimal) subminor third, septimal minor third, augmented second |
8/7 | 231.174 | 23/7 | [3 0 0 -1⟩ | (septimal) supermajor second, septimal whole tone, diminished third, 7th subharmonic |
15/14 | 119.443 | (3*5)/(2*7) | [-1 1 1 -1⟩ | septimal diatonic semitone |
21/20 | 84.467 | (3*7)/(22*5) | [-2 1 -1 1⟩ | minor semitone, large septimal chromatic semitone |
28/27 | 62.961 | (22*7)/33 | [2 -3 0 1⟩ | septimal chroma, small septimal chromatic semitone, Archytas' 1/3-tone |
36/35 | 48.770 | (22*33)/(5*7) | [2 2 -1 -1⟩ | septimal quarter tone, septimal diesis |
49/48 | 35.697 | 72/(24*3) | [-4 -1 0 2⟩ | large septimal diesis, slendro diesis, septimal 1/6-tone |
50/49 | 34.976 | 2*(5/7)2 | [1 0 2 -2⟩ | septimal sixth-tone, jubilisma, small septimal diesis, tritonic diesis, Erlich's decatonic comma |
64/63 | 27.264 | 26/(32*7) | [6 -2 0 -1⟩ | septimal comma, Archytas' comma |
126/125 | 13.795 | (2*32*7)/53 | [1 2 -3 1⟩ | starling comma, septimal semicomma |
225/224 | 7.7115 | (3*5)2/(25*7) | [-5 2 2 -1⟩ | marvel comma, septimal kleisma |
2401/2400 | 0.72120 | 74/(25*3*52) | [-5 -1 -2 4⟩ | breedsma |
4375/4374 | 0.39576 | (54*7)/(2*37) | [-1 -7 4 1⟩ | ragisma |
11-limit (complete) | ||||
11/10 | 165.004 | 11/(2*5) | [-1 0 -1 0 1⟩ | (large) (undecimal) neutral second, 4/5-tone, Ptolemy's second |
12/11 | 150.637 | (22*3)/11 | [2 1 0 0 -1⟩ | (small) (undecimal) neutral second, 3/4-tone |
22/21 | 80.537 | (2*11)/(3*7) | [1 -1 0 -1 1⟩ | undecimal minor semitone |
33/32 | 53.273 | (3*11)/25 | [-5 1 0 0 1⟩ | undecimal quarter tone, undecimal diesis, al-Farabi's 1/4-tone, 33rd harmonic (octave reduced) |
45/44 | 38.906 | (3/2)2*(5/11) | [-2 2 1 0 -1⟩ | 1/5-tone |
55/54 | 31.767 | (5*11)/(2*33) | [-1 -3 1 0 1⟩ | undecimal diasecundal comma, eleventyfive comma |
56/55 | 31.194 | (23*7)/(5*11) | [3 0 -1 1 -1⟩ | undecimal tritonic comma, konbini comma |
99/98 | 17.576 | (3/7)2*(11/2) | [-1 2 0 -2 1⟩ | small undecimal comma, mothwellsma |
100/99 | 17.399 | (2*5/3)2/11) | [2 -2 2 0 -1⟩ | Ptolemy's comma, ptolemisma |
121/120 | 14.376 | 112/(23*3*5) | [-3 -1 -1 0 2⟩ | undecimal seconds comma, biyatisma |
176/175 | 9.8646 | (24*11)/(52*7) | [4 0 -2 -1 1⟩ | valinorsma |
243/242 | 7.1391 | 35/(2*112) | [-1 5 0 0 -2⟩ | neutral third comma, rastma |
385/384 | 4.5026 | (5*7*11)/(27*3) | [-7 -1 1 1 1⟩ | keenanisma |
441/440 | 3.9302 | (3*7)2/(23*5*11) | [-3 2 -1 2 -1⟩ | Werckmeister's undecimal septenarian schisma, werckisma |
540/539 | 3.2090 | (2/7)2*33*5/11 | [2 3 1 -2 -1⟩ | Swets' comma, swetisma |
3025/3024 | 0.57240 | (5*11)2/(24*32*7) | [-4 -3 2 -1 2⟩ | Lehmerisma |
9801/9800 | 0.17665 | [11/(5*7)]2*34/23 | [-3 4 -2 -2 2⟩ | Gauss comma, kalisma |
13-limit (complete) | ||||
13/12 | 138.573 | 13/(22*3) | [-2 -1 0 0 0 1⟩ | tridecimal 2/3-tone |
14/13 | 128.298 | (2*7)/13 | [1 0 0 1 0 -1⟩ | 2/3-tone, trienthird |
26/25 | 67.900 | (2*13)/52 | [1 0 -2 0 0 1⟩ | tridecimal 1/3-tone |
27/26 | 65.337 | 33/(2*13) | [-1 3 0 0 0 -1⟩ | tridecimal comma |
40/39 | 43.831 | (23*5)/(3*13) | [3 -1 1 0 0 -1⟩ | tridecimal minor diesis |
65/64 | 26.841 | (5*13)/26 | [-6 0 1 0 0 1⟩ | wilsorma, 13th-partial chroma |
66/65 | 26.432 | (2*3*11)/(5*13) | [1 1 -1 0 1 -1⟩ | winmeanma |
78/77 | 22.339 | (2*3*13)/(7*11) | [1 1 0 -1 -1 1⟩ | negustma |
91/90 | 19.130 | (7*13)/(2*32*5) | [-1 -2 -1 1 0 1⟩ | Biome comma, superleap comma |
105/104 | 16.567 | (3*5*7)/(23*13) | [-3 1 1 1 0 -1⟩ | small tridecimal comma, animist comma |
144/143 | 12.064 | (22*3)2/(11*13) | [4 2 0 0 -1 -1⟩ | grossma |
169/168 | 10.274 | 132/(23*3*7) | [-3 -1 0 -1 0 2⟩ | buzurgisma, dhanvantarisma |
196/195 | 8.8554 | (2*7)2/(3*5*13) | [2 -1 -1 2 0 -1⟩ | marveltwin comma |
325/324 | 5.3351 | (52*13)/(22*34) | [-2 -4 2 0 0 1⟩ | |
351/350 | 4.9393 | (3/5)2*13/(2*7) | [-1 3 -2 -1 0 1⟩ | ratwolfsma |
352/351 | 4.9253 | (25*11)/(32*13) | [5 -3 0 0 1 -1⟩ | minthma |
364/363 | 4.7627 | (2/11)2*7*13/3 | [2 -1 0 1 -2 1⟩ | gentle comma |
625/624 | 2.7722 | [-4 -1 4 0 0 -1⟩ | tunbarsma | |
676/675 | 2.5629 | [2 -3 -2 0 0 2⟩ | island comma | |
729/728 | 2.3764 | [-3 6 0 -1 0 -1⟩ | squbema | |
1001/1000 | 1.7304 | [-3 0 -3 1 1 1⟩ | sinbadma | |
1716/1715 | 1.0092 | [2 1 -1 -3 1 1⟩ | lummic comma | |
2080/2079 | 0.83252 | [5 -3 1 -1 -1 1⟩ | ibnsinma | |
4096/4095 | 0.42272 | [12 -2 -1 -1 0 -1⟩ | tridecimal schisma, Sagittal schismina | |
4225/4224 | 0.40981 | [-7 -1 2 0 -1 2⟩ | leprechaun comma | |
6656/6655 | 0.26012 | [9 0 -1 0 -3 1⟩ | jacobin comma | |
10648/10647 | 0.16260 | [3 -2 0 -1 3 -2⟩ | harmonisma | |
123201/123200 | 0.014052 | [-6 6 -2 -1 -1 2⟩ | chalmersia | |
17-limit (complete) | ||||
17/16 | 104.955 | 17/24 | [-4 0 0 0 0 0 1⟩ | 17th harmonic (octave reduced) |
18/17 | 98.955 | (2*32)/17 | [1 2 0 0 0 0 -1⟩ | Arabic lute index finger |
34/33 | 51.682 | (2*17)/(3*11) | [1 -1 0 0 -1 0 1⟩ | |
35/34 | 50.184 | (5*7)/(2*17) | [-1 0 1 1 0 0 -1⟩ | septendecimal 1/4-tone |
51/50 | 34.283 | (3*17)/(2*52) | [-1 1 -2 0 0 0 1⟩ | 17th-partial chroma |
52/51 | 33.617 | (22*13)/(3*17) | [2 -1 0 0 0 1 -1⟩ | |
85/84 | 20.488 | (5*17)/(22*3*7) | [-2 -1 1 -1 0 0 1⟩ | |
120/119 | 14.487 | (23*3*5)/(7*17) | [3 1 1 -1 0 0 -1⟩ | |
136/135 | 12.777 | (2/3)3*17/5 | [3 -3 -1 0 0 0 1⟩ | |
154/153 | 11.278 | (2*7*11)/(32*17) | [1 -2 0 1 1 0 -1⟩ | |
170/169 | 10.214 | (2*5*17)/132 | [1 0 1 0 0 -2 1⟩ | |
221/220 | 7.8514 | (13*17)/(22*5*11) | [-2 0 -1 0 -1 1 1⟩ | |
256/255 | 6.7759 | (28)/(3*5*17) | [8 -1 -1 0 0 0 -1⟩ | 255th subharmonic |
273/272 | 6.3532 | (3*7*13)/(24*17) | [-4 1 0 1 0 1 -1⟩ | |
289/288 | 6.0008 | (17/3)2/25 | [-5 -2 0 0 0 0 2⟩ | |
375/374 | 4.6228 | (3*53)/(2*11*17) | [-1 1 3 0 -1 0 -1⟩ | |
442/441 | 3.9213 | (2*13*17)/(3*7)2 | [1 -2 0 -2 0 1 1⟩ | |
561/560 | 3.0887 | (3*11*17)/(24*5*7) | [-4 1 -1 -1 1 0 1⟩ | |
595/594 | 2.9121 | (5*7*17)/(2*33*11) | [-1 -3 1 1 -1 0 1⟩ | |
715/714 | 2.4230 | (5*11*13)/(2*3*7*17) | [-1 -1 1 -1 1 1 -1⟩ | |
833/832 | 2.0796 | (72*17)/(26*13) | [-6 0 0 2 0 -1 1⟩ | |
936/935 | 1.8506 | (23*32*13)/(5*11*17) | [3 2 -1 0 -1 1 -1⟩ | |
1089/1088 | 1.5905 | (32*112)/(26*17) | [-6 2 0 0 2 0 -1⟩ | twosquare comma |
1156/1155 | 1.4983 | (22*172)/(3*5*7*11) | [2 -1 -1 -1 -1 0 2⟩ | |
1225/1224 | 1.4138 | (52*72)/(23*32*17) | [-3 -2 2 2 0 0 -1⟩ | |
1275/1274 | 1.3584 | (3*52*17)/(2*72*13) | [-1 1 2 -2 0 -1 1⟩ | |
1701/1700 | 1.0181 | (35*7)/[(2*5)2*17] | [-2 5 -2 1 0 0 -1⟩ | |
2058/2057 | 0.8414 | (2*3*73)/(112*17) | [1 1 0 3 -2 0 -1⟩ | xenisma |
2431/2430 | 0.7123 | (11*13*17)/(2*35*5) | [-1 -5 -1 0 1 1 1⟩ | |
2500/2499 | 0.6926 | (22*54)/(3*72*17) | [2 -1 4 -2 0 0 -1⟩ | |
2601/2600 | 0.6657 | (32*172)/(23*52*13) | [-3 2 -2 0 0 -1 2⟩ | |
4914/4913 | 0.3523 | (2*33*7*13)/(173) | [1 3 0 1 0 1 -3⟩ | |
5832/5831 | 0.2969 | (23*36)/(73*17) | [3 6 0 -3 0 0 -1⟩ | |
12376/12375 | 0.1399 | (23*7*13*17)/(32*53*11) | [3 -2 -3 1 -1 1 1⟩ | |
14400/14399 | 0.1202 | (26*32*52)/(7*112*17) | [6 2 2 -1 -2 0 -1⟩ | |
28561/28560 | 0.0606 | (134)/(24*3*5*7*17) | [-4 -1 -1 -1 0 4 -1⟩ | |
31213/31212 | 0.0555 | (74*13)/(22*33*172) | [-2 -3 0 4 0 1 -2⟩ | |
37180/37179 | 0.0466 | (22*5*11*132)/(37*17) | [2 -7 1 0 1 2 -1⟩ | |
194481/194480 | 0.0089 | (34*74)/(24*5*11*13*17) | [-4 4 -1 4 -1 -1 -1⟩ | scintillisma |
336141/336140 | 0.0052 | (32*133*17)/(22*5*75) | [-2 2 -1 -5 0 3 1⟩ | |
19-limit (incomplete) | ||||
19/18 | 93.603 | 19/(2*32) | [-1 -2 0 0 0 0 0 1⟩ | undevicesimal semitone |
20/19 | 88.801 | (22*5)/19 | [2 0 1 0 0 0 0 -1⟩ | small undevicesimal semitone |
39/38 | 44.970 | (3*13)/(2*19) | [-1 1 0 0 0 1 0 -1⟩ | |
57/56 | 30.642 | (3*19)/(23*7) | [-3 1 0 -1 0 0 0 1⟩ | |
76/75 | 22.931 | (22*19)/(3*52) | [2 -1 -2 0 0 0 0 1⟩ | |
77/76 | 22.631 | (7*11)/(22*19) | [-2 0 0 1 1 0 0 -1⟩ | |
96/95 | 18.128 | (25*3)/(5*19) | [5 1 -1 0 0 0 0 -1⟩ | |
133/132 | 13.066 | (19*7)/(22*3*11) | [-2 -1 0 1 -1 0 0 1⟩ | |
153/152 | 11.352 | (32*17)/(23*19) | [-3 2 0 0 0 0 1 -1⟩ | |
171/170 | 10.154 | (32*19)/(2*5*17) | [-1 2 -1 0 0 0 -1 1⟩ | |
190/189 | 9.1358 | (2*5*19)/(33*7) | [1 -3 1 -1 0 0 0 1⟩ | |
209/208 | 8.3033 | (11*19)/(24*13) | [-4 0 0 0 1 -1 0 1⟩ | |
210/209 | 8.2637 | (2*3*5*7)/(11*19) | [1 1 1 1 -1 0 0 -1⟩ | |
286/285 | 6.0639 | (2*11*13)/(3*5*19) | [1 -1 -1 0 1 1 0 -1⟩ | |
324/323 | 5.3516 | (22*34)/(17*19) | [2 4 0 0 0 0 -1 -1⟩ | |
343/342 | 5.0547 | 74/(2*33*19) | [-1 -2 0 3 0 0 0 -1⟩ | |
361/360 | 4.8023 | 192/(23*32*5) | [-3 -2 -1 0 0 0 0 2⟩ | |
400/399 | 4.3335 | (24*52)/(3*7*19) | [4 -1 2 -1 0 0 0 -1⟩ | |
456/455 | 3.8007 | (23*3*19)/(5*7*13) | [3 1 -1 -1 0 -1 0 1⟩ | |
476/475 | 3.6409 | (22*7*17)/(52*19) | [2 0 -2 1 0 0 1 -1⟩ | |
495/494 | 3.501 | (32*5*11)/(2*13*19) | [-1 2 1 0 1 -1 0 -1⟩ | |
513/512 | 3.378 | (33*19)/29 | [-9 3 0 0 0 0 0 1⟩ | 513th harmonic |
23-limit (incomplete) | ||||
23/22 | 76.956 | 23/(2*11) | ||
24/23 | 73.681 | (23*3)/23 | ||
46/45 | 38.051 | (2*23)/(32*5) | ||
69/68 | 25.274 | (3*23)/(22*17) | ||
70/69 | 24.910 | (2*5*7)/(3*23) | ||
92/91 | 18.921 | (22*23)/(7*13) | ||
115/114 | 15.120 | (5*23)/(2*3*19) | ||
161/160 | 10.7865 | (7*23)/(25*5) | ||
162/161 | 10.720 | (2*34)/(7*23) | ||
208/207 | 8.343 | (24*13)/(23*9) | ||
576/575 | 3.008 | (26*32)/(23*25) | ||
29-limit (incomplete) | ||||
29/28 | 60.751 | 29/(22*7) | ||
30/29 | 58.692 | (2*3*5)/29 | ||
58/57 | 30.109 | (2*29)/(3*19) | ||
88/87 | 19.786 | (23*11)/(3*29) | ||
31-limit (incomplete) | ||||
31/30 | 56.767 | 31/(2*3*5) | ||
32/31 | 54.964 | 25/31 | 31st subharmonic | |
63/62 | 27.700 | (32*7)/(2*31) | ||
93/92 | 18.716 | (3*31)/(22*23) | ||
37-limit (incomplete) | ||||
37/36 | 47.434 | 37/(22*32) | ||
38/37 | 46.169 | (2*19)/37 | ||
75/74 | 23.238 | (3*52)/(2*37) | ||
41-limit (incomplete) | ||||
41/40 | 42.749 | 41/(23*5) | ||
42/41 | 41.719 | (2*3*7)/41 | ||
82/81 | 21.242 | (2*41)/34 | ||
43-limit (incomplete) | ||||
43/42 | 40.737 | 43/(2*3*7) | ||
44/43 | 39.800 | (22*11)/43 | ||
86/85 | 20.249 | (2*43)/(5*17) | ||
87/86 | 20.014 | (3*29)/(2*43) | ||
47-limit (incomplete) | ||||
47/46 | 37.232 | 47/(2*23) | ||
48/47 | 36.448 | (24*3)/47 | ||
94/93 | 18.516 | (2*47)/(3*31) | ||
95/94 | 18.320 | (5*19)/(2*47) | ||
53-limit (incomplete) | ||||
53/52 | 32.977 | 53/(22*13) | ||
54/53 | 32.360 | (2*33)/53 | ||
59-limit (incomplete) | ||||
59/58 | 29.594 | 59/(2*29) | ||
60/59 | 29.097 | (22*3*5)/59 | ||
61-limit (incomplete) | ||||
61/60 | 28.616 | 61/(22*3*5) | ||
62/61 | 28.151 | (2*31)/61 | ||
67-limit (incomplete) | ||||
67/66 | 26.034 | 67/(2*3*11) | ||
68/67 | 25.648 | (22*17)/67 | ||
71-limit (incomplete) | ||||
71/70 | 24.557 | 71/(2*5*7) | ||
72/71 | 24.213 | (23*32)/71 | ||
73-limit (incomplete) | ||||
73/72 | 23.879 | 73/(23*32) | ||
74/73 | 23.555 | (2*37)/73 | ||
79-limit (incomplete) | ||||
79/78 | 22.054 | 79/(2*3*13) | ||
80/79 | 21.777 | (24*5)/79 | ||
83-limit (incomplete) | ||||
83/82 | 20.985 | 83/(2*41) | ||
84/83 | 20.734 | (22*3*7)/83 | ||
89-limit (incomplete) | ||||
89/88 | 19.562 | 89/(23*11) | ||
90/89 | 19.344 | (2*32*5)/89 | ||
97-limit (incomplete) | ||||
97/96 | 17.940 | 97/(25*3) | ||
98/97 | 17.756 | (2*72)/97 | ||
101-limit (incomplete) | ||||
101/100 | 17.226 | 101/(22*52) | ||
102/101 | 17.057 | (2*3*17)/101 |