List of superparticular intervals: Difference between revisions
m Xenwolf moved page List of Superparticular Intervals to List of superparticular intervals: changed into Sentence case |
replaced inline Monzos in table cells with template:monzo by simplified markup for table cells and links |
||
Line 1: | Line 1: | ||
This '''list of superparticular intervals''' ordered by prime limit. It reaches to the [[101-limit]] and is complete up to the [[17-limit]]. | |||
[[Superparticular]] numbers are ratios of the form (n+1)/n, or 1+1/n, where n is a whole number other than 1. They appear frequently in [[just intonation]] and [[OverToneSeries|Harmonic Series]] music. Adjacent tones in the harmonic series are separated by superparticular intervals: for instance, the 20th and 21st by the superparticular ratio [[21/20]]. As the overtones get closer together, the superparticular intervals get smaller and smaller. Thus, an examination of the superparticular intervals is an examination of some of the simplest small intervals in rational tuning systems. Indeed, many but not all common [[comma]]s are superparticular ratios. | |||
[ | The list below is ordered by [[harmonic limit]], or the largest prime involved in the prime factorization. [[36/35]], for instance, is an interval of the [[7-limit]], as it factors to (2<sup>2</sup>*3<sup>2</sup>)/(5*7), while 37/36 would belong to the 37-limit. | ||
[http://en.wikipedia.org/wiki/St%C3%B8rmer%27s_theorem Størmer's theorem] guarantees that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than [[2/1]], [[3/2]], [[4/3]], and [[9/8]]. [http://oeis.org/A002071 A002071 -- OEIS] gives the number of superparticular ratios in each prime limit, [http://oeis.org/A145604 A145604 - OEIS] shows the increment from limit to limit, and [http://oeis.org/A117581 A117581] the largest numerator for each prime limit (with some exceptions, such as the 23-limit, where the largest value is smaller than that of a smaller prime limit, in this case the 19-limit). | |||
See also [[gallery of just intervals]]. Many of the names below come from [http://www.huygens-fokker.org/docs/intervals.html here]. | |||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | ! Ratio | ||
! | ! Cents | ||
! | ! Factorization | ||
! | ! [[Monzo]] | ||
! | ! Name(s) | ||
|- | |- | ||
! colspan="5" | 2-limit (complete) | ! colspan="5" | 2-limit (complete) | ||
|- | |- | ||
| [[2/1]] | |||
| 1200.000 | |||
| 2/1 | |||
| | | {{Monzo|1}} | ||
| | | octave, duple; ''after [[octave reduction]]:'' (perfect) unison, unity, perfect prime, tonic | ||
|- | |- | ||
! colspan="5" | 3-limit (complete) | ! colspan="5" | 3-limit (complete) | ||
|- | |- | ||
| [[3/2]] | |||
| 701.995 | |||
| 3/2 | |||
| | | {{Monzo|-1 1}} | ||
| [[perfect fifth]], 3rd harmonic (octave reduced), diapente | |||
|- | |- | ||
| [[4/3]] | |||
| 498.045 | |||
| 2<span style="font-size: 70%; vertical-align: super;">2</span>/3 | |||
| | | {{Monzo|2 -1}} | ||
| perfect fourth, 3rd subharmonic (octave reduced), diatessaron | |||
|- | |- | ||
| [[9/8]] | |||
| 203.910 | |||
| 3<span style="font-size: 70%; vertical-align: super;">2</span>/2<span style="font-size: 70%; vertical-align: super;">3</span> | |||
| | | {{Monzo|-3 2}} | ||
| (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, 9th harmonic or harmonic ninth (octave reduced) | |||
|- | |- | ||
! colspan="5" | 5-limit (complete) | ! colspan="5" | 5-limit (complete) | ||
|- | |- | ||
| [[5/4]] | |||
| 386.314 | |||
| 5/2<span style="font-size: 70%; vertical-align: super;">2</span> | |||
| | | {{Monzo|-2 0 1}} | ||
| (classic) (5-limit) major third, 5th harmonic (octave reduced) | |||
|- | |- | ||
| [[6/5]] | |||
| 315.641 | |||
| (2*3)/5 | |||
| | | {{Monzo|1 1 -1}} | ||
| (classic) (5-limit) minor third | |||
|- | |- | ||
| [[10/9]] | |||
| 182.404 | |||
| (2*5)/3<span style="font-size: 70%; vertical-align: super;">2</span> | |||
| | | {{Monzo|1 -2 1}} | ||
| classic (whole) tone, classic major second, minor whole tone | |||
|- | |- | ||
| [[16/15]] | |||
| 111.713 | |||
| 2<span style="font-size: 70%; vertical-align: super;">4</span>/(3*5) | |||
| | | {{Monzo|4 -1 -1}} | ||
| minor diatonic semitone, 15th subharmonic | |||
|- | |- | ||
| [[25/24]] | |||
| 70.672 | |||
| 5<span style="font-size: 70%; vertical-align: super;">2</span>/(2<span style="font-size: 70%; vertical-align: super;">3</span>*3) | |||
| | | {{Monzo|-3 -1 2}} | ||
| chroma, (classic) chromatic semitone, Zarlinian semitone | |||
|- | |- | ||
| [[81/80]] | |||
| 21.506 | |||
| (3/2)<span style="font-size: 70%; vertical-align: super;">4</span>/5 | |||
| | | {{Monzo|-4 4 -1}} | ||
| syntonic comma, Didymus comma | |||
|- | |- | ||
! colspan="5" | 7-limit (complete) | ! colspan="5" | 7-limit (complete) | ||
|- | |- | ||
| [[7/6]] | |||
| 266.871 | |||
| 7/(2*3) | |||
| | | {{Monzo|-1 -1 0 1 }} | ||
| (septimal) subminor third, septimal minor third, augmented second | |||
|- | |- | ||
| [[8/7]] | |||
| 231.174 | |||
| 2<span style="font-size: 70%; vertical-align: super;">3</span>/7 | |||
| | | {{Monzo|3 0 0 -1}} | ||
| (septimal) supermajor second, septimal whole tone, diminished third, 7th subharmonic | |||
|- | |- | ||
| [[15/14]] | |||
| 119.443 | |||
| (3*5)/(2*7) | |||
| | | {{Monzo|-1 1 1 -1}} | ||
| septimal diatonic semitone | |||
|- | |- | ||
| [[21/20]] | |||
| 84.467 | |||
| (3*7)/(2<span style="font-size: 70%; vertical-align: super;">2</span>*5) | |||
| | | {{Monzo|-2 1 -1 1}} | ||
| minor semitone, large septimal chromatic semitone | |||
|- | |- | ||
| [[28/27]] | |||
| 62.961 | |||
| (2<span style="font-size: 70%; vertical-align: super;">2</span>*7)/3<span style="font-size: 70%; vertical-align: super;">3</span> | |||
| | | {{Monzo|2 -3 0 1}} | ||
| septimal chroma, small septimal chromatic semitone, Archytas' 1/3-tone | |||
|- | |- | ||
| [[36/35]] | |||
| 48.770 | |||
| (2<span style="font-size: 70%; vertical-align: super;">2</span>*3<span style="font-size: 70%; vertical-align: super;">3</span>)/(5*7) | |||
| | | {{Monzo|2 2 -1 -1}} | ||
| septimal quarter tone, septimal diesis | |||
|- | |- | ||
| [[49/48]] | |||
| 35.697 | |||
| 7<span style="font-size: 70%; vertical-align: super;">2</span>/(2<span style="font-size: 70%; vertical-align: super;">4</span>*3) | |||
| | | {{Monzo|-4 -1 0 2}} | ||
| large septimal diesis, slendro diesis, septimal 1/6-tone | |||
|- | |- | ||
| [[50/49]] | |||
| 34.976 | |||
| 2*(5/7)<span style="font-size: 70%; vertical-align: super;">2</span> | |||
| | | {{Monzo|1 0 2 -2}} | ||
| septimal sixth-tone, jubilisma, small septimal diesis, tritonic diesis, Erlich's decatonic comma | |||
|- | |- | ||
| [[64/63]] | |||
| 27.264 | |||
| 2<span style="font-size: 70%; vertical-align: super;">6</span>/(3<span style="font-size: 70%; vertical-align: super;">2</span>*7) | |||
| | | {{Monzo|6 -2 0 -1}} | ||
| septimal comma, Archytas' comma | |||
|- | |- | ||
| [[126/125]] | |||
| 13.795 | |||
| (2*3<span style="font-size: 70%; vertical-align: super;">2</span>*7)/5<span style="font-size: 70%; vertical-align: super;">3</span> | |||
| | | {{Monzo|1 2 -3 1}} | ||
| starling comma, septimal semicomma | |||
|- | |- | ||
| [[225/224]] | |||
| 7.7115 | |||
| (3*5)<span style="font-size: 70%; vertical-align: super;">2</span>/(2<span style="font-size: 70%; vertical-align: super;">5</span>*7) | |||
| | | {{Monzo|-5 2 2 -1}} | ||
| marvel comma, septimal kleisma | |||
|- | |- | ||
| [[2401/2400]] | |||
| 0.72120 | |||
| 7<span style="font-size: 70%; vertical-align: super;">4</span>/(2<span style="font-size: 70%; vertical-align: super;">5</span>*3*5<span style="font-size: 70%; vertical-align: super;">2</span>) | |||
| | | {{Monzo|-5 -1 -2 4}} | ||
| breedsma | |||
|- | |- | ||
| [[4375/4374]] | |||
| 0.39576 | |||
| (5<span style="font-size: 70%; vertical-align: super;">4</span>*7)/(2*3<span style="font-size: 70%; vertical-align: super;">7</span>) | |||
| | | {{Monzo|-1 -7 4 1}} | ||
| ragisma | |||
|- | |- | ||
! colspan="5" | 11-limit (complete) | ! colspan="5" | 11-limit (complete) | ||
|- | |- | ||
| [[11/10]] | |||
| 165.004 | |||
| 11/(2*5) | |||
| | | {{Monzo|-1 0 -1 0 1}} | ||
| (large) (undecimal) neutral second, 4/5-tone, Ptolemy's second | |||
|- | |- | ||
| [[12/11]] | |||
| 150.637 | |||
| (2<span style="font-size: 70%; vertical-align: super;">2</span>*3)/11 | |||
| | | {{Monzo|2 1 0 0 -1}} | ||
| (small) (undecimal) neutral second, 3/4-tone | |||
|- | |- | ||
| [[22/21]] | |||
| 80.537 | |||
| (2*11)/(3*7) | |||
| | | {{Monzo|1 -1 0 -1 1}} | ||
| undecimal minor semitone | |||
|- | |- | ||
| [[33/32]] | |||
| 53.273 | |||
| (3*11)/2<span style="font-size: 70%; vertical-align: super;">5</span> | |||
| | | {{Monzo|-5 1 0 0 1}} | ||
| undecimal quarter tone, undecimal diesis, al-Farabi's 1/4-tone, 33rd harmonic (octave reduced) | |||
|- | |- | ||
| [[45/44]] | |||
| 38.906 | |||
| (3/2)<span style="font-size: 70%; vertical-align: super;">2</span>*(5/11) | |||
| | | {{Monzo|-2 2 1 0 -1}} | ||
| 1/5-tone | |||
|- | |- | ||
| [[55/54]] | |||
| 31.767 | |||
| (5*11)/(2*3<span style="font-size: 70%; vertical-align: super;">3</span>) | |||
| | | {{Monzo|-1 -3 1 0 1}} | ||
| undecimal diasecundal comma, eleventyfive comma | |||
|- | |- | ||
| [[56/55]] | |||
| 31.194 | |||
| (2<span style="font-size: 70%; vertical-align: super;">3</span>*7)/(5*11) | |||
| | | {{Monzo|3 0 -1 1 -1}} | ||
| undecimal tritonic comma, konbini comma | |||
|- | |- | ||
| [[99/98]] | |||
| 17.576 | |||
| (3/7)<span style="font-size: 70%; vertical-align: super;">2</span>*(11/2) | |||
| | | {{Monzo|-1 2 0 -2 1}} | ||
| small undecimal comma, mothwellsma | |||
|- | |- | ||
| [[100/99]] | |||
| 17.399 | |||
| (2*5/3)<span style="font-size: 70%; vertical-align: super;">2</span>/11) | |||
| | | {{Monzo|2 -2 2 0 -1}} | ||
| Ptolemy's comma, ptolemisma | |||
|- | |- | ||
| [[121/120]] | |||
| 14.376 | |||
| 11<span style="font-size: 70%; vertical-align: super;">2</span>/(2<span style="font-size: 70%; vertical-align: super;">3</span>*3*5) | |||
| | | {{Monzo|-3 -1 -1 0 2}} | ||
| undecimal seconds comma, biyatisma | |||
|- | |- | ||
| [[176/175]] | |||
| 9.8646 | |||
| (2<span style="font-size: 70%; vertical-align: super;">4</span>*11)/(5<span style="font-size: 70%; vertical-align: super;">2</span>*7) | |||
| | | {{Monzo|4 0 -2 -1 1}} | ||
| valinorsma | |||
|- | |- | ||
| [[243/242]] | |||
| 7.1391 | |||
| 3<span style="font-size: 70%; vertical-align: super;">5</span>/(2*11<span style="font-size: 70%; vertical-align: super;">2</span>) | |||
| | | {{Monzo|-1 5 0 0 -2}} | ||
| neutral third comma, rastma | |||
|- | |- | ||
| [[385/384]] | |||
| 4.5026 | |||
| (5*7*11)/(2<span style="font-size: 70%; vertical-align: super;">7</span>*3) | |||
| | | {{Monzo|-7 -1 1 1 1}} | ||
| keenanisma | |||
|- | |- | ||
| [[441/440]] | |||
| 3.9302 | |||
| (3*7)<span style="font-size: 70%; vertical-align: super;">2</span>/(2<span style="font-size: 70%; vertical-align: super;">3</span>*5*11) | |||
| | | {{Monzo|-3 2 -1 2 -1}} | ||
| Werckmeister's undecimal septenarian schisma, werckisma | |||
|- | |- | ||
| [[540/539]] | |||
| 3.2090 | |||
| (2/7)<span style="font-size: 70%; vertical-align: super;">2</span>*3<span style="font-size: 70%; vertical-align: super;">3</span>*5/11 | |||
| | | {{Monzo|2 3 1 -2 -1}} | ||
| Swets' comma, swetisma | |||
|- | |- | ||
| [[3025/3024]] | |||
| 0.57240 | |||
| (5*11)<span style="font-size: 70%; vertical-align: super;">2</span>/(2<span style="font-size: 70%; vertical-align: super;">4</span>*3<span style="font-size: 70%; vertical-align: super;">2</span>*7) | |||
| | | {{Monzo|-4 -3 2 -1 2}} | ||
| Lehmerisma | |||
|- | |- | ||
| [[9801/9800]] | |||
| 0.17665 | |||
| [11/(5*7)]<span style="font-size: 70%; vertical-align: super;">2</span>*3<span style="font-size: 70%; vertical-align: super;">4</span>/2<span style="font-size: 70%; vertical-align: super;">3</span> | |||
| | | {{Monzo|-3 4 -2 -2 2}} | ||
| Gauss comma, kalisma | |||
|- | |- | ||
! colspan="5" | 13-limit (complete) | ! colspan="5" | 13-limit (complete) | ||
|- | |- | ||
| [[13/12]] | |||
| 138.573 | |||
| 13/(2<span style="font-size: 70%; vertical-align: super;">2</span>*3) | |||
| | | {{Monzo|-2 -1 0 0 0 1}} | ||
| tridecimal 2/3-tone | |||
|- | |- | ||
| [[14/13]] | |||
| 128.298 | |||
| (2*7)/13 | |||
| | | {{Monzo|1 0 0 1 0 -1}} | ||
| 2/3-tone, trienthird | |||
|- | |- | ||
| [[26/25]] | |||
| 67.900 | |||
| (2*13)/5<span style="font-size: 70%; vertical-align: super;">2</span> | |||
| | | {{Monzo|1 0 -2 0 0 1}} | ||
| tridecimal 1/3-tone | |||
|- | |- | ||
| [[27/26]] | |||
| 65.337 | |||
| 3<span style="font-size: 70%; vertical-align: super;">3</span>/(2*13) | |||
| | | {{Monzo|-1 3 0 0 0 -1}} | ||
| tridecimal comma | |||
|- | |- | ||
| [[40/39]] | |||
| 43.831 | |||
| (2<span style="font-size: 70%; vertical-align: super;">3</span>*5)/(3*13) | |||
| | | {{Monzo|3 -1 1 0 0 -1}} | ||
| tridecimal minor diesis | |||
|- | |- | ||
| [[65/64]] | |||
| 26.841 | |||
| (5*13)/2<span style="font-size: 70%; vertical-align: super;">6</span> | |||
| | | {{Monzo|-6 0 1 0 0 1}} | ||
| wilsorma, 13th-partial chroma | |||
|- | |- | ||
| [[66/65]] | |||
| 26.432 | |||
| (2*3*11)/(5*13) | |||
| | | {{Monzo|1 1 -1 0 1 -1}} | ||
| winmeanma | |||
|- | |- | ||
| [[78/77]] | |||
| 22.339 | |||
| (2*3*13)/(7*11) | |||
| | | {{Monzo|1 1 0 -1 -1 1}} | ||
| negustma | |||
|- | |- | ||
| [[91/90]] | |||
| 19.130 | |||
| (7*13)/(2*3<span style="font-size: 70%; vertical-align: super;">2</span>*5) | |||
| | | {{Monzo|-1 -2 -1 1 0 1}} | ||
| [[The_Biosphere|Biome]] comma, superleap comma | |||
|- | |- | ||
| [[105/104]] | |||
| 16.567 | |||
| (3*5*7)/(2<span style="font-size: 70%; vertical-align: super;">3</span>*13) | |||
| | | {{Monzo|-3 1 1 1 0 -1}} | ||
| small tridecimal comma, animist comma | |||
|- | |- | ||
| [[144/143]] | |||
| 12.064 | |||
| (2<span style="font-size: 70%; vertical-align: super;">2</span>*3)<span style="font-size: 70%; vertical-align: super;">2</span>/(11*13) | |||
| | | {{Monzo|4 2 0 0 -1 -1}} | ||
| grossma | |||
|- | |- | ||
| [[169/168]] | |||
| 10.274 | |||
| 13<span style="font-size: 70%; vertical-align: super;">2</span>/(2<span style="font-size: 70%; vertical-align: super;">3</span>*3*7) | |||
| | | {{Monzo|-3 -1 0 -1 0 2}} | ||
| buzurgisma, dhanvantarisma | |||
|- | |- | ||
| [[196/195]] | |||
| 8.8554 | |||
| (2*7)<span style="font-size: 70%; vertical-align: super;">2</span>/(3*5*13) | |||
| | | {{Monzo|2 -1 -1 2 0 -1}} | ||
| marveltwin comma | |||
|- | |- | ||
| [[325/324]] | |||
| 5.3351 | |||
| (5<span style="font-size: 70%; vertical-align: super;">2</span>*13)/(2<span style="font-size: 70%; vertical-align: super;">2</span>*3<span style="font-size: 70%; vertical-align: super;">4</span>) | |||
| | | {{Monzo|-2 -4 2 0 0 1}} | ||
| | |||
|- | |- | ||
| [[351/350]] | |||
| 4.9393 | |||
| (3/5)<span style="font-size: 70%; vertical-align: super;">2</span>*13/(2*7) | |||
| | | {{Monzo|-1 3 -2 -1 0 1}} | ||
| ratwolfsma | |||
|- | |- | ||
| [[352/351]] | |||
| 4.9253 | |||
| (2<span style="font-size: 70%; vertical-align: super;">5</span>*11)/(3<span style="font-size: 70%; vertical-align: super;">2</span>*13) | |||
| | | {{Monzo|5 -3 0 0 1 -1}} | ||
| minthma | |||
|- | |- | ||
| [[364/363]] | |||
| 4.7627 | |||
| (2/11)<span style="font-size: 70%; vertical-align: super;">2</span>*7*13/3 | |||
| | | {{Monzo|2 -1 0 1 -2 1}} | ||
| gentle comma | |||
|- | |- | ||
| [[625/624]] | |||
| 2.7722 | |||
| | |||
| | | {{Monzo|-4 -1 4 0 0 -1}} | ||
| tunbarsma | |||
|- | |- | ||
| [[676/675]] | |||
| 2.5629 | |||
| | |||
| | | {{Monzo|2 -3 -2 0 0 2}} | ||
| island comma | |||
|- | |- | ||
| [[729/728]] | |||
| 2.3764 | |||
| | |||
| | | {{Monzo|-3 6 0 -1 0 -1}} | ||
| squbema | |||
|- | |- | ||
| [[1001/1000]] | |||
| 1.7304 | |||
| | |||
| | | {{Monzo|-3 0 -3 1 1 1}} | ||
| sinbadma | |||
|- | |- | ||
| [[1716/1715]] | |||
| 1.0092 | |||
| | |||
| | | {{Monzo|2 1 -1 -3 1 1}} | ||
| lummic comma | |||
|- | |- | ||
| [[2080/2079]] | |||
| 0.83252 | |||
| | |||
| | | {{Monzo|5 -3 1 -1 -1 1}} | ||
| ibnsinma | |||
|- | |- | ||
| [[4096/4095]] | |||
| 0.42272 | |||
| | |||
| | | {{Monzo|12 -2 -1 -1 0 -1}} | ||
| tridecimal schisma, Sagittal schismina | |||
|- | |- | ||
| [[4225/4224]] | |||
| 0.40981 | |||
| | |||
| | | {{Monzo|-7 -1 2 0 -1 2}} | ||
| leprechaun comma | |||
|- | |- | ||
| [[6656/6655]] | |||
| 0.26012 | |||
| | |||
| | | {{Monzo|9 0 -1 0 -3 1}} | ||
| jacobin comma | |||
|- | |- | ||
| [[10648/10647]] | |||
| 0.16260 | |||
| | |||
| | | {{Monzo|3 -2 0 -1 3 -2}} | ||
| harmonisma | |||
|- | |- | ||
| [[123201/123200]] | |||
| 0.014052 | |||
| | |||
| | | {{Monzo|-6 6 -2 -1 -1 2}} | ||
| chalmersia | |||
|- | |- | ||
! colspan="5" | 17-limit (complete) | ! colspan="5" | 17-limit (complete) | ||
|- | |- | ||
| [[17/16]] | |||
| 104.955 | |||
| 17/2<span style="font-size: 70%; vertical-align: super;">4</span> | |||
| | | {{Monzo|-4 0 0 0 0 0 1}} | ||
| 17th harmonic (octave reduced) | |||
|- | |- | ||
| [[18/17]] | |||
| 98.955 | |||
| (2*3<span style="font-size: 70%; vertical-align: super;">2</span>)/17 | |||
| | | {{Monzo|1 2 0 0 0 0 -1}} | ||
| Arabic lute index finger | |||
|- | |- | ||
| [[34/33]] | |||
| 51.682 | |||
| (2*17)/(3*11) | |||
| | | {{Monzo|1 -1 0 0 -1 0 1}} | ||
| | |||
|- | |- | ||
| [[35/34]] | |||
| 50.184 | |||
| (5*7)/(2*17) | |||
| | | {{Monzo|-1 0 1 1 0 0 -1}} | ||
| septendecimal 1/4-tone | |||
|- | |- | ||
| [[51/50]] | |||
| 34.283 | |||
| (3*17)/(2*5<span style="font-size: 70%; vertical-align: super;">2</span>) | |||
| | | {{Monzo|-1 1 -2 0 0 0 1}} | ||
| 17th-partial chroma | |||
|- | |- | ||
| [[52/51]] | |||
| 33.617 | |||
| (2<span style="font-size: 70%; vertical-align: super;">2</span>*13)/(3*17) | |||
| | | {{Monzo|2 -1 0 0 0 1 -1}} | ||
| | |||
|- | |- | ||
| [[85/84]] | |||
| 20.488 | |||
| (5*17)/(2<span style="font-size: 70%; vertical-align: super;">2</span>*3*7) | |||
| | | {{Monzo|-2 -1 1 -1 0 0 1}} | ||
| | |||
|- | |- | ||
| 120/119 | |||
| 14.487 | |||
| (2<span style="font-size: 70%; vertical-align: super;">3</span>*3*5)/(7*17) | |||
| | | {{Monzo|3 1 1 -1 0 0 -1}} | ||
| | |||
|- | |- | ||
| 136/135 | |||
| 12.777 | |||
| (2/3)<span style="font-size: 70%; vertical-align: super;">3</span>*17/5 | |||
| | | {{Monzo|3 -3 -1 0 0 0 1}} | ||
| | |||
|- | |- | ||
| 154/153 | |||
| 11.278 | |||
| (2*7*11)/(3<span style="font-size: 70%; vertical-align: super;">2</span>*17) | |||
| | | {{Monzo|1 -2 0 1 1 0 -1}} | ||
| | |||
|- | |- | ||
| 170/169 | |||
| 10.214 | |||
| (2*5*17)/13<span style="font-size: 70%; vertical-align: super;">2</span> | |||
| | | {{Monzo|1 0 1 0 0 -2 1}} | ||
| | |||
|- | |- | ||
| 221/220 | |||
| 7.8514 | |||
| (13*17)/(2<span style="font-size: 70%; vertical-align: super;">2</span>*5*11) | |||
| | | {{Monzo|-2 0 -1 0 -1 1 1}} | ||
| | |||
|- | |- | ||
| 256/255 | |||
| 6.7759 | |||
| (2<span style="font-size: 70%; vertical-align: super;">8</span>)/(3*5*17) | |||
| | | {{Monzo|8 -1 -1 0 0 0 -1}} | ||
| 255th subharmonic | |||
|- | |- | ||
| 273/272 | |||
| 6.3532 | |||
| (3*7*13)/(2<span style="font-size: 70%; vertical-align: super;">4</span>*17) | |||
| | | {{Monzo|-4 1 0 1 0 1 -1}} | ||
| | |||
|- | |- | ||
| 289/288 | |||
| 6.0008 | |||
| (17/3)<span style="font-size: 70%; vertical-align: super;">2</span>/2<span style="font-size: 70%; vertical-align: super;">5</span> | |||
| | | {{Monzo|-5 -2 0 0 0 0 2}} | ||
| | |||
|- | |- | ||
| 375/374 | |||
| 4.6228 | |||
| (3*5<span style="font-size: 70%; vertical-align: super;">3</span>)/(2*11*17) | |||
| | | {{Monzo|-1 1 3 0 -1 0 -1}} | ||
| | |||
|- | |- | ||
| 442/441 | |||
| 3.9213 | |||
| (2*13*17)/(3*7)<span style="font-size: 70%; vertical-align: super;">2</span> | |||
| | | {{Monzo|1 -2 0 -2 0 1 1}} | ||
| | |||
|- | |- | ||
| 561/560 | |||
| 3.0887 | |||
| (3*11*17)/(2<span style="font-size: 70%; vertical-align: super;">4</span>*5*7) | |||
| | | {{Monzo|-4 1 -1 -1 1 0 1}} | ||
| | |||
|- | |- | ||
| 595/594 | |||
| 2.9121 | |||
| (5*7*17)/(2*3<span style="font-size: 70%; vertical-align: super;">3</span>*11) | |||
| | | {{Monzo|-1 -3 1 1 -1 0 1}} | ||
| | |||
|- | |- | ||
| 715/714 | |||
| 2.4230 | |||
| (5*11*13)/(2*3*7*17) | |||
| | | {{Monzo|-1 -1 1 -1 1 1 -1}} | ||
| | |||
|- | |- | ||
| 833/832 | |||
| 2.0796 | |||
| (7<span style="font-size: 70%; vertical-align: super;">2</span>*17)/(2<span style="font-size: 70%; vertical-align: super;">6</span>*13) | |||
| | | {{Monzo|-6 0 0 2 0 -1 1}} | ||
| | |||
|- | |- | ||
| 936/935 | |||
| 1.8506 | |||
| (2<span style="font-size: 70%; vertical-align: super;">3</span>*3<span style="font-size: 70%; vertical-align: super;">2</span>*13)/(5*11*17) | |||
| | | {{Monzo|3 2 -1 0 -1 1 -1}} | ||
| | |||
|- | |- | ||
| 1089/1088 | |||
| 1.5905 | |||
| (3<span style="font-size: 70%; vertical-align: super;">2</span>*11<span style="font-size: 70%; vertical-align: super;">2</span>)/(2<span style="font-size: 70%; vertical-align: super;">6</span>*17) | |||
| | | {{Monzo|-6 2 0 0 2 0 -1}} | ||
| twosquare comma | |||
|- | |- | ||
| 1156/1155 | |||
| 1.4983 | |||
| (2<span style="font-size: 70%; vertical-align: super;">2</span>*17<span style="font-size: 70%; vertical-align: super;">2</span>)/(3*5*7*11) | |||
| | | {{Monzo|2 -1 -1 -1 -1 0 2}} | ||
| | |||
|- | |- | ||
| 1225/1224 | |||
| 1.4138 | |||
| (5<span style="font-size: 70%; vertical-align: super;">2</span>*7<span style="font-size: 70%; vertical-align: super;">2</span>)/(2<span style="font-size: 70%; vertical-align: super;">3</span>*3<span style="font-size: 70%; vertical-align: super;">2</span>*17) | |||
| | | {{Monzo|-3 -2 2 2 0 0 -1}} | ||
| | |||
|- | |- | ||
| 1275/1274 | |||
| 1.3584 | |||
| (3*5<span style="font-size: 70%; vertical-align: super;">2</span>*17)/(2*7<span style="font-size: 70%; vertical-align: super;">2</span>*13) | |||
| | | {{Monzo|-1 1 2 -2 0 -1 1}} | ||
| | |||
|- | |- | ||
| 1701/1700 | |||
| 1.0181 | |||
| (3<span style="font-size: 70%; vertical-align: super;">5</span>*7)/[(2*5)<span style="font-size: 70%; vertical-align: super;">2</span>*17] | |||
| | | {{Monzo|-2 5 -2 1 0 0 -1}} | ||
| | |||
|- | |- | ||
| 2058/2057 | |||
| 0.8414 | |||
| (2*3*7<span style="font-size: 70%; vertical-align: super;">3</span>)/(11<span style="font-size: 70%; vertical-align: super;">2</span>*17) | |||
| | | {{Monzo|1 1 0 3 -2 0 -1}} | ||
| xenisma | |||
|- | |- | ||
| 2431/2430 | |||
| 0.7123 | |||
| (11*13*17)/(2*3<span style="font-size: 70%; vertical-align: super;">5</span>*5) | |||
| | | {{Monzo|-1 -5 -1 0 1 1 1}} | ||
| | |||
|- | |- | ||
| 2500/2499 | |||
| 0.6926 | |||
| (2<span style="font-size: 70%; vertical-align: super;">2</span>*5<span style="font-size: 70%; vertical-align: super;">4</span>)/(3*7<span style="font-size: 70%; vertical-align: super;">2</span>*17) | |||
| | | {{Monzo|2 -1 4 -2 0 0 -1}} | ||
| | |||
|- | |- | ||
| 2601/2600 | |||
| 0.6657 | |||
| (3<span style="font-size: 70%; vertical-align: super;">2</span>*17<span style="font-size: 70%; vertical-align: super;">2</span>)/(2<span style="font-size: 70%; vertical-align: super;">3</span>*5<span style="font-size: 70%; vertical-align: super;">2</span>*13) | |||
| | | {{Monzo|-3 2 -2 0 0 -1 2}} | ||
| | |||
|- | |- | ||
| 4914/4913 | |||
| 0.3523 | |||
| (2*3<span style="font-size: 70%; vertical-align: super;">3</span>*7*13)/(17<span style="font-size: 70%; vertical-align: super;">3</span>) | |||
| | | {{Monzo|1 3 0 1 0 1 -3}} | ||
| | |||
|- | |- | ||
| 5832/5831 | |||
| 0.2969 | |||
| (2<span style="font-size: 70%; vertical-align: super;">3</span>*3<span style="font-size: 70%; vertical-align: super;">6</span>)/(7<span style="font-size: 70%; vertical-align: super;">3</span>*17) | |||
| | | {{Monzo|3 6 0 -3 0 0 -1}} | ||
| | |||
|- | |- | ||
| 12376/12375 | |||
| 0.1399 | |||
| (2<span style="font-size: 70%; vertical-align: super;">3</span>*7*13*17)/(3<span style="font-size: 70%; vertical-align: super;">2</span>*5<span style="font-size: 70%; vertical-align: super;">3</span>*11) | |||
| | | {{Monzo|3 -2 -3 1 -1 1 1}} | ||
| | |||
|- | |- | ||
| 14400/14399 | |||
| 0.1202 | |||
| (2<span style="font-size: 70%; vertical-align: super;">6</span>*3<span style="font-size: 70%; vertical-align: super;">2</span>*5<span style="font-size: 70%; vertical-align: super;">2</span>)/(7*11<span style="font-size: 70%; vertical-align: super;">2</span>*17) | |||
| | | {{Monzo|6 2 2 -1 -2 0 -1}} | ||
| | |||
|- | |- | ||
| 28561/28560 | |||
| 0.0606 | |||
| (13<span style="font-size: 70%; vertical-align: super;">4</span>)/(2<span style="font-size: 70%; vertical-align: super;">4</span>*3*5*7*17) | |||
| | | {{Monzo|-4 -1 -1 -1 0 4 -1}} | ||
| | |||
|- | |- | ||
| 31213/31212 | |||
| 0.0555 | |||
| (7<span style="font-size: 70%; vertical-align: super;">4</span>*13)/(2<span style="font-size: 70%; vertical-align: super;">2</span>*3<span style="font-size: 70%; vertical-align: super;">3</span>*17<span style="font-size: 70%; vertical-align: super;">2</span>) | |||
| | | {{Monzo|-2 -3 0 4 0 1 -2}} | ||
| | |||
|- | |- | ||
| 37180/37179 | |||
| 0.0466 | |||
| (2<span style="font-size: 70%; vertical-align: super;">2</span>*5*11*13<span style="font-size: 70%; vertical-align: super;">2</span>)/(3<span style="font-size: 70%; vertical-align: super;">7</span>*17) | |||
| | | {{Monzo|2 -7 1 0 1 2 -1}} | ||
| | |||
|- | |- | ||
| 194481/194480 | |||
| 0.0089 | |||
| (3<span style="font-size: 70%; vertical-align: super;">4</span>*7<span style="font-size: 70%; vertical-align: super;">4</span>)/(2<span style="font-size: 70%; vertical-align: super;">4</span>*5*11*13*17) | |||
| | | {{Monzo|-4 4 -1 4 -1 -1 -1}} | ||
| scintillisma | |||
|- | |- | ||
| 336141/336140 | |||
| 0.0052 | |||
| (3<span style="font-size: 70%; vertical-align: super;">2</span>*13<span style="font-size: 70%; vertical-align: super;">3</span>*17)/(2<span style="font-size: 70%; vertical-align: super;">2</span>*5*7<span style="font-size: 70%; vertical-align: super;">5</span>) | |||
| | | {{Monzo|-2 2 -1 -5 0 3 1}} | ||
| | |||
|- | |- | ||
! colspan="5" | 19-limit (incomplete) | ! colspan="5" | 19-limit (incomplete) | ||
|- | |- | ||
| [[19/18]] | |||
| 93.603 | |||
| 19/(2*3<span style="font-size: 70%; vertical-align: super;">2</span>) | |||
| | | {{Monzo|-1 -2 0 0 0 0 0 1}} | ||
| undevicesimal semitone | |||
|- | |- | ||
| [[20/19]] | |||
| 88.801 | |||
| (2<span style="font-size: 70%; vertical-align: super;">2</span>*5)/19 | |||
| | | {{Monzo|2 0 1 0 0 0 0 -1}} | ||
| small undevicesimal semitone | |||
|- | |- | ||
| [[39/38]] | |||
| 44.970 | |||
| (3*13)/(2*19) | |||
| | | {{Monzo|-1 1 0 0 0 1 0 -1}} | ||
| | |||
|- | |- | ||
| [[57/56]] | |||
| 30.642 | |||
| (3*19)/(2<span style="font-size: 70%; vertical-align: super;">3</span>*7) | |||
| | | {{Monzo|-3 1 0 -1 0 0 0 1}} | ||
| | |||
|- | |- | ||
| [[76/75]] | |||
| 22.931 | |||
| (2<span style="font-size: 70%; vertical-align: super;">2</span>*19)/(3*5<span style="font-size: 70%; vertical-align: super;">2</span>) | |||
| | | {{Monzo|2 -1 -2 0 0 0 0 1}} | ||
| | |||
|- | |- | ||
| [[77/76]] | |||
| 22.631 | |||
| (7*11)/(2<span style="font-size: 70%; vertical-align: super;">2</span>*19) | |||
| | | {{Monzo|-2 0 0 1 1 0 0 -1}} | ||
| | |||
|- | |- | ||
| [[96/95]] | |||
| 18.128 | |||
| (2<span style="font-size: 70%; vertical-align: super;">5</span>*3)/(5*19) | |||
| | | {{Monzo|5 1 -1 0 0 0 0 -1}} | ||
| | |||
|- | |- | ||
| 133/132 | |||
| 13.066 | |||
| (19*7)/(2<span style="font-size: 70%; vertical-align: super;">2</span>*3*11) | |||
| | | {{Monzo|-2 -1 0 1 -1 0 0 1}} | ||
| | |||
|- | |- | ||
| 153/152 | |||
| 11.352 | |||
| (3<span style="font-size: 70%; vertical-align: super;">2</span>*17)/(2<span style="font-size: 70%; vertical-align: super;">3</span>*19) | |||
| | | {{Monzo|-3 2 0 0 0 0 1 -1}} | ||
| | |||
|- | |- | ||
| 171/170 | |||
| 10.154 | |||
| (3<span style="font-size: 70%; vertical-align: super;">2</span>*19)/(2*5*17) | |||
| | | {{Monzo|-1 2 -1 0 0 0 -1 1}} | ||
| | |||
|- | |- | ||
| 190/189 | |||
| 9.1358 | |||
| (2*5*19)/(3<span style="font-size: 70%; vertical-align: super;">3</span>*7) | |||
| | | {{Monzo|1 -3 1 -1 0 0 0 1}} | ||
| | |||
|- | |- | ||
| 209/208 | |||
| 8.3033 | |||
| (11*19)/(2<span style="font-size: 70%; vertical-align: super;">4</span>*13) | |||
| | | {{Monzo|-4 0 0 0 1 -1 0 1}} | ||
| | |||
|- | |- | ||
| 210/209 | |||
| 8.2637 | |||
| (2*3*5*7)/(11*19) | |||
| | | {{Monzo|1 1 1 1 -1 0 0 -1}} | ||
| | |||
|- | |- | ||
| 286/285 | |||
| 6.0639 | |||
| (2*11*13)/(3*5*19) | |||
| | | {{Monzo|1 -1 -1 0 1 1 0 -1}} | ||
| | |||
|- | |- | ||
| 324/323 | |||
| 5.3516 | |||
| (2<span style="font-size: 70%; vertical-align: super;">2</span>*3<span style="font-size: 70%; vertical-align: super;">4</span>)/(17*19) | |||
| | | {{Monzo|2 4 0 0 0 0 -1 -1}} | ||
| | |||
|- | |- | ||
| 343/342 | |||
| 5.0547 | |||
| 7<span style="font-size: 70%; vertical-align: super;">4</span>/(2*3<span style="font-size: 70%; vertical-align: super;">3</span>*19) | |||
| | | {{Monzo|-1 -2 0 3 0 0 0 -1}} | ||
| | |||
|- | |- | ||
| 361/360 | |||
| 4.8023 | |||
| 19<span style="font-size: 70%; vertical-align: super;">2</span>/(2<span style="font-size: 70%; vertical-align: super;">3</span>*3<span style="font-size: 70%; vertical-align: super;">2</span>*5) | |||
| | | {{Monzo|-3 -2 -1 0 0 0 0 2}} | ||
| | |||
|- | |- | ||
| 400/399 | |||
| 4.3335 | |||
| (2<span style="font-size: 70%; vertical-align: super;">4</span>*5<span style="font-size: 70%; vertical-align: super;">2</span>)/(3*7*19) | |||
| | | {{Monzo|4 -1 2 -1 0 0 0 -1}} | ||
| | |||
|- | |- | ||
| 456/455 | |||
| 3.8007 | |||
| (2<span style="font-size: 70%; vertical-align: super;">3</span>*3*19)/(5*7*13) | |||
| | | {{Monzo|3 1 -1 -1 0 -1 0 1}} | ||
| | |||
|- | |- | ||
| 476/475 | |||
| 3.6409 | |||
| (2<span style="font-size: 70%; vertical-align: super;">2</span>*7*17)/(5<span style="font-size: 70%; vertical-align: super;">2</span>*19) | |||
| | | {{Monzo|2 0 -2 1 0 0 1 -1}} | ||
| | |||
|- | |- | ||
| 495/494 | |||
| 3.501 | |||
| (3<span style="font-size: 70%; vertical-align: super;">2</span>*5*11)/(2*13*19) | |||
| | | {{Monzo|-1 2 1 0 1 -1 0 -1}} | ||
| | |||
|- | |- | ||
| 513/512 | |||
| 3.378 | |||
| (3<span style="font-size: 70%; vertical-align: super;">3</span>*19)/2<span style="font-size: 70%; vertical-align: super;">9</span> | |||
| | | {{Monzo|-9 3 0 0 0 0 0 1}} | ||
| 513th harmonic | |||
|- | |- | ||
! colspan="5" | 23-limit (incomplete) | ! colspan="5" | 23-limit (incomplete) | ||
|- | |- | ||
| [[23/22]] | |||
| 76.956 | |||
| 23/(2*11) | |||
| | |||
| | |||
|- | |- | ||
| [[24/23]] | |||
| 73.681 | |||
| (2<span style="font-size: 70%; vertical-align: super;">3</span>*3)/23 | |||
| | |||
| | |||
|- | |- | ||
| [[46/45]] | |||
| 38.051 | |||
| (2*23)/(3<span style="font-size: 70%; vertical-align: super;">2</span>*5) | |||
| | |||
| | |||
|- | |- | ||
| [[69/68]] | |||
| 25.274 | |||
| (3*23)/(2<span style="font-size: 70%; vertical-align: super;">2</span>*17) | |||
| | |||
| | |||
|- | |- | ||
| [[70/69]] | |||
| 24.910 | |||
| (2*5*7)/(3*23) | |||
| | |||
| | |||
|- | |- | ||
| [[92/91]] | |||
| 18.921 | |||
| (2<span style="font-size: 70%; vertical-align: super;">2</span>*23)/(7*13) | |||
| | |||
| | |||
|- | |- | ||
| 115/114 | |||
| 15.120 | |||
| (5*23)/(2*3*19) | |||
| | |||
| | |||
|- | |- | ||
| 161/160 | |||
| 10.7865 | |||
| (7*23)/(2<span style="font-size: 70%; vertical-align: super;">5</span>*5) | |||
| | |||
| | |||
|- | |- | ||
| 162/161 | |||
| 10.720 | |||
| (2*3<span style="font-size: 70%; vertical-align: super;">4</span>)/(7*23) | |||
| | |||
| | |||
|- | |- | ||
| 208/207 | |||
| 8.343 | |||
| (2<span style="font-size: 70%; vertical-align: super;">4</span>*13)/(23*9) | |||
| | |||
| | |||
|- | |- | ||
| 576/575 | |||
| 3.008 | |||
| (2<span style="font-size: 70%; vertical-align: super;">6</span>*3<span style="font-size: 70%; vertical-align: super;">2</span>)/(23*25) | |||
| | |||
| | |||
|- | |- | ||
! colspan="5" | 29-limit (incomplete) | ! colspan="5" | 29-limit (incomplete) | ||
|- | |- | ||
| [[29/28]] | |||
| 60.751 | |||
| 29/(2<span style="font-size: 70%; vertical-align: super;">2</span>*7) | |||
| | |||
| | |||
|- | |- | ||
| [[30/29]] | |||
| 58.692 | |||
| (2*3*5)/29 | |||
| | |||
| | |||
|- | |- | ||
| [[58/57]] | |||
| 30.109 | |||
| (2*29)/(3*19) | |||
| | |||
| | |||
|- | |- | ||
| [[88/87]] | |||
| 19.786 | |||
| (2<span style="font-size: 70%; vertical-align: super;">3</span>*11)/(3*29) | |||
| | |||
| | |||
|- | |- | ||
! colspan="5" | 31-limit (incomplete) | ! colspan="5" | 31-limit (incomplete) | ||
|- | |- | ||
| [[31/30]] | |||
| 56.767 | |||
| 31/(2*3*5) | |||
| | |||
| | |||
|- | |- | ||
| [[32/31]] | |||
| 54.964 | |||
| 2<span style="font-size: 70%; vertical-align: super;">5</span>/31 | |||
| | |||
| 31st subharmonic | |||
|- | |- | ||
| [[63/62]] | |||
| 27.700 | |||
| (3<span style="font-size: 70%; vertical-align: super;">2</span>*7)/(2*31) | |||
| | |||
| | |||
|- | |- | ||
| [[93/92]] | |||
| 18.716 | |||
| (3*31)/(2<span style="font-size: 70%; vertical-align: super;">2</span>*23) | |||
| | |||
| | |||
|- | |- | ||
! colspan="5" | 37-limit (incomplete) | ! colspan="5" | 37-limit (incomplete) | ||
|- | |- | ||
| [[37/36]] | |||
| 47.434 | |||
| 37/(2<span style="font-size: 70%; vertical-align: super;">2</span>*3<span style="font-size: 70%; vertical-align: super;">2</span>) | |||
| | |||
| | |||
|- | |- | ||
| [[38/37]] | |||
| 46.169 | |||
| (2*19)/37 | |||
| | |||
| | |||
|- | |- | ||
| [[75/74]] | |||
| 23.238 | |||
| (3*5<span style="font-size: 70%; vertical-align: super;">2</span>)/(2*37) | |||
| | |||
| | |||
|- | |- | ||
! colspan="5" | 41-limit (incomplete) | ! colspan="5" | 41-limit (incomplete) | ||
|- | |- | ||
| [[41/40]] | |||
| 42.749 | |||
| 41/(2<span style="font-size: 70%; vertical-align: super;">3</span>*5) | |||
| | |||
| | |||
|- | |- | ||
| [[42/41]] | |||
| 41.719 | |||
| (2*3*7)/41 | |||
| | |||
| | |||
|- | |- | ||
| [[82/81]] | |||
| 21.242 | |||
| (2*41)/3<span style="font-size: 70%; vertical-align: super;">4</span> | |||
| | |||
| | |||
|- | |- | ||
! colspan="5" | 43-limit (incomplete) | ! colspan="5" | 43-limit (incomplete) | ||
|- | |- | ||
| [[43/42]] | |||
| 40.737 | |||
| 43/(2*3*7) | |||
| | |||
| | |||
|- | |- | ||
| [[44/43]] | |||
| 39.800 | |||
| (2<span style="font-size: 70%; vertical-align: super;">2</span>*11)/43 | |||
| | |||
| | |||
|- | |- | ||
| [[86/85]] | |||
| 20.249 | |||
| (2*43)/(5*17) | |||
| | |||
| | |||
|- | |- | ||
| [[87/86]] | |||
| 20.014 | |||
| (3*29)/(2*43) | |||
| | |||
| | |||
|- | |- | ||
! colspan="5" | 47-limit (incomplete) | ! colspan="5" | 47-limit (incomplete) | ||
|- | |- | ||
| [[47/46]] | |||
| 37.232 | |||
| 47/(2*23) | |||
| | |||
| | |||
|- | |- | ||
| [[48/47]] | |||
| 36.448 | |||
| (2<span style="font-size: 70%; vertical-align: super;">4</span>*3)/47 | |||
| | |||
| | |||
|- | |- | ||
| [[94/93]] | |||
| 18.516 | |||
| (2*47)/(3*31) | |||
| | |||
| | |||
|- | |- | ||
| [[95/94]] | |||
| 18.320 | |||
| (5*19)/(2*47) | |||
| | |||
| | |||
|- | |- | ||
! colspan="5" | 53-limit (incomplete) | ! colspan="5" | 53-limit (incomplete) | ||
|- | |- | ||
| [[53/52]] | |||
| 32.977 | |||
| 53/(2<span style="font-size: 70%; vertical-align: super;">2</span>*13) | |||
| | |||
| | |||
|- | |- | ||
| [[54/53]] | |||
| 32.360 | |||
| (2*3<span style="font-size: 70%; vertical-align: super;">3</span>)/53 | |||
| | |||
| | |||
|- | |- | ||
! colspan="5" | 59-limit (incomplete) | ! colspan="5" | 59-limit (incomplete) | ||
|- | |- | ||
| [[59/58]] | |||
| 29.594 | |||
| 59/(2*29) | |||
| | |||
| | |||
|- | |- | ||
| [[60/59]] | |||
| 29.097 | |||
| (2<span style="font-size: 70%; vertical-align: super;">2</span>*3*5)/59 | |||
| | |||
| | |||
|- | |- | ||
! colspan="5" | 61-limit (incomplete) | ! colspan="5" | 61-limit (incomplete) | ||
|- | |- | ||
| [[61/60]] | |||
| 28.616 | |||
| 61/(2<span style="font-size: 70%; vertical-align: super;">2</span>*3*5) | |||
| | |||
| | |||
|- | |- | ||
| [[62/61]] | |||
| 28.151 | |||
| (2*31)/61 | |||
| | |||
| | |||
|- | |- | ||
! colspan="5" | 67-limit (incomplete) | ! colspan="5" | 67-limit (incomplete) | ||
|- | |- | ||
| [[67/66]] | |||
| 26.034 | |||
| 67/(2*3*11) | |||
| | |||
| | |||
|- | |- | ||
| [[68/67]] | |||
| 25.648 | |||
| (2<span style="font-size: 70%; vertical-align: super;">2</span>*17)/67 | |||
| | |||
| | |||
|- | |- | ||
! colspan="5" | 71-limit (incomplete) | ! colspan="5" | 71-limit (incomplete) | ||
|- | |- | ||
| [[71/70]] | |||
| 24.557 | |||
| 71/(2*5*7) | |||
| | |||
| | |||
|- | |- | ||
| [[72/71]] | |||
| 24.213 | |||
| (2<span style="font-size: 70%; vertical-align: super;">3</span>*3<span style="font-size: 70%; vertical-align: super;">2</span>)/71 | |||
| | |||
| | |||
|- | |- | ||
! colspan="5" | 73-limit (incomplete) | ! colspan="5" | 73-limit (incomplete) | ||
|- | |- | ||
| [[73/72]] | |||
| 23.879 | |||
| 73/(2<span style="font-size: 70%; vertical-align: super;">3</span>*3<span style="font-size: 70%; vertical-align: super;">2</span>) | |||
| | |||
| | |||
|- | |- | ||
| [[74/73]] | |||
| 23.555 | |||
| (2*37)/73 | |||
| | |||
| | |||
|- | |- | ||
! colspan="5" | 79-limit (incomplete) | ! colspan="5" | 79-limit (incomplete) | ||
|- | |- | ||
| [[79/78]] | |||
| 22.054 | |||
| 79/(2*3*13) | |||
| | |||
| | |||
|- | |- | ||
| [[80/79]] | |||
| 21.777 | |||
| (2<span style="font-size: 70%; vertical-align: super;">4</span>*5)/79 | |||
| | |||
| | |||
|- | |- | ||
! colspan="5" | 83-limit (incomplete) | ! colspan="5" | 83-limit (incomplete) | ||
|- | |- | ||
| [[83/82]] | |||
| 20.985 | |||
| 83/(2*41) | |||
| | |||
| | |||
|- | |- | ||
| [[84/83]] | |||
| 20.734 | |||
| (2<span style="font-size: 70%; vertical-align: super;">2</span>*3*7)/83 | |||
| | |||
| | |||
|- | |- | ||
! colspan="5" | 89-limit (incomplete) | ! colspan="5" | 89-limit (incomplete) | ||
|- | |- | ||
| [[89/88]] | |||
| 19.562 | |||
| 89/(2<span style="font-size: 70%; vertical-align: super;">3</span>*11) | |||
| | |||
| | |||
|- | |- | ||
| [[90/89]] | |||
| 19.344 | |||
| (2*3<span style="font-size: 70%; vertical-align: super;">2</span>*5)/89 | |||
| | |||
| | |||
|- | |- | ||
! colspan="5" | 97-limit (incomplete) | ! colspan="5" | 97-limit (incomplete) | ||
|- | |- | ||
| [[97/96]] | |||
| 17.940 | |||
| 97/(2<span style="font-size: 70%; vertical-align: super;">5</span>*3) | |||
| | |||
| | |||
|- | |- | ||
| [[98/97]] | |||
| 17.756 | |||
| (2*7<span style="font-size: 70%; vertical-align: super;">2</span>)/97 | |||
| | |||
| | |||
|- | |- | ||
! colspan="5" | 101-limit (incomplete) | ! colspan="5" | 101-limit (incomplete) | ||
|- | |- | ||
| [[101/100]] | |||
| 17.226 | |||
| 101/(2<span style="font-size: 70%; vertical-align: super;">2</span>*5<span style="font-size: 70%; vertical-align: super;">2</span>) | |||
| | |||
| | |||
|- | |- | ||
| [[102/101]] | |||
| 17.057 | |||
| (2*3*17)/101 | |||
| | |||
| | |||
|} | |} | ||
[[Category:interval_list]] | [[Category:interval_list]] | ||
[[Category:superparticular]] | [[Category:superparticular]] |
Revision as of 14:56, 25 October 2018
This list of superparticular intervals ordered by prime limit. It reaches to the 101-limit and is complete up to the 17-limit.
Superparticular numbers are ratios of the form (n+1)/n, or 1+1/n, where n is a whole number other than 1. They appear frequently in just intonation and Harmonic Series music. Adjacent tones in the harmonic series are separated by superparticular intervals: for instance, the 20th and 21st by the superparticular ratio 21/20. As the overtones get closer together, the superparticular intervals get smaller and smaller. Thus, an examination of the superparticular intervals is an examination of some of the simplest small intervals in rational tuning systems. Indeed, many but not all common commas are superparticular ratios.
The list below is ordered by harmonic limit, or the largest prime involved in the prime factorization. 36/35, for instance, is an interval of the 7-limit, as it factors to (22*32)/(5*7), while 37/36 would belong to the 37-limit.
Størmer's theorem guarantees that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than 2/1, 3/2, 4/3, and 9/8. A002071 -- OEIS gives the number of superparticular ratios in each prime limit, A145604 - OEIS shows the increment from limit to limit, and A117581 the largest numerator for each prime limit (with some exceptions, such as the 23-limit, where the largest value is smaller than that of a smaller prime limit, in this case the 19-limit).
See also gallery of just intervals. Many of the names below come from here.
Ratio | Cents | Factorization | Monzo | Name(s) |
---|---|---|---|---|
2-limit (complete) | ||||
2/1 | 1200.000 | 2/1 | [1⟩ | octave, duple; after octave reduction: (perfect) unison, unity, perfect prime, tonic |
3-limit (complete) | ||||
3/2 | 701.995 | 3/2 | [-1 1⟩ | perfect fifth, 3rd harmonic (octave reduced), diapente |
4/3 | 498.045 | 22/3 | [2 -1⟩ | perfect fourth, 3rd subharmonic (octave reduced), diatessaron |
9/8 | 203.910 | 32/23 | [-3 2⟩ | (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, 9th harmonic or harmonic ninth (octave reduced) |
5-limit (complete) | ||||
5/4 | 386.314 | 5/22 | [-2 0 1⟩ | (classic) (5-limit) major third, 5th harmonic (octave reduced) |
6/5 | 315.641 | (2*3)/5 | [1 1 -1⟩ | (classic) (5-limit) minor third |
10/9 | 182.404 | (2*5)/32 | [1 -2 1⟩ | classic (whole) tone, classic major second, minor whole tone |
16/15 | 111.713 | 24/(3*5) | [4 -1 -1⟩ | minor diatonic semitone, 15th subharmonic |
25/24 | 70.672 | 52/(23*3) | [-3 -1 2⟩ | chroma, (classic) chromatic semitone, Zarlinian semitone |
81/80 | 21.506 | (3/2)4/5 | [-4 4 -1⟩ | syntonic comma, Didymus comma |
7-limit (complete) | ||||
7/6 | 266.871 | 7/(2*3) | [-1 -1 0 1⟩ | (septimal) subminor third, septimal minor third, augmented second |
8/7 | 231.174 | 23/7 | [3 0 0 -1⟩ | (septimal) supermajor second, septimal whole tone, diminished third, 7th subharmonic |
15/14 | 119.443 | (3*5)/(2*7) | [-1 1 1 -1⟩ | septimal diatonic semitone |
21/20 | 84.467 | (3*7)/(22*5) | [-2 1 -1 1⟩ | minor semitone, large septimal chromatic semitone |
28/27 | 62.961 | (22*7)/33 | [2 -3 0 1⟩ | septimal chroma, small septimal chromatic semitone, Archytas' 1/3-tone |
36/35 | 48.770 | (22*33)/(5*7) | [2 2 -1 -1⟩ | septimal quarter tone, septimal diesis |
49/48 | 35.697 | 72/(24*3) | [-4 -1 0 2⟩ | large septimal diesis, slendro diesis, septimal 1/6-tone |
50/49 | 34.976 | 2*(5/7)2 | [1 0 2 -2⟩ | septimal sixth-tone, jubilisma, small septimal diesis, tritonic diesis, Erlich's decatonic comma |
64/63 | 27.264 | 26/(32*7) | [6 -2 0 -1⟩ | septimal comma, Archytas' comma |
126/125 | 13.795 | (2*32*7)/53 | [1 2 -3 1⟩ | starling comma, septimal semicomma |
225/224 | 7.7115 | (3*5)2/(25*7) | [-5 2 2 -1⟩ | marvel comma, septimal kleisma |
2401/2400 | 0.72120 | 74/(25*3*52) | [-5 -1 -2 4⟩ | breedsma |
4375/4374 | 0.39576 | (54*7)/(2*37) | [-1 -7 4 1⟩ | ragisma |
11-limit (complete) | ||||
11/10 | 165.004 | 11/(2*5) | [-1 0 -1 0 1⟩ | (large) (undecimal) neutral second, 4/5-tone, Ptolemy's second |
12/11 | 150.637 | (22*3)/11 | [2 1 0 0 -1⟩ | (small) (undecimal) neutral second, 3/4-tone |
22/21 | 80.537 | (2*11)/(3*7) | [1 -1 0 -1 1⟩ | undecimal minor semitone |
33/32 | 53.273 | (3*11)/25 | [-5 1 0 0 1⟩ | undecimal quarter tone, undecimal diesis, al-Farabi's 1/4-tone, 33rd harmonic (octave reduced) |
45/44 | 38.906 | (3/2)2*(5/11) | [-2 2 1 0 -1⟩ | 1/5-tone |
55/54 | 31.767 | (5*11)/(2*33) | [-1 -3 1 0 1⟩ | undecimal diasecundal comma, eleventyfive comma |
56/55 | 31.194 | (23*7)/(5*11) | [3 0 -1 1 -1⟩ | undecimal tritonic comma, konbini comma |
99/98 | 17.576 | (3/7)2*(11/2) | [-1 2 0 -2 1⟩ | small undecimal comma, mothwellsma |
100/99 | 17.399 | (2*5/3)2/11) | [2 -2 2 0 -1⟩ | Ptolemy's comma, ptolemisma |
121/120 | 14.376 | 112/(23*3*5) | [-3 -1 -1 0 2⟩ | undecimal seconds comma, biyatisma |
176/175 | 9.8646 | (24*11)/(52*7) | [4 0 -2 -1 1⟩ | valinorsma |
243/242 | 7.1391 | 35/(2*112) | [-1 5 0 0 -2⟩ | neutral third comma, rastma |
385/384 | 4.5026 | (5*7*11)/(27*3) | [-7 -1 1 1 1⟩ | keenanisma |
441/440 | 3.9302 | (3*7)2/(23*5*11) | [-3 2 -1 2 -1⟩ | Werckmeister's undecimal septenarian schisma, werckisma |
540/539 | 3.2090 | (2/7)2*33*5/11 | [2 3 1 -2 -1⟩ | Swets' comma, swetisma |
3025/3024 | 0.57240 | (5*11)2/(24*32*7) | [-4 -3 2 -1 2⟩ | Lehmerisma |
9801/9800 | 0.17665 | [11/(5*7)]2*34/23 | [-3 4 -2 -2 2⟩ | Gauss comma, kalisma |
13-limit (complete) | ||||
13/12 | 138.573 | 13/(22*3) | [-2 -1 0 0 0 1⟩ | tridecimal 2/3-tone |
14/13 | 128.298 | (2*7)/13 | [1 0 0 1 0 -1⟩ | 2/3-tone, trienthird |
26/25 | 67.900 | (2*13)/52 | [1 0 -2 0 0 1⟩ | tridecimal 1/3-tone |
27/26 | 65.337 | 33/(2*13) | [-1 3 0 0 0 -1⟩ | tridecimal comma |
40/39 | 43.831 | (23*5)/(3*13) | [3 -1 1 0 0 -1⟩ | tridecimal minor diesis |
65/64 | 26.841 | (5*13)/26 | [-6 0 1 0 0 1⟩ | wilsorma, 13th-partial chroma |
66/65 | 26.432 | (2*3*11)/(5*13) | [1 1 -1 0 1 -1⟩ | winmeanma |
78/77 | 22.339 | (2*3*13)/(7*11) | [1 1 0 -1 -1 1⟩ | negustma |
91/90 | 19.130 | (7*13)/(2*32*5) | [-1 -2 -1 1 0 1⟩ | Biome comma, superleap comma |
105/104 | 16.567 | (3*5*7)/(23*13) | [-3 1 1 1 0 -1⟩ | small tridecimal comma, animist comma |
144/143 | 12.064 | (22*3)2/(11*13) | [4 2 0 0 -1 -1⟩ | grossma |
169/168 | 10.274 | 132/(23*3*7) | [-3 -1 0 -1 0 2⟩ | buzurgisma, dhanvantarisma |
196/195 | 8.8554 | (2*7)2/(3*5*13) | [2 -1 -1 2 0 -1⟩ | marveltwin comma |
325/324 | 5.3351 | (52*13)/(22*34) | [-2 -4 2 0 0 1⟩ | |
351/350 | 4.9393 | (3/5)2*13/(2*7) | [-1 3 -2 -1 0 1⟩ | ratwolfsma |
352/351 | 4.9253 | (25*11)/(32*13) | [5 -3 0 0 1 -1⟩ | minthma |
364/363 | 4.7627 | (2/11)2*7*13/3 | [2 -1 0 1 -2 1⟩ | gentle comma |
625/624 | 2.7722 | [-4 -1 4 0 0 -1⟩ | tunbarsma | |
676/675 | 2.5629 | [2 -3 -2 0 0 2⟩ | island comma | |
729/728 | 2.3764 | [-3 6 0 -1 0 -1⟩ | squbema | |
1001/1000 | 1.7304 | [-3 0 -3 1 1 1⟩ | sinbadma | |
1716/1715 | 1.0092 | [2 1 -1 -3 1 1⟩ | lummic comma | |
2080/2079 | 0.83252 | [5 -3 1 -1 -1 1⟩ | ibnsinma | |
4096/4095 | 0.42272 | [12 -2 -1 -1 0 -1⟩ | tridecimal schisma, Sagittal schismina | |
4225/4224 | 0.40981 | [-7 -1 2 0 -1 2⟩ | leprechaun comma | |
6656/6655 | 0.26012 | [9 0 -1 0 -3 1⟩ | jacobin comma | |
10648/10647 | 0.16260 | [3 -2 0 -1 3 -2⟩ | harmonisma | |
123201/123200 | 0.014052 | [-6 6 -2 -1 -1 2⟩ | chalmersia | |
17-limit (complete) | ||||
17/16 | 104.955 | 17/24 | [-4 0 0 0 0 0 1⟩ | 17th harmonic (octave reduced) |
18/17 | 98.955 | (2*32)/17 | [1 2 0 0 0 0 -1⟩ | Arabic lute index finger |
34/33 | 51.682 | (2*17)/(3*11) | [1 -1 0 0 -1 0 1⟩ | |
35/34 | 50.184 | (5*7)/(2*17) | [-1 0 1 1 0 0 -1⟩ | septendecimal 1/4-tone |
51/50 | 34.283 | (3*17)/(2*52) | [-1 1 -2 0 0 0 1⟩ | 17th-partial chroma |
52/51 | 33.617 | (22*13)/(3*17) | [2 -1 0 0 0 1 -1⟩ | |
85/84 | 20.488 | (5*17)/(22*3*7) | [-2 -1 1 -1 0 0 1⟩ | |
120/119 | 14.487 | (23*3*5)/(7*17) | [3 1 1 -1 0 0 -1⟩ | |
136/135 | 12.777 | (2/3)3*17/5 | [3 -3 -1 0 0 0 1⟩ | |
154/153 | 11.278 | (2*7*11)/(32*17) | [1 -2 0 1 1 0 -1⟩ | |
170/169 | 10.214 | (2*5*17)/132 | [1 0 1 0 0 -2 1⟩ | |
221/220 | 7.8514 | (13*17)/(22*5*11) | [-2 0 -1 0 -1 1 1⟩ | |
256/255 | 6.7759 | (28)/(3*5*17) | [8 -1 -1 0 0 0 -1⟩ | 255th subharmonic |
273/272 | 6.3532 | (3*7*13)/(24*17) | [-4 1 0 1 0 1 -1⟩ | |
289/288 | 6.0008 | (17/3)2/25 | [-5 -2 0 0 0 0 2⟩ | |
375/374 | 4.6228 | (3*53)/(2*11*17) | [-1 1 3 0 -1 0 -1⟩ | |
442/441 | 3.9213 | (2*13*17)/(3*7)2 | [1 -2 0 -2 0 1 1⟩ | |
561/560 | 3.0887 | (3*11*17)/(24*5*7) | [-4 1 -1 -1 1 0 1⟩ | |
595/594 | 2.9121 | (5*7*17)/(2*33*11) | [-1 -3 1 1 -1 0 1⟩ | |
715/714 | 2.4230 | (5*11*13)/(2*3*7*17) | [-1 -1 1 -1 1 1 -1⟩ | |
833/832 | 2.0796 | (72*17)/(26*13) | [-6 0 0 2 0 -1 1⟩ | |
936/935 | 1.8506 | (23*32*13)/(5*11*17) | [3 2 -1 0 -1 1 -1⟩ | |
1089/1088 | 1.5905 | (32*112)/(26*17) | [-6 2 0 0 2 0 -1⟩ | twosquare comma |
1156/1155 | 1.4983 | (22*172)/(3*5*7*11) | [2 -1 -1 -1 -1 0 2⟩ | |
1225/1224 | 1.4138 | (52*72)/(23*32*17) | [-3 -2 2 2 0 0 -1⟩ | |
1275/1274 | 1.3584 | (3*52*17)/(2*72*13) | [-1 1 2 -2 0 -1 1⟩ | |
1701/1700 | 1.0181 | (35*7)/[(2*5)2*17] | [-2 5 -2 1 0 0 -1⟩ | |
2058/2057 | 0.8414 | (2*3*73)/(112*17) | [1 1 0 3 -2 0 -1⟩ | xenisma |
2431/2430 | 0.7123 | (11*13*17)/(2*35*5) | [-1 -5 -1 0 1 1 1⟩ | |
2500/2499 | 0.6926 | (22*54)/(3*72*17) | [2 -1 4 -2 0 0 -1⟩ | |
2601/2600 | 0.6657 | (32*172)/(23*52*13) | [-3 2 -2 0 0 -1 2⟩ | |
4914/4913 | 0.3523 | (2*33*7*13)/(173) | [1 3 0 1 0 1 -3⟩ | |
5832/5831 | 0.2969 | (23*36)/(73*17) | [3 6 0 -3 0 0 -1⟩ | |
12376/12375 | 0.1399 | (23*7*13*17)/(32*53*11) | [3 -2 -3 1 -1 1 1⟩ | |
14400/14399 | 0.1202 | (26*32*52)/(7*112*17) | [6 2 2 -1 -2 0 -1⟩ | |
28561/28560 | 0.0606 | (134)/(24*3*5*7*17) | [-4 -1 -1 -1 0 4 -1⟩ | |
31213/31212 | 0.0555 | (74*13)/(22*33*172) | [-2 -3 0 4 0 1 -2⟩ | |
37180/37179 | 0.0466 | (22*5*11*132)/(37*17) | [2 -7 1 0 1 2 -1⟩ | |
194481/194480 | 0.0089 | (34*74)/(24*5*11*13*17) | [-4 4 -1 4 -1 -1 -1⟩ | scintillisma |
336141/336140 | 0.0052 | (32*133*17)/(22*5*75) | [-2 2 -1 -5 0 3 1⟩ | |
19-limit (incomplete) | ||||
19/18 | 93.603 | 19/(2*32) | [-1 -2 0 0 0 0 0 1⟩ | undevicesimal semitone |
20/19 | 88.801 | (22*5)/19 | [2 0 1 0 0 0 0 -1⟩ | small undevicesimal semitone |
39/38 | 44.970 | (3*13)/(2*19) | [-1 1 0 0 0 1 0 -1⟩ | |
57/56 | 30.642 | (3*19)/(23*7) | [-3 1 0 -1 0 0 0 1⟩ | |
76/75 | 22.931 | (22*19)/(3*52) | [2 -1 -2 0 0 0 0 1⟩ | |
77/76 | 22.631 | (7*11)/(22*19) | [-2 0 0 1 1 0 0 -1⟩ | |
96/95 | 18.128 | (25*3)/(5*19) | [5 1 -1 0 0 0 0 -1⟩ | |
133/132 | 13.066 | (19*7)/(22*3*11) | [-2 -1 0 1 -1 0 0 1⟩ | |
153/152 | 11.352 | (32*17)/(23*19) | [-3 2 0 0 0 0 1 -1⟩ | |
171/170 | 10.154 | (32*19)/(2*5*17) | [-1 2 -1 0 0 0 -1 1⟩ | |
190/189 | 9.1358 | (2*5*19)/(33*7) | [1 -3 1 -1 0 0 0 1⟩ | |
209/208 | 8.3033 | (11*19)/(24*13) | [-4 0 0 0 1 -1 0 1⟩ | |
210/209 | 8.2637 | (2*3*5*7)/(11*19) | [1 1 1 1 -1 0 0 -1⟩ | |
286/285 | 6.0639 | (2*11*13)/(3*5*19) | [1 -1 -1 0 1 1 0 -1⟩ | |
324/323 | 5.3516 | (22*34)/(17*19) | [2 4 0 0 0 0 -1 -1⟩ | |
343/342 | 5.0547 | 74/(2*33*19) | [-1 -2 0 3 0 0 0 -1⟩ | |
361/360 | 4.8023 | 192/(23*32*5) | [-3 -2 -1 0 0 0 0 2⟩ | |
400/399 | 4.3335 | (24*52)/(3*7*19) | [4 -1 2 -1 0 0 0 -1⟩ | |
456/455 | 3.8007 | (23*3*19)/(5*7*13) | [3 1 -1 -1 0 -1 0 1⟩ | |
476/475 | 3.6409 | (22*7*17)/(52*19) | [2 0 -2 1 0 0 1 -1⟩ | |
495/494 | 3.501 | (32*5*11)/(2*13*19) | [-1 2 1 0 1 -1 0 -1⟩ | |
513/512 | 3.378 | (33*19)/29 | [-9 3 0 0 0 0 0 1⟩ | 513th harmonic |
23-limit (incomplete) | ||||
23/22 | 76.956 | 23/(2*11) | ||
24/23 | 73.681 | (23*3)/23 | ||
46/45 | 38.051 | (2*23)/(32*5) | ||
69/68 | 25.274 | (3*23)/(22*17) | ||
70/69 | 24.910 | (2*5*7)/(3*23) | ||
92/91 | 18.921 | (22*23)/(7*13) | ||
115/114 | 15.120 | (5*23)/(2*3*19) | ||
161/160 | 10.7865 | (7*23)/(25*5) | ||
162/161 | 10.720 | (2*34)/(7*23) | ||
208/207 | 8.343 | (24*13)/(23*9) | ||
576/575 | 3.008 | (26*32)/(23*25) | ||
29-limit (incomplete) | ||||
29/28 | 60.751 | 29/(22*7) | ||
30/29 | 58.692 | (2*3*5)/29 | ||
58/57 | 30.109 | (2*29)/(3*19) | ||
88/87 | 19.786 | (23*11)/(3*29) | ||
31-limit (incomplete) | ||||
31/30 | 56.767 | 31/(2*3*5) | ||
32/31 | 54.964 | 25/31 | 31st subharmonic | |
63/62 | 27.700 | (32*7)/(2*31) | ||
93/92 | 18.716 | (3*31)/(22*23) | ||
37-limit (incomplete) | ||||
37/36 | 47.434 | 37/(22*32) | ||
38/37 | 46.169 | (2*19)/37 | ||
75/74 | 23.238 | (3*52)/(2*37) | ||
41-limit (incomplete) | ||||
41/40 | 42.749 | 41/(23*5) | ||
42/41 | 41.719 | (2*3*7)/41 | ||
82/81 | 21.242 | (2*41)/34 | ||
43-limit (incomplete) | ||||
43/42 | 40.737 | 43/(2*3*7) | ||
44/43 | 39.800 | (22*11)/43 | ||
86/85 | 20.249 | (2*43)/(5*17) | ||
87/86 | 20.014 | (3*29)/(2*43) | ||
47-limit (incomplete) | ||||
47/46 | 37.232 | 47/(2*23) | ||
48/47 | 36.448 | (24*3)/47 | ||
94/93 | 18.516 | (2*47)/(3*31) | ||
95/94 | 18.320 | (5*19)/(2*47) | ||
53-limit (incomplete) | ||||
53/52 | 32.977 | 53/(22*13) | ||
54/53 | 32.360 | (2*33)/53 | ||
59-limit (incomplete) | ||||
59/58 | 29.594 | 59/(2*29) | ||
60/59 | 29.097 | (22*3*5)/59 | ||
61-limit (incomplete) | ||||
61/60 | 28.616 | 61/(22*3*5) | ||
62/61 | 28.151 | (2*31)/61 | ||
67-limit (incomplete) | ||||
67/66 | 26.034 | 67/(2*3*11) | ||
68/67 | 25.648 | (22*17)/67 | ||
71-limit (incomplete) | ||||
71/70 | 24.557 | 71/(2*5*7) | ||
72/71 | 24.213 | (23*32)/71 | ||
73-limit (incomplete) | ||||
73/72 | 23.879 | 73/(23*32) | ||
74/73 | 23.555 | (2*37)/73 | ||
79-limit (incomplete) | ||||
79/78 | 22.054 | 79/(2*3*13) | ||
80/79 | 21.777 | (24*5)/79 | ||
83-limit (incomplete) | ||||
83/82 | 20.985 | 83/(2*41) | ||
84/83 | 20.734 | (22*3*7)/83 | ||
89-limit (incomplete) | ||||
89/88 | 19.562 | 89/(23*11) | ||
90/89 | 19.344 | (2*32*5)/89 | ||
97-limit (incomplete) | ||||
97/96 | 17.940 | 97/(25*3) | ||
98/97 | 17.756 | (2*72)/97 | ||
101-limit (incomplete) | ||||
101/100 | 17.226 | 101/(22*52) | ||
102/101 | 17.057 | (2*3*17)/101 |