Nicetone: Difference between revisions
No edit summary |
Update tables |
||
Line 167: | Line 167: | ||
!Right handed | !Right handed | ||
|- | |- | ||
|LmLsmLs | |LmLsmLs <br>LH Nice-Lydian | ||
LH | |LmLsLms <br>RH Nice-Lydian | ||
|LmLsLms | |||
RH | |||
|- | |- | ||
|mLsLmLs | |mLsLmLs <br>LH Nice-Ionian | ||
LH | |LmsLmLs <br>RH Nice-Ionian | ||
|LmsLmLs | |||
RH | |||
|- | |- | ||
|mLsmLsL | |mLsmLsL <br>LH Nice-Mixolydian | ||
LH | |mLsLmsL <br>RH Nice-Mixolydian | ||
|mLsLmsL | |||
RH | |||
|- | |- | ||
|LsLmLsm | |LsLmLsm <br>LH Nice-Dorian | ||
LH | |msLmLsL <br>RH Nice-Dorian | ||
|msLmLsL | |||
RH | |||
|- | |- | ||
|LsmLsLm | |LsmLsLm <br>LH Nice-Aeolian | ||
LH | |LsLmsLm <br>RH Nice-Aeolian | ||
|LsLmsLm | |||
RH | |||
|- | |- | ||
|sLmLsmL | |sLmLsmL <br>LH Nice-Phrygian | ||
LH | |sLmLsLm <br>RH Nice-Phrygian | ||
|sLmLsLm | |||
RH | |||
|- | |- | ||
|smLsLmL | |smLsLmL <br>LH Nice-Locrian | ||
LH | |sLmsLmL <br>RH Nice-Locrian | ||
|sLmsLmL | |||
RH | |||
|} | |} | ||
Line 207: | Line 193: | ||
|+Tuning range of nicetone | |+Tuning range of nicetone | ||
! | ! | ||
! Tuning range | ! Tuning range (in [[octave]]s) | ||
|- | |- | ||
! Outer generator <br>(''G''<sub>1</sub> = 2L + m + s) | ! Outer generator <br>(''G''<sub>1</sub> = 2L + m + s) | ||
Line 230: | Line 216: | ||
{| class="wikitable" | {| class="wikitable" | ||
|+Common Nicetone tunings | |+Common Nicetone tunings | ||
! rowspan="2" |Tuning | ! rowspan="2" | Tuning | ||
! rowspan="2" |L:m:s | ! rowspan="2" | L:m:s | ||
! | ! colspan="3" | Size of step (¢) | ||
! rowspan="2" | | ! colspan="2" | Inner generator | ||
! | ! rowspan="2" | Outer generator <br>(2L+m+s) | ||
! rowspan="2" | Comments | |||
|- | |- | ||
! | ! L | ||
! m | |||
! | ! s | ||
! | ! LH (L+s) | ||
! | ! RH (L+m) | ||
! | |||
|- | |- | ||
| 5-limit JI | | 5-limit JI || ||203.910||182.404||111.731||315.641||386.314||701.955||L=9/8, m=10/9, s=16/15 | ||
| | |||
| | |||
| | |||
| | |||
|386.314 | |||
| | |||
|701.955 | |||
| | |||
| | |||
|- | |- | ||
|[[15edo]] | |[[15edo]]||3:2:1||240.000||160.000||80.000||320.000||400.000||720.000|| | ||
|3:2:1 | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|720 | |||
| | |||
| | |||
|- | |- | ||
|[[18edo]] | |[[18edo]]||4:2:1||266.667||133.333||66.667||333.333||400.000||733.333|| | ||
|4:2:1 | |||
| | |||
|266.667 | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
|[[20edo]] | |[[20edo]]||4:3:1||240.000||180.000||60.000||300.000||420.000||720.000|| | ||
|4:3:1 | |||
| | |||
| | |||
| | |||
|420 | |||
| | |||
|720 | |||
| | |||
| | |||
|- | |- | ||
|[[21edo]] | |[[21edo]]||5:2:1||285.714||114.286||57.143||342.857||400.000||742.857|| | ||
|5:2:1 | |||
| | |||
|285.714 | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
|[[22edo]] | |[[22edo]]||4:3:2||218.182||163.636||109.091||327.273||381.818||709.091|| | ||
|4:3:2 | |||
| | |||
|218.182 | |||
|381. | |||
| | |||
|709.091 | |||
| | |||
| | |||
|- | |- | ||
|[[23edo]] | |[[23edo]]||5:3:1||260.870||156.522||52.174||313.043||417.391||730.435|| | ||
|5:3:1 | |||
| | |||
| | |||
| | |||
|417.391 | |||
| | |||
|730.435 | |||
| | |||
| | |||
|- | |- | ||
|[[24edo]] | |[[24edo]]||6:2:1||300.000||100.000||50.000||350.000||400.000||750.000|| | ||
|6:2:1 | |||
| | |||
| | |||
| | |||
|400 | |||
| | |||
|750 | |||
| | |||
| | |||
|- | |- | ||
|[[25edo]] | | rowspan="2" |[[25edo]]||5:3:2||240.000||144.000||96.000||336.000||384.000||720.000|| | ||
|5:3:2 | |||
| | |||
| | |||
| | |||
|384 | |||
| | |||
|720 | |||
| | |||
| | |||
|- | |- | ||
| | |5:4:1||240.000||192.000||48.000||288.000||432.000||720.000|| | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
|[[ | |[[26edo]]||6:3:1||276.923||138.462||46.154||323.077||415.385||738.462|| | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
|[[ | | rowspan="2" |[[27edo]]||5:4:2||222.222||177.778||88.889||311.111||400.000||711.111|| | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |7:2:1||311.111||88.889||44.444||355.556||400.000||755.556|| | ||
7: | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
|[[ | | rowspan="2" |[[28edo]]||6:3:2||257.143||128.571||85.714||342.857||385.714||728.571|| | ||
|6: | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |6:4:1||257.143||171.429||42.857||300.000||428.571||728.571|| | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
|[[32edo]] | | rowspan="2" |[[29edo]]||5:4:3||206.897||165.517||124.138||331.034||372.414||703.448|| | ||
|6:4:3 | |- | ||
6:5:2 | |7:3:1||289.655||124.138||41.379||331.034||413.793||744.828|| | ||
|- | |||
8:3:1 | | rowspan="2" |[[30edo]]||6:5:1||240.000||200.000||40.000||280.000||440.000||720.000|| | ||
| | |- | ||
| | |8:2:1||320.000||80.000||40.000||360.000||400.000||760.000|| | ||
| | |- | ||
300 | | rowspan="2" |[[31edo]]||7:3:2||270.968||116.129||77.419||348.387||387.097||735.484|| | ||
| | |- | ||
|7:4:1||270.968||154.839||38.710||309.677||425.806||735.484|| | |||
| | |- | ||
| rowspan="3" |[[32edo]]||6:4:3||225.000||150.000||112.500||337.500||375.000||712.500|| | |||
| | |- | ||
|6:5:2||225.000||187.500||75.000||300.000||412.500||712.500|| | |||
| | |- | ||
|8:3:1||300.000||112.500||37.500||337.500||412.500||750.000|| | |||
| | |- | ||
| rowspan="3" |[[33edo]]||7:4:2||254.545||145.455||72.727||327.273||400.000||727.273|| | |||
|- | |||
|7:5:1||254.545||181.818||36.364||290.909||436.364||727.273|| | |||
|- | |||
|9:2:1||327.273||72.727||36.364||363.636||400.000||763.636|| | |||
|- | |||
| rowspan="3" |[[34edo]]||6:5:3||211.765||176.471||105.882||317.647||388.235||705.882|| | |||
|- | |||
|8:3:2||282.353||105.882||70.588||352.941||388.235||741.176|| | |||
|- | |||
|8:4:1||282.353||141.176||35.294||317.647||423.529||741.176|| | |||
|- | |||
| rowspan="4" |[[35edo]]||7:4:3||240.000||137.143||102.857||342.857||377.143||720.000|| | |||
|- | |||
|7:5:2||240.000||171.429||68.571||308.571||411.429||720.000|| | |||
|- | |||
|7:6:1||240.000||205.714||34.286||274.286||445.714||720.000|| | |||
|- | |||
|9:3:1||308.571||102.857||34.286||342.857||411.429||754.286|| | |||
|- | |||
| rowspan="3" |[[36edo]]||6:5:4||200.000||166.667||133.333||333.333||366.667||700.000|| | |||
|- | |||
|8:5:1||266.667||166.667||33.333||300.000||433.333||733.333|| | |||
|- | |||
|10:2:1||333.333||66.667||33.333||366.667||400.000||766.667|| | |||
|- | |||
| rowspan="4" |[[37edo]]||7:5:3||227.027||162.162||97.297||324.324||389.189||713.514|| | |||
|- | |||
|7:6:2||227.027||194.595||64.865||291.892||421.622||713.514|| | |||
|- | |||
|9:3:2||291.892||97.297||64.865||356.757||389.189||745.946|| | |||
|- | |||
|9:4:1||291.892||129.730||32.432||324.324||421.622||745.946|| | |||
|- | |||
| rowspan="4" |[[38edo]]||8:4:3||252.632||126.316||94.737||347.368||378.947||726.316|| | |||
|- | |||
|8:5:2||252.632||157.895||63.158||315.789||410.526||726.316|| | |||
|- | |||
|8:6:1||252.632||189.474||31.579||284.211||442.105||726.316|| | |||
|- | |||
|10:3:1||315.789||94.737||31.579||347.368||410.526||757.895|| | |||
|- | |||
| rowspan="5" |[[39edo]]||7:5:4||215.385||153.846||123.077||338.462||369.231||707.692|| | |||
|- | |||
|7:6:3||215.385||184.615||92.308||307.692||400.000||707.692|| | |||
|- | |||
|9:4:2||276.923||123.077||61.538||338.462||400.000||738.462|| | |||
|- | |||
|9:5:1||276.923||153.846||30.769||307.692||430.769||738.462|| | |||
|- | |||
|11:2:1||338.462||61.538||30.769||369.231||400.000||769.231|| | |||
|- | |||
| rowspan="4" |[[40edo]]||8:5:3||240.000||150.000||90.000||330.000||390.000||720.000|| | |||
|- | |||
|8:7:1||240.000||210.000||30.000||270.000||450.000||720.000|| | |||
|- | |||
|10:3:2||300.000||90.000||60.000||360.000||390.000||750.000|| | |||
|- | |||
|10:4:1||300.000||120.000||30.000||330.000||420.000||750.000|| | |||
|- | |||
| rowspan="5" |[[41edo]]||7:6:4||204.878||175.610||117.073||321.951||380.488||702.439|| | |||
|- | |||
|9:4:3||263.415||117.073||87.805||351.220||380.488||731.707|| | |||
|- | |||
|9:5:2||263.415||146.341||58.537||321.951||409.756||731.707|| | |||
|- | |||
|9:6:1||263.415||175.610||29.268||292.683||439.024||731.707|| | |||
|- | |||
|11:3:1||321.951||87.805||29.268||351.220||409.756||760.976|| | |||
|- | |||
| rowspan="5" |[[42edo]]||8:5:4||228.571||142.857||114.286||342.857||371.429||714.286|| | |||
|- | |||
|8:6:3||228.571||171.429||85.714||314.286||400.000||714.286|| | |||
|- | |||
|8:7:2||228.571||200.000||57.143||285.714||428.571||714.286|| | |||
|- | |||
|10:5:1||285.714||142.857||28.571||314.286||428.571||742.857|| | |||
|- | |||
|12:2:1||342.857||57.143||28.571||371.429||400.000||771.429|| | |||
|- | |||
| rowspan="6" |[[43edo]]||7:6:5||195.349||167.442||139.535||334.884||362.791||697.674|| | |||
|- | |||
|9:5:3||251.163||139.535||83.721||334.884||390.698||725.581|| | |||
|- | |||
|9:6:2||251.163||167.442||55.814||306.977||418.605||725.581|| | |||
|- | |||
|9:7:1||251.163||195.349||27.907||279.070||446.512||725.581|| | |||
|- | |||
|11:3:2||306.977||83.721||55.814||362.791||390.698||753.488|| | |||
|- | |||
|11:4:1||306.977||111.628||27.907||334.884||418.605||753.488|| | |||
|- | |||
| rowspan="5" |[[44edo]]||8:7:3||218.182||190.909||81.818||300.000||409.091||709.091|| | |||
|- | |||
|10:4:3||272.727||109.091||81.818||354.545||381.818||736.364|| | |||
|- | |||
|10:5:2||272.727||136.364||54.545||327.273||409.091||736.364|| | |||
|- | |||
|10:6:1||272.727||163.636||27.273||300.000||436.364||736.364|| | |||
|- | |||
|12:3:1||327.273||81.818||27.273||354.545||409.091||763.636|| | |||
|- | |||
| rowspan="6" |[[45edo]]||9:5:4||240.000||133.333||106.667||346.667||373.333||720.000|| | |||
|- | |||
|9:7:2||240.000||186.667||53.333||293.333||426.667||720.000|| | |||
|- | |||
|9:8:1||240.000||213.333||26.667||266.667||453.333||720.000|| | |||
|- | |||
|11:4:2||293.333||106.667||53.333||346.667||400.000||746.667|| | |||
|- | |||
|11:5:1||293.333||133.333||26.667||320.000||426.667||746.667|| | |||
|- | |||
|13:2:1||346.667||53.333||26.667||373.333||400.000||773.333|| | |||
|- | |||
| rowspan="6" |[[46edo]]||8:6:5||208.696||156.522||130.435||339.130||365.217||704.348|| | |||
|- | |||
|8:7:4||208.696||182.609||104.348||313.043||391.304||704.348|| | |||
|- | |||
|10:5:3||260.870||130.435||78.261||339.130||391.304||730.435|| | |||
|- | |||
|10:7:1||260.870||182.609||26.087||286.957||443.478||730.435|| | |||
|- | |||
|12:3:2||313.043||78.261||52.174||365.217||391.304||756.522|| | |||
|- | |||
|12:4:1||313.043||104.348||26.087||339.130||417.391||756.522|| | |||
|- | |||
| rowspan="7" |[[47edo]]||9:6:4||229.787||153.191||102.128||331.915||382.979||714.894|| | |||
|- | |||
|9:7:3||229.787||178.723||76.596||306.383||408.511||714.894|| | |||
|- | |||
|9:8:2||229.787||204.255||51.064||280.851||434.043||714.894|| | |||
|- | |||
|11:4:3||280.851||102.128||76.596||357.447||382.979||740.426|| | |||
|- | |||
|11:5:2||280.851||127.660||51.064||331.915||408.511||740.426|| | |||
|- | |||
|11:6:1||280.851||153.191||25.532||306.383||434.043||740.426|| | |||
|- | |||
|13:3:1||331.915||76.596||25.532||357.447||408.511||765.957|| | |||
|- | |||
| rowspan="7" |[[48edo]]||8:7:5||200.000||175.000||125.000||325.000||375.000||700.000|| | |||
|- | |||
|10:5:4||250.000||125.000||100.000||350.000||375.000||725.000|| | |||
|- | |||
|10:6:3||250.000||150.000||75.000||325.000||400.000||725.000|| | |||
|- | |||
|10:7:2||250.000||175.000||50.000||300.000||425.000||725.000|| | |||
|- | |||
|10:8:1||250.000||200.000||25.000||275.000||450.000||725.000|| | |||
|- | |||
|12:5:1||300.000||125.000||25.000||325.000||425.000||750.000|| | |||
|- | |||
|14:2:1||350.000||50.000||25.000||375.000||400.000||775.000|| | |||
|- | |- | ||
|[[ | | rowspan="8" |[[49edo]]||9:6:5||220.408||146.939||122.449||342.857||367.347||710.204|| | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |9:7:4||220.408||171.429||97.959||318.367||391.837||710.204|| | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |9:8:3||220.408||195.918||73.469||293.878||416.327||710.204|| | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |11:5:3||269.388||122.449||73.469||342.857||391.837||734.694|| | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |11:6:2||269.388||146.939||48.980||318.367||416.327||734.694|| | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |11:7:1||269.388||171.429||24.490||293.878||440.816||734.694|| | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |13:3:2||318.367||73.469||48.980||367.347||391.837||759.184|| | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |13:4:1||318.367||97.959||24.490||342.857||416.327||759.184|| | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
|[[ | | rowspan="7" |[[50edo]]||8:7:6||192.000||168.000||144.000||336.000||360.000||696.000|| | ||
|7:6 | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |10:7:3||240.000||168.000||72.000||312.000||408.000||720.000|| | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |10:9:1||240.000||216.000||24.000||264.000||456.000||720.000|| | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |12:4:3||288.000||96.000||72.000||360.000||384.000||744.000|| | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |12:5:2||288.000||120.000||48.000||336.000||408.000||744.000|| | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |12:6:1||288.000||144.000||24.000||312.000||432.000||744.000|| | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |14:3:1||336.000||72.000||24.000||360.000||408.000||768.000|| | ||
| | |||
| | |||
| | |||
|360 | |||
| | |||
| | |||
| | |||
| | |||
|} | |} | ||
Revision as of 22:22, 1 June 2023
Nicetone (also known as the Zarlino pattern or Ptolemaic-Auric diatonic) is a 7-note Maximum variety 3 scale with the step pattern 3L 2m 2s. Nicetone is a chiral scale with left-handed (LmLsmLs) and right-handed (LmLsLms) variants that are rotationally non-equivalent. 15edo is the first equal division that supports nicetone.
Nicetone has the same pattern of the 5-limit Zarlino scale, though it encompasses the whole range of 3L 2m 2s. It's also a subset of the 5L 2m 3s blackdye scale.
Nicetone is intermediate between the 5L 2s diatonic scale and the 3L 4s neutral scale.
Nicetone can be tuned as a 5-limit JI scale or a tempered version thereof, where L represents 9/8, m represents 10/9, and s represents 16/15.
Name | Structure | Step Sizes | Graphical Representation |
---|---|---|---|
Mosh | 3L 4s | 7\41, 5\41 | ├──────┼────┼────┼──────┼────┼──────┼────┤ |
Nicetone | 3L 2m 2s | 7\41, 6\41, 4\41 | ├──────┼─────┼───┼──────┼─────┼──────┼───┤ |
Diatonic | 5L 2s | 7\41, 3\41 | ├──────┼──────┼──┼──────┼──────┼──────┼──┤ |
Name | Structure | Step Sizes | Graphical Representation |
---|---|---|---|
Mosh | 3L 4s | 7\33, 3\33 | ├──┼──────┼──┼──────┼──┼──┼──────┤ |
Nicetone | 3L 2m 2s | 7\33, 4\33, 2\33 | ├───┼──────┼─┼──────┼───┼─┼──────┤ |
Antipentic | 3L 2s | 7\33, 6\33 | ├─────┼──────╫──────┼─────╫──────┤ |
Intervals
The following is a table of nicetone intervals and their abstract sizes in terms of L, m and s. Given concrete sizes of L, m and s in EDO steps or cents, you can compute the concrete size of any interval in nicetone using the following expressions.
Interval class | Sizes | 5-limit JI | 15edo (L:m:s = 3:2:1) |
41edo (L:m:s = 7:6:4) | |
---|---|---|---|---|---|
Second (1-step) |
small | s | 16/15, 111.73¢ | 1\15, 80.00¢ | 4\41, 117.07¢ |
medium | m | 10/9, 182.40¢ | 2\15, 160.00¢ | 6\41, 175.61¢ | |
large | L | 9/8, 203.91¢ | 3\15, 240.00¢ | 7\41, 204.88¢ | |
Third (2-step) |
small | m + s | 32/27, 294.13¢ | 3\15, 240.00¢ | 10\41, 292.68¢ |
medium | L + s | 6/5, 315.64¢ | 4\15, 320.00¢ | 11\41, 321.95¢ | |
large | L + m | 5/4, 386.31¢ | 5\15, 400.00¢ | 13\41, 380.49¢ | |
Fourth (3-step) |
small | L + m + s | 4/3, 498.04¢ | 6\15, 480.00¢ | 17\41, 497.56¢ |
medium | 2L + s | 27/20, 519.55¢ | 7\15, 560.00¢ | 18\41, 526.83¢ | |
large | 2L + m | 45/32, 590.22¢ | 8\15, 640.00¢ | 20\41, 585.37¢ | |
Fifth (4-step) |
small | L + m + 2s | 64/45, 609.78¢ | 7\15, 560.00¢ | 21\41, 614.63¢ |
medium | L + 2m + s | 40/27, 680.45¢ | 8\15, 640.00¢ | 23\41, 673.17¢ | |
large | 2L + m + s | 3/2, 701.96¢ | 9\15, 720.00¢ | 24\41, 702.44¢ | |
Sixth (5-step) |
small | 2L + m + 2s | 8/5, 813.69¢ | 10\15, 800.00¢ | 28\41, 819.51¢ |
medium | 2L + 2m + s | 5/3, 884.36¢ | 11\15, 880.00¢ | 30\41, 878.05¢ | |
large | 3L + m + s | 27/16, 905.87¢ | 12\15, 960.00¢ | 31\41, 907.32¢ | |
Seventh (6-step) |
small | 2L + 2m + 2s | 16/9, 996.09¢ | 12\15, 960.00¢ | 34\41, 995.12¢ |
medium | 3L + m + 2s | 9/5, 1017.60¢ | 13\15, 1040.00¢ | 35\41, 1024.39¢ | |
large | 3L + 2m + s | 15/8, 1088.27¢ | 14\15, 1120.00¢ | 37\41, 1082.93¢ |
Modes
Nicetone has 14 modes total, with 7 LH and 7 RH modes. The names are based on their diatonic (5L 2s) counterparts.
The modes are arranged by brightest to darkest.
Left handed | Right handed |
---|---|
LmLsmLs LH Nice-Lydian |
LmLsLms RH Nice-Lydian |
mLsLmLs LH Nice-Ionian |
LmsLmLs RH Nice-Ionian |
mLsmLsL LH Nice-Mixolydian |
mLsLmsL RH Nice-Mixolydian |
LsLmLsm LH Nice-Dorian |
msLmLsL RH Nice-Dorian |
LsmLsLm LH Nice-Aeolian |
LsLmsLm RH Nice-Aeolian |
sLmLsmL LH Nice-Phrygian |
sLmLsLm RH Nice-Phrygian |
smLsLmL LH Nice-Locrian |
sLmsLmL RH Nice-Locrian |
Tunings
Tuning range (in octaves) | |
---|---|
Outer generator (G1 = 2L + m + s) |
[math]\displaystyle{ \displaystyle \frac{4}{7} < G_\text{1} < \frac{2}{3} }[/math] |
RH inner generator (G2R = L + m) |
[math]\displaystyle{ \displaystyle \frac{1}{2} G_\text{1} < G_\text{2R} < 4 G_\text{1} - 2 \text{ for } \frac{4}{7} < G_\text{1} ≤ \frac{3}{5} }[/math] [math]\displaystyle{ \displaystyle \frac{1}{2} G_\text{1} < G_\text{2R} < 1 - G_\text{1} \text{ for }\frac{3}{5} ≤ G_\text{1} < \frac{2}{3} }[/math] |
LH inner generator (G2L = L + s) |
[math]\displaystyle{ \displaystyle 2 - 3 G_\text{1} < G_\text{2L} < \frac{1}{2} G_\text{1} \text{ for }\frac{4}{7} < G_\text{1} ≤ \frac{3}{5} }[/math] [math]\displaystyle{ \displaystyle 2 G_\text{1} - 1 < G_\text{2L} < \frac{1}{2} G_\text{1} \text{ for }\frac{3}{5} ≤ G_\text{1} < \frac{2}{3} }[/math] |
Large step (L = 2G1 - 1) |
[math]\displaystyle{ \displaystyle \frac{1}{7} < L < \frac{1}{3} }[/math] |
Middle step (m = 1 - G1 - G2L) |
[math]\displaystyle{ \displaystyle \frac{1}{4} (1 - 3 L) < M < L \text{ for } \frac{1}{7} < L ≤ \frac{1}{5} }[/math] [math]\displaystyle{ \displaystyle \frac{1}{4} (1 - 3 L) < M < \frac{1}{2} (1 - 3 L) \text{ for } \frac{1}{5} ≤ L < \frac{1}{3} }[/math] |
Small step (s = 1 - G1 - G2R) |
[math]\displaystyle{ \displaystyle \frac{1}{2} (1 - 5 L) < S < \frac{1}{4} (1 - 3 L) \text{ for } \frac{1}{7} < L ≤ \frac{1}{5} }[/math] [math]\displaystyle{ \displaystyle 0 < S < \frac{1}{4} (1 - 3 L) \text{ for } \frac{1}{5} ≤ L < \frac{1}{3} }[/math] |
Tuning | L:m:s | Size of step (¢) | Inner generator | Outer generator (2L+m+s) |
Comments | |||
---|---|---|---|---|---|---|---|---|
L | m | s | LH (L+s) | RH (L+m) | ||||
5-limit JI | 203.910 | 182.404 | 111.731 | 315.641 | 386.314 | 701.955 | L=9/8, m=10/9, s=16/15 | |
15edo | 3:2:1 | 240.000 | 160.000 | 80.000 | 320.000 | 400.000 | 720.000 | |
18edo | 4:2:1 | 266.667 | 133.333 | 66.667 | 333.333 | 400.000 | 733.333 | |
20edo | 4:3:1 | 240.000 | 180.000 | 60.000 | 300.000 | 420.000 | 720.000 | |
21edo | 5:2:1 | 285.714 | 114.286 | 57.143 | 342.857 | 400.000 | 742.857 | |
22edo | 4:3:2 | 218.182 | 163.636 | 109.091 | 327.273 | 381.818 | 709.091 | |
23edo | 5:3:1 | 260.870 | 156.522 | 52.174 | 313.043 | 417.391 | 730.435 | |
24edo | 6:2:1 | 300.000 | 100.000 | 50.000 | 350.000 | 400.000 | 750.000 | |
25edo | 5:3:2 | 240.000 | 144.000 | 96.000 | 336.000 | 384.000 | 720.000 | |
5:4:1 | 240.000 | 192.000 | 48.000 | 288.000 | 432.000 | 720.000 | ||
26edo | 6:3:1 | 276.923 | 138.462 | 46.154 | 323.077 | 415.385 | 738.462 | |
27edo | 5:4:2 | 222.222 | 177.778 | 88.889 | 311.111 | 400.000 | 711.111 | |
7:2:1 | 311.111 | 88.889 | 44.444 | 355.556 | 400.000 | 755.556 | ||
28edo | 6:3:2 | 257.143 | 128.571 | 85.714 | 342.857 | 385.714 | 728.571 | |
6:4:1 | 257.143 | 171.429 | 42.857 | 300.000 | 428.571 | 728.571 | ||
29edo | 5:4:3 | 206.897 | 165.517 | 124.138 | 331.034 | 372.414 | 703.448 | |
7:3:1 | 289.655 | 124.138 | 41.379 | 331.034 | 413.793 | 744.828 | ||
30edo | 6:5:1 | 240.000 | 200.000 | 40.000 | 280.000 | 440.000 | 720.000 | |
8:2:1 | 320.000 | 80.000 | 40.000 | 360.000 | 400.000 | 760.000 | ||
31edo | 7:3:2 | 270.968 | 116.129 | 77.419 | 348.387 | 387.097 | 735.484 | |
7:4:1 | 270.968 | 154.839 | 38.710 | 309.677 | 425.806 | 735.484 | ||
32edo | 6:4:3 | 225.000 | 150.000 | 112.500 | 337.500 | 375.000 | 712.500 | |
6:5:2 | 225.000 | 187.500 | 75.000 | 300.000 | 412.500 | 712.500 | ||
8:3:1 | 300.000 | 112.500 | 37.500 | 337.500 | 412.500 | 750.000 | ||
33edo | 7:4:2 | 254.545 | 145.455 | 72.727 | 327.273 | 400.000 | 727.273 | |
7:5:1 | 254.545 | 181.818 | 36.364 | 290.909 | 436.364 | 727.273 | ||
9:2:1 | 327.273 | 72.727 | 36.364 | 363.636 | 400.000 | 763.636 | ||
34edo | 6:5:3 | 211.765 | 176.471 | 105.882 | 317.647 | 388.235 | 705.882 | |
8:3:2 | 282.353 | 105.882 | 70.588 | 352.941 | 388.235 | 741.176 | ||
8:4:1 | 282.353 | 141.176 | 35.294 | 317.647 | 423.529 | 741.176 | ||
35edo | 7:4:3 | 240.000 | 137.143 | 102.857 | 342.857 | 377.143 | 720.000 | |
7:5:2 | 240.000 | 171.429 | 68.571 | 308.571 | 411.429 | 720.000 | ||
7:6:1 | 240.000 | 205.714 | 34.286 | 274.286 | 445.714 | 720.000 | ||
9:3:1 | 308.571 | 102.857 | 34.286 | 342.857 | 411.429 | 754.286 | ||
36edo | 6:5:4 | 200.000 | 166.667 | 133.333 | 333.333 | 366.667 | 700.000 | |
8:5:1 | 266.667 | 166.667 | 33.333 | 300.000 | 433.333 | 733.333 | ||
10:2:1 | 333.333 | 66.667 | 33.333 | 366.667 | 400.000 | 766.667 | ||
37edo | 7:5:3 | 227.027 | 162.162 | 97.297 | 324.324 | 389.189 | 713.514 | |
7:6:2 | 227.027 | 194.595 | 64.865 | 291.892 | 421.622 | 713.514 | ||
9:3:2 | 291.892 | 97.297 | 64.865 | 356.757 | 389.189 | 745.946 | ||
9:4:1 | 291.892 | 129.730 | 32.432 | 324.324 | 421.622 | 745.946 | ||
38edo | 8:4:3 | 252.632 | 126.316 | 94.737 | 347.368 | 378.947 | 726.316 | |
8:5:2 | 252.632 | 157.895 | 63.158 | 315.789 | 410.526 | 726.316 | ||
8:6:1 | 252.632 | 189.474 | 31.579 | 284.211 | 442.105 | 726.316 | ||
10:3:1 | 315.789 | 94.737 | 31.579 | 347.368 | 410.526 | 757.895 | ||
39edo | 7:5:4 | 215.385 | 153.846 | 123.077 | 338.462 | 369.231 | 707.692 | |
7:6:3 | 215.385 | 184.615 | 92.308 | 307.692 | 400.000 | 707.692 | ||
9:4:2 | 276.923 | 123.077 | 61.538 | 338.462 | 400.000 | 738.462 | ||
9:5:1 | 276.923 | 153.846 | 30.769 | 307.692 | 430.769 | 738.462 | ||
11:2:1 | 338.462 | 61.538 | 30.769 | 369.231 | 400.000 | 769.231 | ||
40edo | 8:5:3 | 240.000 | 150.000 | 90.000 | 330.000 | 390.000 | 720.000 | |
8:7:1 | 240.000 | 210.000 | 30.000 | 270.000 | 450.000 | 720.000 | ||
10:3:2 | 300.000 | 90.000 | 60.000 | 360.000 | 390.000 | 750.000 | ||
10:4:1 | 300.000 | 120.000 | 30.000 | 330.000 | 420.000 | 750.000 | ||
41edo | 7:6:4 | 204.878 | 175.610 | 117.073 | 321.951 | 380.488 | 702.439 | |
9:4:3 | 263.415 | 117.073 | 87.805 | 351.220 | 380.488 | 731.707 | ||
9:5:2 | 263.415 | 146.341 | 58.537 | 321.951 | 409.756 | 731.707 | ||
9:6:1 | 263.415 | 175.610 | 29.268 | 292.683 | 439.024 | 731.707 | ||
11:3:1 | 321.951 | 87.805 | 29.268 | 351.220 | 409.756 | 760.976 | ||
42edo | 8:5:4 | 228.571 | 142.857 | 114.286 | 342.857 | 371.429 | 714.286 | |
8:6:3 | 228.571 | 171.429 | 85.714 | 314.286 | 400.000 | 714.286 | ||
8:7:2 | 228.571 | 200.000 | 57.143 | 285.714 | 428.571 | 714.286 | ||
10:5:1 | 285.714 | 142.857 | 28.571 | 314.286 | 428.571 | 742.857 | ||
12:2:1 | 342.857 | 57.143 | 28.571 | 371.429 | 400.000 | 771.429 | ||
43edo | 7:6:5 | 195.349 | 167.442 | 139.535 | 334.884 | 362.791 | 697.674 | |
9:5:3 | 251.163 | 139.535 | 83.721 | 334.884 | 390.698 | 725.581 | ||
9:6:2 | 251.163 | 167.442 | 55.814 | 306.977 | 418.605 | 725.581 | ||
9:7:1 | 251.163 | 195.349 | 27.907 | 279.070 | 446.512 | 725.581 | ||
11:3:2 | 306.977 | 83.721 | 55.814 | 362.791 | 390.698 | 753.488 | ||
11:4:1 | 306.977 | 111.628 | 27.907 | 334.884 | 418.605 | 753.488 | ||
44edo | 8:7:3 | 218.182 | 190.909 | 81.818 | 300.000 | 409.091 | 709.091 | |
10:4:3 | 272.727 | 109.091 | 81.818 | 354.545 | 381.818 | 736.364 | ||
10:5:2 | 272.727 | 136.364 | 54.545 | 327.273 | 409.091 | 736.364 | ||
10:6:1 | 272.727 | 163.636 | 27.273 | 300.000 | 436.364 | 736.364 | ||
12:3:1 | 327.273 | 81.818 | 27.273 | 354.545 | 409.091 | 763.636 | ||
45edo | 9:5:4 | 240.000 | 133.333 | 106.667 | 346.667 | 373.333 | 720.000 | |
9:7:2 | 240.000 | 186.667 | 53.333 | 293.333 | 426.667 | 720.000 | ||
9:8:1 | 240.000 | 213.333 | 26.667 | 266.667 | 453.333 | 720.000 | ||
11:4:2 | 293.333 | 106.667 | 53.333 | 346.667 | 400.000 | 746.667 | ||
11:5:1 | 293.333 | 133.333 | 26.667 | 320.000 | 426.667 | 746.667 | ||
13:2:1 | 346.667 | 53.333 | 26.667 | 373.333 | 400.000 | 773.333 | ||
46edo | 8:6:5 | 208.696 | 156.522 | 130.435 | 339.130 | 365.217 | 704.348 | |
8:7:4 | 208.696 | 182.609 | 104.348 | 313.043 | 391.304 | 704.348 | ||
10:5:3 | 260.870 | 130.435 | 78.261 | 339.130 | 391.304 | 730.435 | ||
10:7:1 | 260.870 | 182.609 | 26.087 | 286.957 | 443.478 | 730.435 | ||
12:3:2 | 313.043 | 78.261 | 52.174 | 365.217 | 391.304 | 756.522 | ||
12:4:1 | 313.043 | 104.348 | 26.087 | 339.130 | 417.391 | 756.522 | ||
47edo | 9:6:4 | 229.787 | 153.191 | 102.128 | 331.915 | 382.979 | 714.894 | |
9:7:3 | 229.787 | 178.723 | 76.596 | 306.383 | 408.511 | 714.894 | ||
9:8:2 | 229.787 | 204.255 | 51.064 | 280.851 | 434.043 | 714.894 | ||
11:4:3 | 280.851 | 102.128 | 76.596 | 357.447 | 382.979 | 740.426 | ||
11:5:2 | 280.851 | 127.660 | 51.064 | 331.915 | 408.511 | 740.426 | ||
11:6:1 | 280.851 | 153.191 | 25.532 | 306.383 | 434.043 | 740.426 | ||
13:3:1 | 331.915 | 76.596 | 25.532 | 357.447 | 408.511 | 765.957 | ||
48edo | 8:7:5 | 200.000 | 175.000 | 125.000 | 325.000 | 375.000 | 700.000 | |
10:5:4 | 250.000 | 125.000 | 100.000 | 350.000 | 375.000 | 725.000 | ||
10:6:3 | 250.000 | 150.000 | 75.000 | 325.000 | 400.000 | 725.000 | ||
10:7:2 | 250.000 | 175.000 | 50.000 | 300.000 | 425.000 | 725.000 | ||
10:8:1 | 250.000 | 200.000 | 25.000 | 275.000 | 450.000 | 725.000 | ||
12:5:1 | 300.000 | 125.000 | 25.000 | 325.000 | 425.000 | 750.000 | ||
14:2:1 | 350.000 | 50.000 | 25.000 | 375.000 | 400.000 | 775.000 | ||
49edo | 9:6:5 | 220.408 | 146.939 | 122.449 | 342.857 | 367.347 | 710.204 | |
9:7:4 | 220.408 | 171.429 | 97.959 | 318.367 | 391.837 | 710.204 | ||
9:8:3 | 220.408 | 195.918 | 73.469 | 293.878 | 416.327 | 710.204 | ||
11:5:3 | 269.388 | 122.449 | 73.469 | 342.857 | 391.837 | 734.694 | ||
11:6:2 | 269.388 | 146.939 | 48.980 | 318.367 | 416.327 | 734.694 | ||
11:7:1 | 269.388 | 171.429 | 24.490 | 293.878 | 440.816 | 734.694 | ||
13:3:2 | 318.367 | 73.469 | 48.980 | 367.347 | 391.837 | 759.184 | ||
13:4:1 | 318.367 | 97.959 | 24.490 | 342.857 | 416.327 | 759.184 | ||
50edo | 8:7:6 | 192.000 | 168.000 | 144.000 | 336.000 | 360.000 | 696.000 | |
10:7:3 | 240.000 | 168.000 | 72.000 | 312.000 | 408.000 | 720.000 | ||
10:9:1 | 240.000 | 216.000 | 24.000 | 264.000 | 456.000 | 720.000 | ||
12:4:3 | 288.000 | 96.000 | 72.000 | 360.000 | 384.000 | 744.000 | ||
12:5:2 | 288.000 | 120.000 | 48.000 | 336.000 | 408.000 | 744.000 | ||
12:6:1 | 288.000 | 144.000 | 24.000 | 312.000 | 432.000 | 744.000 | ||
14:3:1 | 336.000 | 72.000 | 24.000 | 360.000 | 408.000 | 768.000 |
See also
- Blackdye, a 10-note scale that is an extension to nicetone.
- Zarlino, a 5-limit JI scale with the same pattern.
- Interdia - sister 2L 3m 2s scale
- Antinicetone - sister 2L 2m 3s scale
- 5L 2s - LM-equalized version of nicetone
- 5L 2s Muddles - other diatonic muddles
- 3L 4s - MS-equalized version of nicetone
- 3L 2s - collapsed version of nicetone