3L 1s (3/2-equivalent): Difference between revisions
CompactStar (talk | contribs) No edit summary |
ArrowHead294 (talk | contribs) m Clean up |
||
(7 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{URWTC}} | |||
{{Infobox MOS|Equalized=1|Collapsed=1|Pattern=LLLs}} | {{Infobox MOS|Equalized=1|Collapsed=1|Pattern=LLLs}} | ||
{{MOS intro}} The so-called "Super Ultra Hyper Mega Meta Lydian" is one mode of this mos. | |||
The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating [[3L 1s]]. The name of the period interval is called the '''sesquitave''' (by analogy to the [[tritave]]). The generator range is 171.4 to 240{{c}}, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fifth complement (480 to 514.3{{c}}). | |||
The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating [[3L 1s]]. The name of the period interval is called the '''sesquitave''' (by analogy to the [[tritave]]). The generator range is 171.4 to 240 | |||
In the fifth-repeating version of the diatonic scale, each tone has a 3/2 perfect fifth above it. The scale has two major chords and two minor chords. | In the fifth-repeating version of the diatonic scale, each tone has a 3/2 perfect fifth above it. The scale has two major chords and two minor chords. | ||
[[Basic]] Angel is in [[7edf]], which is a very good fifth-based equal tuning similar to [[12edo]]. | '''Angel''' is a proposed name for this mos. [[Basic]] Angel is in [[7edf]], which is a very good fifth-based equal tuning similar to [[12edo]]. | ||
==Notation== | == Notation == | ||
There are 4 main ways to notate the angel scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 4 naturals (eg. Do Re Mi Fa, Sol La Si Do). Given that {{dash|1, 5/4, 5/3}} is fifth-equivalent to a tone cluster of {{dash|1, 10/9, 5/4}}, it may be more convenient to notate angel scales as repeating at the double, triple or quadruple sesquitave (major ninth, thirteenth or seventeenth i. e. ~pentave), however it does make navigating the [[Generator|genchain]] harder. This way, 5/3 is its own pitch class, distinct from 10/9. Notating this way produces a major ninth which is the Aeolian mode of Napoli[6L 2s], a major thirteenth which is the Dorian mode of Bijou[9L 3s] or an ~pentave which is the Mixolydian mode of Hextone[12L 4s]. Since there are exactly 8 naturals in double sesquitave notation, 12 in triple sesquitave notation and 16 in quadruple sesquitave notation, letters A–H (FGABHCDEF) or dozenal or hex digits (0123456789XE0 or D1234567FGACD with flats written C molle or 0123456789ABCDEF0 or G123456789ABCDEFG with flats written F molle) may be used. | |||
{| class="wikitable" | {| class="wikitable" | ||
|+ style="font-size: 105%;" | Cents<ref name=":0">Fractions repeating more than 4 digits written as continued fractions</ref> | |||
|+ | |||
Cents<ref name=":0">Fractions repeating more than 4 digits written as continued fractions</ref> | |||
|- | |- | ||
! colspan="4" | Notation | |||
!Diatonic | ! Supersoft | ||
! Soft | |||
!Napoli | ! Semisoft | ||
! Basic | |||
!Bijou | ! Semihard | ||
!Hextone | ! Hard | ||
!~15edf | ! Superhard | ||
|- | |||
!~11edf | ! Diatonic | ||
! Napoli | |||
!~18edf | ! Bijou | ||
! Hextone | |||
!~7edf | ! ~15edf | ||
! ~11edf | |||
!~17edf | ! ~18edf | ||
! ~7edf | |||
!~10edf | ! ~17edf | ||
! ~10edf | |||
!~13edf | ! ~13edf | ||
|- | |||
|- | | Do#, Sol# | ||
| F# | |||
|Do#, Sol# | | 0#, D# | ||
| 0#, G# | |||
|F# | | 1\1546; 6.5 | ||
| 1\1163: 6.{{Overline|3}} | |||
|0#, D# | | 2\1877; 2, 2.6 | ||
|0#, G# | | rowspan="2" | 1\7 100 | ||
|1\ | | 3\17124; 7.25 | ||
| 2\10141; 5.{{Overline|6}} | |||
| 3\13 163.{{Overline|63}} | |||
|1\ | |- | ||
| Reb, Lab | |||
| Gb | |||
|2\ | | 1b, 1c | ||
| 1f | |||
| 3\15138; 3.25 | |||
| rowspan="2" |1\7 | | 2\11126; 3.1{{Overline|6}} | ||
| 3\18116; 7.75 | |||
100 | | 2\1782; 1.3{{Overline|18}} | ||
| 1\1070; 1.7 | |||
|3\ | | 1\13 54.{{Overline|54}} | ||
|- | |||
| '''Re, La''' | |||
|2\ | | '''G''' | ||
| '''1''' | |||
| '''1''' | |||
|3\13 | | '''4\15''''''184; 1.625''' | ||
| '''3\11''''''189; 2.{{Overline|1}}''' | |||
163.{{Overline|63}} | | '''5\18''''''193; 1, 1, 4.{{Overline|6}}''' | ||
| '''2\7''' '''200''' | |||
|- | | '''5\17''''''206; 1, 8.{{Overline|6}}''' | ||
| '''3\10''''''211; 1, 3.25''' | |||
|Reb, Lab | | '''4\13''' '''218.{{Overline|18}}''' | ||
|- | |||
|Gb | | Re#, La# | ||
| G# | |||
|1b, 1c | | 1# | ||
|1f | | 1# | ||
|3\ | | 5\15230; 1.3 | ||
| 4\11252; 1.58{{Overline|3}} | |||
| 7\18270; 1.0{{Overline|3}} | |||
|2\ | | rowspan="2" | 3\7 300 | ||
| 8\17331; 29 | |||
| 5\10352; 1.0625 | |||
|3\ | | 7\13 381.{{Overline|81}} | ||
|- | |||
| Mib, Sib | |||
|2\ | | Ab | ||
| 2b, 2c | |||
| 2f | |||
|1\ | | 7\15323; 13 | ||
| 5\11315; 1.2{{Overline|6}} | |||
| 8\18309; 1, 2.1 | |||
|1\13 | | 7\17289; 1, 1.9 | ||
| 4\10282; 2.8{{Overline|3}} | |||
54.{{Overline|54}} | | 5\13 272.{{Overline|72}} | ||
|- | |||
|- | | Mi, Si | ||
| A | |||
|'''Re, La''' | | 2 | ||
| 2 | |||
|'''G''' | | 8\15369; 4.{{Overline|3}} | ||
| 6\11378; 1.0{{Overline|5}} | |||
|'''1''' | | 10\18387; 10.{{Overline|3}} | ||
|'''1''' | | 4\7 400 | ||
| 10\17413; 1, 3.8{{Overline|3}} | |||
|'''4\15''' | | 6\10423; 1.{{Overline|8}} | ||
'''184; 1.625''' | | 8\13 436.{{Overline|36}} | ||
|- | |||
|'''3\11''' | | Mi#, Si# | ||
'''189; 2.{{Overline|1}}''' | | A# | ||
| 2# | |||
|'''5\18''' | | 2# | ||
'''193; 1, 1, 4.{{Overline|6}}''' | | 9\15415; 2.6 | ||
| rowspan="2" | 7\11442; 9.5 | |||
|'''2\7''' | | 12\18464; 1.0625 | ||
| 5\7 500 | |||
'''200''' | | 13\17537; 14.5 | ||
| 8\10564; 1.41{{Overline|6}} | |||
|'''5\17''' | | 11\13 600 | ||
'''206; 1, 8.{{Overline|6}}''' | |- | ||
| Fab, Dob | |||
|'''3\10''' | | Bbb | ||
'''211; 1, 3.25''' | | 3b, 3c | ||
| 3f | |||
|'''4\13''' | | 10\15461; 1, 1.1{{Overline|6}} | ||
| 11\18425; 1.24 | |||
'''218.{{Overline|18}}''' | | 4\7 400 | ||
| 9\17372; 2.41{{Overline|6}} | |||
|- | | 5\10352; 1.0625 | ||
| 6\13 327.{{Overline|27}} | |||
|Re#, La# | |- | ||
| '''Fa, Do''' | |||
|G# | | '''Bb''' | ||
| '''3''' | |||
|1# | | '''3''' | ||
|1# | | '''11\15''''''507; 1.{{Overline|4}}''' | ||
|5\ | | '''8\11''''''505; 3.8''' | ||
| '''13\18''''''503; 4, 2.{{Overline|3}}''' | |||
| '''5\7''' '''500''' | |||
|4\ | | '''12\17''''''496; 1.8125''' | ||
| '''7\10''''''494; 8.5''' | |||
| '''9\13''' '''490.{{Overline|90}}''' | |||
|7\ | |- | ||
| Fa#, Do# | |||
| B | |||
| rowspan="2" |3\7 | | 3# | ||
| 3# | |||
300 | | 12\15553; 1.{{Overline|18}} | ||
| 9\11568; 2.375 | |||
|8\ | | 15\18580; 1.55 | ||
| 6\7 600 | |||
| 15\17620; 1.45 | |||
|5\ | | 9\10635; 3.4 | ||
| 12\13 654.{{Overline|54}} | |||
|- | |||
|7\13 | | Fax, Dox | ||
| B# | |||
381.{{Overline|81}} | | 3x | ||
| 3x | |||
|- | | 13\15 600 | ||
| rowspan="2" | 10\11 631; 1.{{Overline|72}} | |||
|Mib, Sib | | 17\18 658; 15.5 | ||
| 7\7 700 | |||
|Ab | | 18\17 744; 1.208{{Overline|3}} | ||
| 11\10 776; 2.125 | |||
|2b, 2c | | 15\13 818.{{Overline|18}} | ||
|2f | |- | ||
|7\ | | Dob, Solb | ||
| Hb | |||
| 4b, 4c | |||
|5\ | | 4f | ||
| 14\15 646; 6.5 | |||
| 16\18 619; 2.{{Overline|81}} | |||
|8\ | | 6\7 600 | ||
| 14\17 579; 3.{{Overline|2}} | |||
| 8\10564; 1.41{{Overline|6}} | |||
|7\ | | 10\13 545.{{Overline|45}} | ||
|- | |||
! Do, Sol | |||
|4\ | ! H | ||
! 4 | |||
! 4 | |||
|5\13 | ! '''15\15''' '''692; 3.25''' | ||
! '''11\11''' '''694; 1, 2.8''' | |||
272.{{Overline|72}} | ! '''18\18''' '''696; 1.291'''{{Overline|6}} | ||
! '''7\7''' '''700''' | |||
|- | ! '''17\17''' '''703; 2, 2.1'''{{Overline|6}} | ||
! '''10\10''' '''705; 1.1'''{{Overline|3}} | |||
|Mi, Si | ! '''13\13''' '''709.'''{{Overline|09}} | ||
|- | |||
|A | | Do#, Sol# | ||
| Η# | |||
|2 | | 4# | ||
|2 | | 4# | ||
|8\ | | 16\15 738; 2.1{{Overline|6}} | ||
| 12\11 757; 1, 8.5 | |||
| 20\18 774; 5, 6 | |||
|6\ | | rowspan="2" | 8\8 800 | ||
| 20\17 827; 1, 1.41{{Overline|6}} | |||
| 12\10 847; 17 | |||
|10\ | | 16\13 872.{{Overline|72}} | ||
|- | |||
| Reb, Lab | |||
|4\7 | | Cb | ||
| 5b, 5c | |||
| 5 | |||
| 18\15 830; 1.3 | |||
|10\ | | 13\11 821; 19 | ||
| 21\18 812; 1, 9.{{Overline|3}} | |||
| 19\17 786; 4.8{{Overline|3}} | |||
|6\ | | 11\10 776; 2.125 | ||
| 14\13 763.{{Overline|63}} | |||
|- | |||
|8\13 | | '''Re, La''' | ||
| '''C''' | |||
436.{{Overline|36}} | | '''5''' | ||
| '''5''' | |||
|- | | '''19\15''' '''876; 1.08{{Overline|3}}''' | ||
| '''14\11''' '''884; 4.75''' | |||
|Mi#, Si# | | '''23\18''' '''890; 3.1''' | ||
| '''9\5''' '''900''' | |||
|A# | | '''22\17''' '''910; 2.9''' | ||
| '''13\10''' '''917; 1.{{Overline|54}}''' | |||
|2# | | '''17\13''' '''927.{{Overline|27}}''' | ||
|2# | |- | ||
|9\ | | Re#, La# | ||
| C# | |||
| 5# | |||
| rowspan="2" |7\ | |||
|12\ | |||
|5\7 | |||
500 | |||
|13\ | |||
|8\ | |||
|11\13 | |||
600 | |||
|- | |||
|Fab, Dob | |||
|Bbb | |||
|3b, 3c | |||
|3f | |||
|10\ | |||
|11\ | |||
|4\7 | |||
400 | |||
|9\ | |||
|5\ | |||
|6\13 | |||
327.{{Overline|27}} | |||
|- | |||
|'''Fa, Do''' | |||
|'''Bb''' | |||
|'''3''' | |||
|'''3''' | |||
|'''11\15''' | |||
'''507; 1.{{Overline|4}}''' | |||
|'''8\11''' | |||
'''505; 3.8''' | |||
|'''13\18''' | |||
'''503; 4, 2.{{Overline|3}}''' | |||
|'''5\7''' | |||
'''500''' | |||
|'''12\17''' | |||
'''496; 1.8125''' | |||
|'''7\10''' | |||
'''494; 8.5''' | |||
|'''9\13''' | |||
'''490.{{Overline|90}}''' | |||
|- | |||
|Fa#, Do# | |||
|B | |||
|3# | |||
|3# | |||
|12\ | |||
|9\ | |||
|15\ | |||
|6\7 | |||
600 | |||
|15\ | |||
|9\ | |||
|12\13 | |||
654.{{Overline|54}} | |||
|- | |||
|Fax, Dox | |||
|B# | |||
|3x | |||
|3x | |||
|13\15 | |||
600 | |||
| rowspan="2" |10\11 | |||
631; 1.{{Overline|72}} | |||
|17\18 | |||
658; 15.5 | |||
|7\7 | |||
700 | |||
|18\17 | |||
744; 1.208{{Overline|3}} | |||
|11\10 | |||
776; 2.125 | |||
|15\13 | |||
|- | |||
|Dob, Solb | |||
|Hb | |||
| 4b, 4c | |||
|4f | |||
|14\15 | |||
646; 6.5 | |||
|16\18 | |||
619; 2.{{Overline|81}} | |||
|6\7 | |||
600 | |||
|14\17 | |||
579; 3.{{Overline|2}} | |||
|8\ | |||
|10\13 | |||
545.{{Overline|45}} | |||
|- | |||
!Do, Sol | |||
!H | |||
!4 | |||
!4 | |||
!'''15\15''' | |||
'''692; 3.25''' | |||
!'''11\11''' | |||
'''694; 1, 2.8''' | |||
!'''18\18''' | |||
'''696; 1.291'''{{Overline|6}} | |||
!'''7\7''' | |||
'''700''' | |||
!'''17\17''' | |||
'''703; 2, 2.1'''{{Overline|6}} | |||
!'''10\10''' | |||
'''705; 1.1'''{{Overline|3}} | |||
!'''13\13''' | |||
'''709.'''{{Overline|09}} | |||
|- | |||
|Do#, Sol# | |||
|Η# | |||
|4# | |||
|4# | |||
|16\15 | |||
738; 2.1{{Overline|6}} | |||
|12\11 | |||
757; 1, 8.5 | |||
| 20\18 | |||
774; 5, 6 | |||
| rowspan="2" | 8\8 | |||
800 | |||
|20\17 | |||
827; 1, 1.41{{Overline|6}} | |||
|12\10 | |||
847; 17 | |||
| 16\13 | |||
|- | |||
|Reb, Lab | |||
|Cb | |||
|5b, 5c | |||
|5 | |||
|18\15 | |||
830; 1.3 | |||
|13\11 | |||
821; 19 | |||
| 21\18 | |||
812; 1, 9.{{Overline|3}} | |||
| 19\17 | |||
786; 4.8{{Overline|3}} | |||
| 11\10 | |||
776; 2.125 | |||
| 14\13 | |||
763.{{Overline|63}} | |||
|- | |||
|'''Re, La''' | |||
|'''C''' | |||
|'''5''' | |||
|'''5''' | |||
|'''19\15''' | |||
'''876; 1.08{{Overline|3}}''' | |||
|'''14\11''' | |||
'''884; 4.75''' | |||
|'''23\18''' | |||
'''890; 3.1''' | |||
|'''9\5''' | |||
'''900''' | |||
|'''22\17''' | |||
'''910; 2.9''' | |||
|'''13\10''' | |||
'''917; 1.{{Overline|54}}''' | |||
|'''17\13''' | |||
'''927.{{Overline|27}}''' | |||
|- | |||
| Re#, La# | |||
|C# | |||
| 5# | | 5# | ||
| | | 20\15 923: 13 | ||
|20\15 | | 15\11 947; 2, 1.4 | ||
| 25\18 967; 1, 2.875 | |||
| rowspan="2" | 10\7 1000 | |||
| 25\17 1034; 2, 14 | |||
|15\11 | | 15\10 1058; 1, 4.{{Overline|6}} | ||
| 20\13 1090.{{Overline|90}} | |||
|- | |||
| Mib, Sib | |||
|25\18 | | Db | ||
| 6b, 6c | |||
| 6f | |||
| 22\15 1015; 2.6 | |||
| rowspan="2" |10\7 | | 16\11 1010; 1.9 | ||
| 26\18 1006; 2, 4.{{Overline|6}} | |||
| 24\17 993; 9.{{Overline|6}} | |||
| 14\10 988; 4.25 | |||
|25\17 | | 18\13 981.{{Overline|81}} | ||
|- | |||
| Mi, Si | |||
| D | |||
| 15\10 | | 6 | ||
| 6 | |||
| 23\15 1061; 1, 1.1{{Overline|6}} | |||
| 17\11 1073; 1, 2.1{{Overline|6}} | |||
|20\13 | | 28\18 1083; 1.{{Overline|148}} | ||
| 11\7 1100 | |||
| 27\17 1117; 4, 7 | |||
| 16\10 1129; 2, 2.{{Overline|3}} | |||
| 21\9 1145.{{Overline|45}} | |||
|- | |||
| Mi#, Si# | |||
| D# | |||
| 6# | |||
| 6# | |||
| 24\15 1107; 1.{{Overline|4}} | |||
| rowspan="2" | 18\11 1136; 1.1875 | |||
| 30\18 1161; 3.{{Overline|4}} | |||
| 12\7 1200 | |||
| 30\17 1241; 2.{{Overline|63}} | |||
| 18\10 1270; 1.7 | |||
| 24\13 1309.{{Overline|09}} | |||
|- | |||
| Fab, Dob | |||
| Ebb | |||
| 7b, 7c | |||
| 7f | |||
| 25\15 1153; 1.{{Overline|18}} | |||
| 29\18 1121; 1, 1, 2.6 | |||
| 11\7 1100 | |||
| 26\17 1075; 1.16 | |||
| 15\10 1058; 1, 4.{{Overline|6}} | |||
| 19\13 1036.{{Overline|36}} | |||
|- | |||
| '''Fa, Do''' | |||
| '''Eb''' | |||
| '''7''' | |||
| '''7''' | |||
| '''26\15''' '''1200''' | |||
| '''19\11''' '''1200''' | |||
| '''31\18''' '''1200''' | |||
| '''12\7''' '''1200''' | |||
| '''29\17''' '''1200''' | |||
| '''17\10''' '''1200''' | |||
| '''22\13''' '''1200''' | |||
|- | |||
| Fa#, Do# | |||
| E | |||
| 7# | |||
| 7# | |||
| 27\15 1246; 6.5 | |||
| 20\11 1263; 6.{{Overline|3}} | |||
| 33\18 1277; 2, 2.6 | |||
| 13\7 1300 | |||
| 32\17 1324; 7.25 | |||
| 19\10 1341; 5.{{Overline|6}} | |||
| 25\13 1363.{{Overline|63}} | |||
|- | |||
| Fax, Dox | |||
| E# | |||
| 7x | |||
| 7x | |||
| 28\15 1292; 3.25 | |||
| rowspan="2" | 21\11 1326; 3.1{{Overline|6}} | |||
| 35\18 1354; 1, 5.2 | |||
| 14\7 1400 | |||
| 35\17 1448; 3.625 | |||
| 21\10 1482; 2.8{{Overline|3}} | |||
| 28\13 1527.{{Overline|27}} | |||
|- | |||
| Dob, Solb | |||
| Fb | |||
| 8b, Fc | |||
| 8f | |||
| 29\15 1338; 2.1{{Overline|6}} | |||
| 34\18 1316; 7.75 | |||
| 13\7 1300 | |||
| 31\17 1282; 1.3{{Overline|18}} | |||
| 18\10 1270; 1.7 | |||
| 23\13 1254.{{Overline|54}} | |||
|- | |||
! Do, Sol | |||
! F | |||
! 8, F | |||
! 8 | |||
! 30\15 1384; 1.625 | |||
! 22\11 1389; 2.{{Overline|1}} | |||
! 36\18 1393; 1, 1, 4.{{Overline|6}} | |||
! 14\7 1400 | |||
! 34\17 1406; 1, 8.{{Overline|6}} | |||
! 20\10 1411; 1, 3.25 | |||
! 26\13 1418.{{Overline|18}} | |||
|- | |||
| Do#, Sol# | |||
| F# | |||
| 8#, F# | |||
| 8# | |||
| 31\15 1430; 1.3 | |||
| 23\11 1452; 1.58{{Overline|3}} | |||
| 38\18 1470; 1.0{{Overline|3}} | |||
| rowspan="2" | 15\7 1500 | |||
| 37\17 1531; 29 | |||
| 22\10 1552; 1.0625 | |||
| 29\13 1581.{{Overline|81}} | |||
|- | |||
| Reb, Lab | |||
| Gb | |||
| 9b, Gc | |||
| 9f | |||
| 33\15 1523; 13 | |||
| 24\11 1515; 1.2{{Overline|6}} | |||
| 39\18 1509; 1, 2.1 | |||
| 36\17 1489; 1, 1.9 | |||
| 21\10 1482; 2.8{{Overline|3}} | |||
| 27\13 1472.{{Overline|72}} | |||
|- | |||
| '''Re, La''' | |||
| '''G''' | |||
| '''9, G''' | |||
| 9 | |||
| '''34\15''' '''1569; 4.{{Overline|3}}''' | |||
| '''25\11''' '''1578; 1.0{{Overline|5}}''' | |||
| '''41\18''' '''1587; 10.{{Overline|3}}''' | |||
| '''16\7''' '''1600''' | |||
| '''39\17''' '''1613; 1, 3.8{{Overline|3}}''' | |||
| '''23\10''' '''1623; 1.{{Overline|8}}''' | |||
| '''30\13''' '''1636.{{Overline|36}}''' | |||
|- | |||
| Re#, La# | |||
| G# | |||
| 9#, G# | |||
| 9# | |||
| 35\15 1615; 2.6 | |||
| 26\11 1642; 9.5 | |||
| 43\18 1664; 1.0625 | |||
| rowspan="2" | 17\7 1700 | |||
| 42\17 1737; 14.5 | |||
| 25\10 1764; 1.41{{Overline|6}} | |||
| 33\13 1800 | |||
|- | |||
| Mib, Sib | |||
| Ab | |||
| Xb, Ac | |||
| Af | |||
| 37\15 1707; 1.{{Overline|4}} | |||
| 27\11 1705; 3.8 | |||
| 44\18 1703; 4, 2.{{Overline|3}} | |||
| 41\17 1696; 1.8125 | |||
| 24\10 1694; 8.5 | |||
| 31\13 1690.{{Overline|90}} | |||
|- | |||
| Mi, Si | |||
| A | |||
| X, A | |||
| A | |||
| 38\15 1753; 1.{{Overline|18}} | |||
| 28\11 1768; 2.375 | |||
| 46\18 1780; 1.55 | |||
| 18\7 1800 | |||
| 44\17 1820; 1.45 | |||
| 26\10 1835; 3.4 | |||
| 34\13 1854.{{Overline|54}} | |||
|- | |||
| Mi#, Si# | |||
| A# | |||
| X#, A# | |||
| A# | |||
| 39\15 1800 | |||
| rowspan="2" | 29\11 1831; 1.{{Overline|72}} | |||
| 48\18 1858; 15.5 | |||
| 19\7 1900 | |||
| 47\17 1944; 1.208{{Overline|3}} | |||
| 28\10 1976; 2.125 | |||
| 37\13 2018.{{Overline|18}} | |||
|- | |||
| Fab, Dob | |||
| Bbb | |||
| Ebb, Ccc | |||
| Bf | |||
| 40\15 1846; 6.5 | |||
| 47\18 1819; 2.{{Overline|81}} | |||
| 18\7 1800 | |||
| 43\17 1779; 3.{{Overline|2}} | |||
| 25\10 1764; 1.41{{Overline|6}} | |||
| 32\13 1745.{{Overline|45}} | |||
|- | |||
| '''Fa, Do''' | |||
| '''Bb''' | |||
| '''Eb, Cc''' | |||
| '''B''' | |||
| '''41\15''' '''1892; 3.25''' | |||
| '''30\11''' '''1894; 1, 2.8''' | |||
| '''49\18''' '''1896; 1.291{{Overline|6}}''' | |||
| '''19\7''' '''1900''' | |||
| '''46\17''' '''1903; 2.1{{Overline|6}}''' | |||
| '''27\10''' '''1905; 1.1{{Overline|3}}''' | |||
| '''35\13''' '''1909.{{Overline|09}}''' | |||
|- | |||
| Fa#, Do# | |||
| B | |||
| E, C | |||
| B# | |||
| 42\15 1938; 2.1{{Overline|6}} | |||
| 31\11 1957; 1, 8.5 | |||
| 51\18 1974; 5.1{{Overline|6}} | |||
| 20\7 2000 | |||
| 49\17 2027; 1, 1.41{{Overline|6}} | |||
| 29\10 2047; 17 | |||
| 38\13 2072.{{Overline|72}} | |||
|- | |||
| Fax, Dox | |||
| B# | |||
| Ex, Cx | |||
| Bx | |||
| 43\15 1984; 1.625 | |||
| rowspan="2" | 32\11 2021; 19 | |||
| 53\18 2051; 1, 1, 1, 1.4 | |||
| 21\7 2100 | |||
| 52\17 2151; 2.625 | |||
| 31\10 2188; 4.25 | |||
| 41\13 2236.{{Overline|36}} | |||
|- | |||
| Dob, Solb | |||
| Hb | |||
| 0b, Dc | |||
| Cf | |||
| 44\15 2030; 1.3 | |||
| 52\18 2012; 1, 9,{{Overline|3}} | |||
| 20\7 2000 | |||
| 48\17 1986; 4.8{{Overline|3}} | |||
| 28\10 1976; 2.125 | |||
| 36\13 1963.{{Overline|63}} | |||
|- | |||
! Do, Sol | |||
! H | |||
! 0, D | |||
! C | |||
! 45\15 2076; 1.08'''{{Overline|3}}''' | |||
! 33\11 2084; 4.75 | |||
! 54\18 2090; 3.1 | |||
! 21\7 2100 | |||
! 51\17 2110; 2.9 | |||
! 30\10 2117; 1.{{Overline|54}} | |||
! 39\13 2127.{{Overline|27}} | |||
|- | |- | ||
| Do#, Sol# | |||
| | | Η# | ||
| 0#, D# | |||
| | | C# | ||
| 46\152123; 13 | |||
| | | 34\112147; 2, 1.4 | ||
| 56\182167; 1, 2.875 | |||
| rowspan="2" | 22\72200 | |||
| 54\172234; 2, 14 | |||
| 32\102258; 1, 4.{{Overline|6}} | |||
| 42\132090.{{Overline|90}} | |||
| | |||
| | |||
| | |||
| | |||
| rowspan="2" | | |||
| | |||
|- | |- | ||
| Reb, Lab | | Reb, Lab | ||
| Cb | |||
| | | 1b, 1c | ||
| Df | |||
| | | 48\152215; 2.6 | ||
| | | 35\112210; 1.9 | ||
| | | 57\182206; 2, 4.{{Overline|6}} | ||
| 53\172193; 9.{{Overline|6}} | |||
| 31\10 2188; 4.25 | |||
| 40\132181.{{Overline|81}} | |||
| | |||
| | |||
| | |||
|- | |- | ||
| '''Re, La''' | |||
|'''Re, La''' | | '''C''' | ||
| '''1''' | |||
|''' | | '''D''' | ||
| '''49\15''''''2261; 1, 1.1{{Overline|6}}''' | |||
|''' | | '''36\11''''''2273; 1, 2.1{{Overline|6}}''' | ||
| | | '''59\18''''''2283; 1.{{Overline|148}}''' | ||
|''' | | '''23\7''''''2300''' | ||
| '''56\17''''''2317; 4, 7''' | |||
''' | | '''33\10''''''2329; 2, 2.{{Overline|3}}''' | ||
| '''43\13''''''2245.{{Overline|45}}''' | |||
|''' | |||
''' | |||
|''' | |||
''' | |||
|''' | |||
''' | |||
|''' | |||
''' | |||
|''' | |||
''' | |||
|''' | |||
''' | |||
|- | |- | ||
| Re#, La# | |||
|Re#, La# | | C# | ||
| 1# | |||
| | | D# | ||
| 50\152307; 1.{{Overline|4}} | |||
| | | 37\112336; 1.1875 | ||
| | | 61\182361; 3.{{Overline|4}} | ||
| | | rowspan="2" | 24\72400 | ||
| 59\172441; 2.{{Overline|63}} | |||
| 35\102470; 1.7 | |||
| 46\132509.{{Overline|09}} | |||
| | |||
| | |||
| rowspan="2" | | |||
| | |||
| | |||
|- | |- | ||
| Mib, Sib | |||
|Mib, Sib | | Db | ||
| 2b, 2c | |||
| | | Ef | ||
| 52\152400 | |||
| | | 38\112400 | ||
| | | 62\182400 | ||
| | | 58\172400 | ||
| 34\102400 | |||
| 44\132400 | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| Mi, Si | |||
|Mi, Si | | D | ||
| | |||
| 2 | | 2 | ||
| | | E | ||
| 53\152446; 6.5 | |||
| 39\112463; 6.{{Overline|3}} | |||
| 64\182477; 2, 2.6 | |||
| 25\72500 | |||
| 61\172524; 7.25 | |||
| 36\102541; 5.{{Overline|6}} | |||
| 47\132563.{{Overline|63}} | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| Mi#, Si# | |||
| D# | |||
| 2# | |||
| E# | |||
| 54\152492; 3.25 | |||
| rowspan="2" | 40\112526; 3.1 | |||
| 66\182554; 1, 5.2 | |||
| | | 26\72600 | ||
| | | 64\172648; 2.625 | ||
| | | 38\102682; 2.8{{Overline|3}} | ||
| | | 50\132727.{{Overline|27}} | ||
| rowspan="2" | | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|27 | |||
|- | |- | ||
| Fab, Dob | | Fab, Dob | ||
| Ebb | | Ebb | ||
| | | 3b, 3c | ||
| | | Fff | ||
| | | 55\152538; 2.1{{Overline|6}} | ||
| 65\182516; 7.75 | |||
| 25\72500 | |||
| 60\172482; 1.3{{Overline|18}} | |||
| 35\102470; 1.7 | |||
| 45\132454.{{Overline|54}} | |||
| | |||
| | |||
| | |||
|18 | |||
| | |||
| | |||
|- | |- | ||
| | | '''Fa, Do''' | ||
| | | '''Eb''' | ||
| | | '''3''' | ||
| | | '''Ff''' | ||
| | | '''56\15''''''2584; 1.625''' | ||
| '''41\11''''''2589; 2.{{Overline|1}}''' | |||
'' | | '''67\18''''''2593; 1, 1, 4.{{Overline|6}}''' | ||
| | | '''26\7''''''2600''' | ||
| '''63\17''''''2606; 1, 8.{{Overline|6}}''' | |||
'' | | '''37\10''''''2611; 1, 3.25''' | ||
| | | '''48\13''''''2618.{{Overline|18}}''' | ||
'' | |||
| | |||
'' | |||
| | |||
'' | |||
| | |||
'' | |||
| | |||
'' | |||
|- | |- | ||
| | | Fa#, Do# | ||
| | | E | ||
| | | 3# | ||
| | | F | ||
| | | 57\152630; 1.3 | ||
| 42\112652; 1.58{{Overline|3}} | |||
| 69\182670; 1.0{{Overline|3}} | |||
| | | 27\72700 | ||
| 66\172731; 29 | |||
| 39\102752; 1.0625 | |||
| | | 51\132781.{{Overline|81}} | ||
| | |||
| | |||
| | |||
|- | |- | ||
| | | Fax, Dox | ||
| | | E# | ||
| | | 3x | ||
| | | F# | ||
| | | 58\152676; 1.08{{Overline|3}} | ||
| rowspan="2" | 43\112715; 1.2{{Overline|6}} | |||
| 71\182748; 2.58{{Overline|3}} | |||
| 28\72800 | |||
| 69\172855; 4.8 | |||
| 41\102894; 8.5 | |||
| 54\132945.{{Overline|45}} | |||
| rowspan="2" | | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| Dob, Solb | | Dob, Solb | ||
| | | Fb | ||
| | | 4b, 4c | ||
| | | 0f, Gf | ||
| 59\152723; 13 | |||
| 70\182709; 1, 2.1 | |||
| 27\72700 | |||
| 65\172689; 1, 1.9 | |||
| 38\102682; 2.8{{Overline|3}} | |||
| 49\132672.{{Overline|72}} | |||
| | |||
| | |||
| | |||
|65\ | |||
| | |||
|49\ | |||
|- | |- | ||
!Do, Sol | ! Do, Sol | ||
!F | ! F | ||
!4 | ! 4 | ||
!0, G | ! 0, G | ||
! | ! 60\152769; 4.'''{{Overline|3}}''' | ||
! 44\112778; 1.0{{Overline|5}} | |||
! 72\182787; 3.1 | |||
! 28\72800 | |||
! 68\172813; 1, 3.8{{Overline|3}} | |||
! 40\102823; 1.{{Overline|8}} | |||
! 52\132836.{{Overline|36}} | |||
|} | |} | ||
== Modes == | |||
==Modes== | |||
The mode names are based on the species of fifth: | The mode names are based on the species of fifth: | ||
{| | {{MOS modes | ||
| Mode Names= | |||
Lydian $ | |||
Minor $ | |||
Major $ | |||
Phrygian $ | |||
|} | |||
== Temperaments == | |||
The most basic rank-2 temperament interpretation of angel is '''Napoli'''. The name "Napoli" comes from the “Neapolitan” sixth triad spelled <code>root-(p-2g)-(2p-3g)</code> ({{nowrap|p {{=}} 3/2|g {{=}} the whole tone}}) which serves as its minor triad approximating 5:6:8 in pental interpretations or 18:21:28 in septimal ones. Basic ~7edf fits both interpretations. | |||
=== Napoli-Meantone === | |||
|} | |||
==Temperaments== | |||
The most basic rank-2 temperament interpretation of angel is '''Napoli'''. The name "Napoli" comes from the “Neapolitan” sixth triad spelled <code>root-(p-2g)-(2p-3g)</code> (p = 3/2 | |||
=== | |||
[[Subgroup]]: 3/2.6/5.8/5 | [[Subgroup]]: 3/2.6/5.8/5 | ||
Line 2,958: | Line 667: | ||
[[Mapping]]: [{{val|1 1 2}}, {{val|0 -2 -3}}] | [[Mapping]]: [{{val|1 1 2}}, {{val|0 -2 -3}}] | ||
[[ | [[Optimal ET sequence]]: ~(7edf, 11edf, 18edf) | ||
=== | |||
=== Napoli-Archy === | |||
[[Subgroup]]: 3/2.7/6.14/9 | [[Subgroup]]: 3/2.7/6.14/9 | ||
Line 2,969: | Line 678: | ||
[[Mapping]]: [{{val|1 1 2}}, {{val|0 -2 -3}}] | [[Mapping]]: [{{val|1 1 2}}, {{val|0 -2 -3}}] | ||
[[ | [[Optimal ET sequence]]: ~(7edf, 10edf, 13edf, 16edf) | ||
===Scale tree=== | |||
=== Scale tree === | |||
The spectrum looks like this: | The spectrum looks like this: | ||
{ | {{MOS tuning spectrum | ||
| 3/2 = Napoli-Meantone starts here | |||
| 2/1 = Napoli-Meantone ends, Napoli-Pythagorean begins | |||
| 5/2 = Napoli-Neogothic heartland is from here... | |||
| 8/3 = ...to here | |||
| 3/1 = Napoli-Pythagorean ends, Napoli-Archy begins | |||
| 5/1 = Napoli-Archy ends | |||
}} | |||
| | |||
|5 | |||
|8 | |||
| | |||
Latest revision as of 17:57, 3 March 2025
![]() |
This page on a regular temperament, temperament collection, or aspect of regular temperament theory is being revised for clarity as part of WikiProject TempClean. |
← 2L 1s⟨3/2⟩ | 3L 1s (3/2-equivalent) | 4L 1s⟨3/2⟩ → |
↙ 2L 2s⟨3/2⟩ | ↓ 3L 2s⟨3/2⟩ | 4L 2s⟨3/2⟩ ↘ |
┌╥╥╥┬┐ │║║║││ ││││││ └┴┴┴┴┘
sLLL
3L 1s⟨3/2⟩ is a 3/2-equivalent (fifth-equivalent) moment of symmetry scale containing 3 large steps and 1 small step, repeating every interval of 3/2 (702.0 ¢). Generators that produce this scale range from 175.5 ¢ to 234 ¢, or from 468 ¢ to 526.5 ¢. Scales of this form are always proper because there is only one small step. The so-called "Super Ultra Hyper Mega Meta Lydian" is one mode of this mos.
The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating 3L 1s. The name of the period interval is called the sesquitave (by analogy to the tritave). The generator range is 171.4 to 240 ¢, placing it near the diatonic major second, usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fifth complement (480 to 514.3 ¢).
In the fifth-repeating version of the diatonic scale, each tone has a 3/2 perfect fifth above it. The scale has two major chords and two minor chords.
Angel is a proposed name for this mos. Basic Angel is in 7edf, which is a very good fifth-based equal tuning similar to 12edo.
Notation
There are 4 main ways to notate the angel scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 4 naturals (eg. Do Re Mi Fa, Sol La Si Do). Given that 1 – 5/4 – 5/3 is fifth-equivalent to a tone cluster of 1 – 10/9 – 5/4, it may be more convenient to notate angel scales as repeating at the double, triple or quadruple sesquitave (major ninth, thirteenth or seventeenth i. e. ~pentave), however it does make navigating the genchain harder. This way, 5/3 is its own pitch class, distinct from 10/9. Notating this way produces a major ninth which is the Aeolian mode of Napoli[6L 2s], a major thirteenth which is the Dorian mode of Bijou[9L 3s] or an ~pentave which is the Mixolydian mode of Hextone[12L 4s]. Since there are exactly 8 naturals in double sesquitave notation, 12 in triple sesquitave notation and 16 in quadruple sesquitave notation, letters A–H (FGABHCDEF) or dozenal or hex digits (0123456789XE0 or D1234567FGACD with flats written C molle or 0123456789ABCDEF0 or G123456789ABCDEFG with flats written F molle) may be used.
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |||
---|---|---|---|---|---|---|---|---|---|---|
Diatonic | Napoli | Bijou | Hextone | ~15edf | ~11edf | ~18edf | ~7edf | ~17edf | ~10edf | ~13edf |
Do#, Sol# | F# | 0#, D# | 0#, G# | 1\1546; 6.5 | 1\1163: 6.3 | 2\1877; 2, 2.6 | 1\7 100 | 3\17124; 7.25 | 2\10141; 5.6 | 3\13 163.63 |
Reb, Lab | Gb | 1b, 1c | 1f | 3\15138; 3.25 | 2\11126; 3.16 | 3\18116; 7.75 | 2\1782; 1.318 | 1\1070; 1.7 | 1\13 54.54 | |
Re, La | G | 1 | 1 | '4\15'184; 1.625 | '3\11'189; 2.1 | '5\18'193; 1, 1, 4.6 | 2\7 200 | '5\17'206; 1, 8.6 | '3\10'211; 1, 3.25 | 4\13 218.18 |
Re#, La# | G# | 1# | 1# | 5\15230; 1.3 | 4\11252; 1.583 | 7\18270; 1.03 | 3\7 300 | 8\17331; 29 | 5\10352; 1.0625 | 7\13 381.81 |
Mib, Sib | Ab | 2b, 2c | 2f | 7\15323; 13 | 5\11315; 1.26 | 8\18309; 1, 2.1 | 7\17289; 1, 1.9 | 4\10282; 2.83 | 5\13 272.72 | |
Mi, Si | A | 2 | 2 | 8\15369; 4.3 | 6\11378; 1.05 | 10\18387; 10.3 | 4\7 400 | 10\17413; 1, 3.83 | 6\10423; 1.8 | 8\13 436.36 |
Mi#, Si# | A# | 2# | 2# | 9\15415; 2.6 | 7\11442; 9.5 | 12\18464; 1.0625 | 5\7 500 | 13\17537; 14.5 | 8\10564; 1.416 | 11\13 600 |
Fab, Dob | Bbb | 3b, 3c | 3f | 10\15461; 1, 1.16 | 11\18425; 1.24 | 4\7 400 | 9\17372; 2.416 | 5\10352; 1.0625 | 6\13 327.27 | |
Fa, Do | Bb | 3 | 3 | '11\15'507; 1.4 | '8\11'505; 3.8 | '13\18'503; 4, 2.3 | 5\7 500 | '12\17'496; 1.8125 | '7\10'494; 8.5 | 9\13 490.90 |
Fa#, Do# | B | 3# | 3# | 12\15553; 1.18 | 9\11568; 2.375 | 15\18580; 1.55 | 6\7 600 | 15\17620; 1.45 | 9\10635; 3.4 | 12\13 654.54 |
Fax, Dox | B# | 3x | 3x | 13\15 600 | 10\11 631; 1.72 | 17\18 658; 15.5 | 7\7 700 | 18\17 744; 1.2083 | 11\10 776; 2.125 | 15\13 818.18 |
Dob, Solb | Hb | 4b, 4c | 4f | 14\15 646; 6.5 | 16\18 619; 2.81 | 6\7 600 | 14\17 579; 3.2 | 8\10564; 1.416 | 10\13 545.45 | |
Do, Sol | H | 4 | 4 | 15\15 692; 3.25 | 11\11 694; 1, 2.8 | 18\18 696; 1.2916 | 7\7 700 | 17\17 703; 2, 2.16 | 10\10 705; 1.13 | 13\13 709.09 |
Do#, Sol# | Η# | 4# | 4# | 16\15 738; 2.16 | 12\11 757; 1, 8.5 | 20\18 774; 5, 6 | 8\8 800 | 20\17 827; 1, 1.416 | 12\10 847; 17 | 16\13 872.72 |
Reb, Lab | Cb | 5b, 5c | 5 | 18\15 830; 1.3 | 13\11 821; 19 | 21\18 812; 1, 9.3 | 19\17 786; 4.83 | 11\10 776; 2.125 | 14\13 763.63 | |
Re, La | C | 5 | 5 | 19\15 876; 1.083 | 14\11 884; 4.75 | 23\18 890; 3.1 | 9\5 900 | 22\17 910; 2.9 | 13\10 917; 1.54 | 17\13 927.27 |
Re#, La# | C# | 5# | 5# | 20\15 923: 13 | 15\11 947; 2, 1.4 | 25\18 967; 1, 2.875 | 10\7 1000 | 25\17 1034; 2, 14 | 15\10 1058; 1, 4.6 | 20\13 1090.90 |
Mib, Sib | Db | 6b, 6c | 6f | 22\15 1015; 2.6 | 16\11 1010; 1.9 | 26\18 1006; 2, 4.6 | 24\17 993; 9.6 | 14\10 988; 4.25 | 18\13 981.81 | |
Mi, Si | D | 6 | 6 | 23\15 1061; 1, 1.16 | 17\11 1073; 1, 2.16 | 28\18 1083; 1.148 | 11\7 1100 | 27\17 1117; 4, 7 | 16\10 1129; 2, 2.3 | 21\9 1145.45 |
Mi#, Si# | D# | 6# | 6# | 24\15 1107; 1.4 | 18\11 1136; 1.1875 | 30\18 1161; 3.4 | 12\7 1200 | 30\17 1241; 2.63 | 18\10 1270; 1.7 | 24\13 1309.09 |
Fab, Dob | Ebb | 7b, 7c | 7f | 25\15 1153; 1.18 | 29\18 1121; 1, 1, 2.6 | 11\7 1100 | 26\17 1075; 1.16 | 15\10 1058; 1, 4.6 | 19\13 1036.36 | |
Fa, Do | Eb | 7 | 7 | 26\15 1200 | 19\11 1200 | 31\18 1200 | 12\7 1200 | 29\17 1200 | 17\10 1200 | 22\13 1200 |
Fa#, Do# | E | 7# | 7# | 27\15 1246; 6.5 | 20\11 1263; 6.3 | 33\18 1277; 2, 2.6 | 13\7 1300 | 32\17 1324; 7.25 | 19\10 1341; 5.6 | 25\13 1363.63 |
Fax, Dox | E# | 7x | 7x | 28\15 1292; 3.25 | 21\11 1326; 3.16 | 35\18 1354; 1, 5.2 | 14\7 1400 | 35\17 1448; 3.625 | 21\10 1482; 2.83 | 28\13 1527.27 |
Dob, Solb | Fb | 8b, Fc | 8f | 29\15 1338; 2.16 | 34\18 1316; 7.75 | 13\7 1300 | 31\17 1282; 1.318 | 18\10 1270; 1.7 | 23\13 1254.54 | |
Do, Sol | F | 8, F | 8 | 30\15 1384; 1.625 | 22\11 1389; 2.1 | 36\18 1393; 1, 1, 4.6 | 14\7 1400 | 34\17 1406; 1, 8.6 | 20\10 1411; 1, 3.25 | 26\13 1418.18 |
Do#, Sol# | F# | 8#, F# | 8# | 31\15 1430; 1.3 | 23\11 1452; 1.583 | 38\18 1470; 1.03 | 15\7 1500 | 37\17 1531; 29 | 22\10 1552; 1.0625 | 29\13 1581.81 |
Reb, Lab | Gb | 9b, Gc | 9f | 33\15 1523; 13 | 24\11 1515; 1.26 | 39\18 1509; 1, 2.1 | 36\17 1489; 1, 1.9 | 21\10 1482; 2.83 | 27\13 1472.72 | |
Re, La | G | 9, G | 9 | 34\15 1569; 4.3 | 25\11 1578; 1.05 | 41\18 1587; 10.3 | 16\7 1600 | 39\17 1613; 1, 3.83 | 23\10 1623; 1.8 | 30\13 1636.36 |
Re#, La# | G# | 9#, G# | 9# | 35\15 1615; 2.6 | 26\11 1642; 9.5 | 43\18 1664; 1.0625 | 17\7 1700 | 42\17 1737; 14.5 | 25\10 1764; 1.416 | 33\13 1800 |
Mib, Sib | Ab | Xb, Ac | Af | 37\15 1707; 1.4 | 27\11 1705; 3.8 | 44\18 1703; 4, 2.3 | 41\17 1696; 1.8125 | 24\10 1694; 8.5 | 31\13 1690.90 | |
Mi, Si | A | X, A | A | 38\15 1753; 1.18 | 28\11 1768; 2.375 | 46\18 1780; 1.55 | 18\7 1800 | 44\17 1820; 1.45 | 26\10 1835; 3.4 | 34\13 1854.54 |
Mi#, Si# | A# | X#, A# | A# | 39\15 1800 | 29\11 1831; 1.72 | 48\18 1858; 15.5 | 19\7 1900 | 47\17 1944; 1.2083 | 28\10 1976; 2.125 | 37\13 2018.18 |
Fab, Dob | Bbb | Ebb, Ccc | Bf | 40\15 1846; 6.5 | 47\18 1819; 2.81 | 18\7 1800 | 43\17 1779; 3.2 | 25\10 1764; 1.416 | 32\13 1745.45 | |
Fa, Do | Bb | Eb, Cc | B | 41\15 1892; 3.25 | 30\11 1894; 1, 2.8 | 49\18 1896; 1.2916 | 19\7 1900 | 46\17 1903; 2.16 | 27\10 1905; 1.13 | 35\13 1909.09 |
Fa#, Do# | B | E, C | B# | 42\15 1938; 2.16 | 31\11 1957; 1, 8.5 | 51\18 1974; 5.16 | 20\7 2000 | 49\17 2027; 1, 1.416 | 29\10 2047; 17 | 38\13 2072.72 |
Fax, Dox | B# | Ex, Cx | Bx | 43\15 1984; 1.625 | 32\11 2021; 19 | 53\18 2051; 1, 1, 1, 1.4 | 21\7 2100 | 52\17 2151; 2.625 | 31\10 2188; 4.25 | 41\13 2236.36 |
Dob, Solb | Hb | 0b, Dc | Cf | 44\15 2030; 1.3 | 52\18 2012; 1, 9,3 | 20\7 2000 | 48\17 1986; 4.83 | 28\10 1976; 2.125 | 36\13 1963.63 | |
Do, Sol | H | 0, D | C | 45\15 2076; 1.083 | 33\11 2084; 4.75 | 54\18 2090; 3.1 | 21\7 2100 | 51\17 2110; 2.9 | 30\10 2117; 1.54 | 39\13 2127.27 |
Do#, Sol# | Η# | 0#, D# | C# | 46\152123; 13 | 34\112147; 2, 1.4 | 56\182167; 1, 2.875 | 22\72200 | 54\172234; 2, 14 | 32\102258; 1, 4.6 | 42\132090.90 |
Reb, Lab | Cb | 1b, 1c | Df | 48\152215; 2.6 | 35\112210; 1.9 | 57\182206; 2, 4.6 | 53\172193; 9.6 | 31\10 2188; 4.25 | 40\132181.81 | |
Re, La | C | 1 | D | '49\15'2261; 1, 1.16 | '36\11'2273; 1, 2.16 | '59\18'2283; 1.148 | '23\7'2300 | 56\17'2317; 4, 7' | '33\10'2329; 2, 2.3 | '43\13'2245.45 |
Re#, La# | C# | 1# | D# | 50\152307; 1.4 | 37\112336; 1.1875 | 61\182361; 3.4 | 24\72400 | 59\172441; 2.63 | 35\102470; 1.7 | 46\132509.09 |
Mib, Sib | Db | 2b, 2c | Ef | 52\152400 | 38\112400 | 62\182400 | 58\172400 | 34\102400 | 44\132400 | |
Mi, Si | D | 2 | E | 53\152446; 6.5 | 39\112463; 6.3 | 64\182477; 2, 2.6 | 25\72500 | 61\172524; 7.25 | 36\102541; 5.6 | 47\132563.63 |
Mi#, Si# | D# | 2# | E# | 54\152492; 3.25 | 40\112526; 3.1 | 66\182554; 1, 5.2 | 26\72600 | 64\172648; 2.625 | 38\102682; 2.83 | 50\132727.27 |
Fab, Dob | Ebb | 3b, 3c | Fff | 55\152538; 2.16 | 65\182516; 7.75 | 25\72500 | 60\172482; 1.318 | 35\102470; 1.7 | 45\132454.54 | |
Fa, Do | Eb | 3 | Ff | '56\15'2584; 1.625 | '41\11'2589; 2.1 | '67\18'2593; 1, 1, 4.6 | '26\7'2600 | '63\17'2606; 1, 8.6 | '37\10'2611; 1, 3.25 | '48\13'2618.18 |
Fa#, Do# | E | 3# | F | 57\152630; 1.3 | 42\112652; 1.583 | 69\182670; 1.03 | 27\72700 | 66\172731; 29 | 39\102752; 1.0625 | 51\132781.81 |
Fax, Dox | E# | 3x | F# | 58\152676; 1.083 | 43\112715; 1.26 | 71\182748; 2.583 | 28\72800 | 69\172855; 4.8 | 41\102894; 8.5 | 54\132945.45 |
Dob, Solb | Fb | 4b, 4c | 0f, Gf | 59\152723; 13 | 70\182709; 1, 2.1 | 27\72700 | 65\172689; 1, 1.9 | 38\102682; 2.83 | 49\132672.72 | |
Do, Sol | F | 4 | 0, G | 60\152769; 4.3 | 44\112778; 1.05 | 72\182787; 3.1 | 28\72800 | 68\172813; 1, 3.83 | 40\102823; 1.8 | 52\132836.36 |
Modes
The mode names are based on the species of fifth: {{MOS modes | Mode Names= Lydian $ Minor $ Major $ Phrygian $ |}
Temperaments
The most basic rank-2 temperament interpretation of angel is Napoli. The name "Napoli" comes from the “Neapolitan” sixth triad spelled root-(p-2g)-(2p-3g)
(p = 3/2, g = the whole tone) which serves as its minor triad approximating 5:6:8 in pental interpretations or 18:21:28 in septimal ones. Basic ~7edf fits both interpretations.
Napoli-Meantone
Subgroup: 3/2.6/5.8/5
POL2 generator: ~9/8 = 192.6406
Mapping: [⟨1 1 2], ⟨0 -2 -3]]
Optimal ET sequence: ~(7edf, 11edf, 18edf)
Napoli-Archy
Subgroup: 3/2.7/6.14/9
POL2 generator: ~8/7 = 218.6371
Mapping: [⟨1 1 2], ⟨0 -2 -3]]
Optimal ET sequence: ~(7edf, 10edf, 13edf, 16edf)
Scale tree
The spectrum looks like this:
Generator(edf) | Cents | Step ratio | Comments(always proper) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
1\4 | 175.489 | 526.466 | 1:1 | 1.000 | Equalized 3L 1s⟨3/2⟩ | |||||
6\23 | 183.119 | 518.836 | 6:5 | 1.200 | ||||||
5\19 | 184.725 | 517.230 | 5:4 | 1.250 | ||||||
9\34 | 185.812 | 516.143 | 9:7 | 1.286 | ||||||
4\15 | 187.188 | 514.767 | 4:3 | 1.333 | Supersoft 3L 1s⟨3/2⟩ | |||||
11\41 | 188.329 | 513.626 | 11:8 | 1.375 | ||||||
7\26 | 188.988 | 512.967 | 7:5 | 1.400 | ||||||
10\37 | 189.718 | 512.237 | 10:7 | 1.429 | ||||||
3\11 | 191.442 | 510.513 | 3:2 | 1.500 | Soft 3L 1s⟨3/2⟩ Napoli-Meantone starts here | |||||
11\40 | 193.038 | 508.917 | 11:7 | 1.571 | ||||||
8\29 | 193.643 | 508.312 | 8:5 | 1.600 | ||||||
13\47 | 194.158 | 507.797 | 13:8 | 1.625 | ||||||
5\18 | 194.988 | 506.968 | 5:3 | 1.667 | Semisoft 3L 1s⟨3/2⟩ | |||||
12\43 | 195.894 | 506.061 | 12:7 | 1.714 | ||||||
7\25 | 196.547 | 505.408 | 7:4 | 1.750 | ||||||
9\32 | 197.425 | 504.530 | 9:5 | 1.800 | ||||||
2\7 | 200.559 | 501.396 | 2:1 | 2.000 | Basic 3L 1s⟨3/2⟩ Napoli-Meantone ends, Napoli-Pythagorean begins | |||||
9\31 | 203.793 | 498.162 | 9:4 | 2.250 | ||||||
7\24 | 204.737 | 497.218 | 7:3 | 2.333 | ||||||
12\41 | 205.450 | 496.505 | 12:5 | 2.400 | ||||||
5\17 | 206.457 | 495.498 | 5:2 | 2.500 | Semihard 3L 1s⟨3/2⟩ Napoli-Neogothic heartland is from here... | |||||
13\44 | 207.396 | 494.559 | 13:5 | 2.600 | ||||||
8\27 | 207.987 | 493.968 | 8:3 | 2.667 | ...to here | |||||
11\37 | 208.689 | 493.266 | 11:4 | 2.750 | ||||||
3\10 | 210.587 | 491.369 | 3:1 | 3.000 | Hard 3L 1s⟨3/2⟩ Napoli-Pythagorean ends, Napoli-Archy begins | |||||
10\33 | 212.714 | 489.241 | 10:3 | 3.333 | ||||||
7\23 | 213.638 | 488.317 | 7:2 | 3.500 | ||||||
11\36 | 214.486 | 487.469 | 11:3 | 3.667 | ||||||
4\13 | 215.986 | 485.969 | 4:1 | 4.000 | Superhard 3L 1s⟨3/2⟩ | |||||
9\29 | 217.848 | 484.107 | 9:2 | 4.500 | ||||||
5\16 | 219.361 | 482.594 | 5:1 | 5.000 | Napoli-Archy ends | |||||
6\19 | 221.670 | 480.285 | 6:1 | 6.000 | ||||||
1\3 | 233.985 | 467.970 | 1:0 | → ∞ | Collapsed 3L 1s⟨3/2⟩ |
- ↑ Fractions repeating more than 4 digits written as continued fractions