Canou family: Difference between revisions
The 19712/19683 extension is now canon. I need to think about 17-limit semicanou so they are commented out now |
+CWE tunings, error maps, and 23-limit extension |
||
Line 20: | Line 20: | ||
: Angle (3/2, 81/70) = 73.88 deg | : Angle (3/2, 81/70) = 73.88 deg | ||
[[Optimal tuning]] | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1200.0000, ~3/2 = 702.3175, ~81/70 = 254.6220 | |||
: [[error map]]: {{val| 0.0000 +0.3625 -0.1667 -0.3249 }} | |||
* [[CWE]]: ~2 = 1200.0000, ~3/2 = 702.3455, ~81/70 = 254.6237 | |||
: error map: {{val| 0.0000 +0.3904 -0.1175 -0.2640 }} | |||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
Line 45: | Line 49: | ||
{{Mapping|legend=1| 1 0 0 -1 -7 | 0 1 2 2 7 | 0 0 -4 3 -3 }} | {{Mapping|legend=1| 1 0 0 -1 -7 | 0 1 2 2 7 | 0 0 -4 3 -3 }} | ||
[[Optimal tuning]] | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1200.0000, ~3/2 = 702.2115, ~81/70 = 254.6215 | |||
: [[error map]]: {{val| 0.0000 +0.2565 -0.3768 -0.5383 +0.2980 }} | |||
* [[CWE]]: ~2 = 1200.0000, ~3/2 = 702.1829, ~81/70 = 254.6186 | |||
: error map: {{val| 0.0000 +0.2279 -0.4221 -0.6043 +0.1069 }} | |||
{{Optimal ET sequence|legend=1| 94, 99e, 118, 193, 212, 311, 740, 1051d }} | {{Optimal ET sequence|legend=1| 94, 99e, 118, 193, 212, 311, 740, 1051d }} | ||
Line 60: | Line 68: | ||
Mapping: {{mapping| 1 0 0 -1 -7 -13 | 0 1 2 2 7 10 | 0 0 -4 3 -3 4 }} | Mapping: {{mapping| 1 0 0 -1 -7 -13 | 0 1 2 2 7 10 | 0 0 -4 3 -3 4 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1200.0000, ~3/2 = 702.2075, ~81/70 = 254.6183 | |||
* CWE: ~2 = 1200.0000, ~3/2 = 702.1889, ~81/70 = 254.6222 | |||
{{Optimal ET sequence|legend=0| 94, 118f, 193f, 212, 217, 311, 740, 1051d }} | {{Optimal ET sequence|legend=0| 94, 118f, 193f, 212, 217, 311, 740, 1051d }} | ||
Line 73: | Line 83: | ||
Mapping: {{mapping| 1 0 0 -1 -7 -13 -5 | 0 1 2 2 7 10 6 | 0 0 -4 3 -3 4 -2 }} | Mapping: {{mapping| 1 0 0 -1 -7 -13 -5 | 0 1 2 2 7 10 6 | 0 0 -4 3 -3 4 -2 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1200.0000, ~3/2 = 702.2296, ~51/44 = 254.6012 | |||
* CWE: ~2 = 1200.0000, ~3/2 = 702.2055, ~51/44 = 254.6066 | |||
{{Optimal ET sequence|legend=0| 94, 118f, 193f, 212g, 217, 311, 740g, 1051dg }} | {{Optimal ET sequence|legend=0| 94, 118f, 193f, 212g, 217, 311, 740g, 1051dg }} | ||
Line 84: | Line 96: | ||
Comma list: 595/594, 833/832, 969/968, 1156/1155, 1216/1215 | Comma list: 595/594, 833/832, 969/968, 1156/1155, 1216/1215 | ||
Mapping: {{mapping | Mapping: {{mapping| 1 0 0 -1 -7 -13 -5 -6 | 0 1 2 2 7 10 6 7 | 0 0 -4 3 -3 4 -2 -4 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1200.0000, ~3/2 = 702.2355, ~22/19 = 254.5930 | |||
* CWE: ~2 = 1200.0000, ~3/2 = 702.2117, ~22/19 = 254.5983 | |||
{{Optimal ET sequence|legend=0| 94, 118f, 193f, 212gh, 217, 311, 740g, 1051dgh }} | {{Optimal ET sequence|legend=0| 94, 118f, 193f, 212gh, 217, 311, 740g, 1051dgh }} | ||
Badness (Smith): 1.00 × 10<sup>-3</sup> | Badness (Smith): 1.00 × 10<sup>-3</sup> | ||
=== 23-limit === | |||
Subgroup: 2.3.5.7.11.13.17.19.23 | |||
Comma list: 595/594, 760/759, 833/832, 875/874, 969/968, 1156/1155 | |||
Mapping: {{mapping| 1 0 0 -1 -7 -13 -5 -6 4 | 0 1 2 2 7 10 6 7 1 | 0 0 -4 3 -3 4 -2 -4 -5 }} | |||
Optimal tunings: | |||
* CTE: ~2 = 1200.0000, ~3/2 = 702.2361, ~22/19 = 254.6222 | |||
* CWE: ~2 = 1200.0000, ~3/2 = 702.2359, ~22/19 = 254.6223 | |||
{{Optimal ET sequence|legend=0| 94, 193f, 212gh, 217, 311 }} | |||
Badness (Smith): 0.948 × 10<sup>-3</sup> | |||
== Canta == | == Canta == | ||
Line 101: | Line 130: | ||
{{Mapping|legend=1| 1 0 0 -1 6 | 0 1 2 2 -2 | 0 0 4 -3 -3 }} | {{Mapping|legend=1| 1 0 0 -1 6 | 0 1 2 2 -2 | 0 0 4 -3 -3 }} | ||
[[Optimal tuning]] | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1200.0000, ~3/2 = 702.8093, ~64/55 = 254.3378 | |||
: [[error map]]: {{val| 0.0000 +0.8543 +1.9537 -0.1940 +6.0769 }} | |||
* [[CWE]]: ~2 = 1200.0000, ~3/2 = 703.5249, ~64/55 = 254.5492 | |||
: error map: {{val| 0.0000 +1.5699 +2.5393 +1.8714 +5.2799 }} | |||
{{Optimal ET sequence|legend=1| 75e, 80, 99e, 179e }} | {{Optimal ET sequence|legend=1| 75e, 80, 99e, 179e, 457bcddeeee }} | ||
[[Badness]]: 4. | [[Badness]] (Smith): 4.52 × 10<sup>-3</sup> | ||
=== 13-limit === | === 13-limit === | ||
Line 114: | Line 147: | ||
Mapping: {{mapping| 1 0 0 -1 6 11 | 0 1 2 2 -2 -5 | 0 0 4 -3 -3 -3 }} | Mapping: {{mapping| 1 0 0 -1 6 11 | 0 1 2 2 -2 -5 | 0 0 4 -3 -3 -3 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1200.0000, ~3/2 = 703.6228, ~64/55 = 254.3447 | |||
* CWE: ~2 = 1200.0000, ~3/2 = 703.8323, ~64/55 = 254.5887 | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 75e, 80, 99ef, 179ef }} | ||
Badness: 4. | Badness (Smith): 4.78 × 10<sup>-3</sup> | ||
== Semicanou == | == Semicanou == | ||
Line 133: | Line 168: | ||
: mapping generators: ~99/70, ~3, ~81/70 | : mapping generators: ~99/70, ~3, ~81/70 | ||
[[Optimal tuning]] | [[Optimal tuning]]s: | ||
* [[CTE]]: ~99/70 = 600.0000, ~3/2 = 702.4262, ~81/70 = 254.6191 | |||
: [[error map]]: {{val| 0.0000 +0.4712 +0.0625 -0.1163 -1.0846 }} | |||
* [[CWE]]: ~99/70 = 600.0000, ~3/2 = 702.4048, ~81/70 = 254.6179 | |||
: error map: {{val| 0.0000 +0.4498 +0.0245 -0.1627 -1.1262 }} | |||
{{Optimal ET sequence|legend=1| 80, 94, 118, 198, 212, 292, 330e, 410 }} | {{Optimal ET sequence|legend=1| 80, 94, 118, 198, 212, 292, 330e, 410 }} | ||
[[Badness]]: 2. | [[Badness]] (Smith): 2.20 × 10<sup>-3</sup> | ||
=== 13-limit === | === 13-limit === | ||
Line 146: | Line 185: | ||
Mapping: {{mapping| 2 0 0 -2 1 -11 | 0 1 2 2 2 5 | 0 0 -4 3 -1 6 }} | Mapping: {{mapping| 2 0 0 -2 1 -11 | 0 1 2 2 2 5 | 0 0 -4 3 -1 6 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~99/70 = 600.0000, ~3/2 = 702.4802, ~81/70 = 254.6526 | |||
* CWE: ~99/70 = 600.0000, ~3/2 = 702.4945, ~81/70 = 254.6511 | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 80f, 94, 118f, 198, 410 }} | ||
Badness: 2. | Badness (Smith): 2.97 × 10<sup>-3</sup> | ||
<!-- debatable canonicity | <!-- debatable canonicity | ||
Line 160: | Line 201: | ||
Mapping: {{mapping| 2 0 0 -2 1 -11 -10 | 0 1 2 2 2 5 6 | 0 0 -4 3 -1 6 -2 }} | Mapping: {{mapping| 2 0 0 -2 1 -11 -10 | 0 1 2 2 2 5 6 | 0 0 -4 3 -1 6 -2 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~99/70 = 600.0000, ~3/2 = 702.4415, ~81/70 = 254.6663 | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 94, 118f, 198g, 212g, 292, 410 }} | ||
Badness: 2. | Badness (Smith): 2.42 × 10<sup>-3</sup> | ||
==== 19-limit ==== | ==== 19-limit ==== | ||
Line 173: | Line 215: | ||
Mapping: {{mapping| 2 0 0 -2 1 -11 -10 -12 | 0 1 2 2 2 5 6 7 | 0 0 -4 3 -1 6 -2 -4 }} | Mapping: {{mapping| 2 0 0 -2 1 -11 -10 -12 | 0 1 2 2 2 5 6 7 | 0 0 -4 3 -1 6 -2 -4 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~99/70 = 600.0000, ~3/2 = 702.4030, ~81/70 = 254.6870 | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 94, 118f, 198gh, 212gh, 292h, 410, 622ef }} | ||
Badness: 2. | Badness (Smith): 2.18 × 10<sup>-3</sup> | ||
--> | --> | ||
=== Semicanoumint === | === Semicanoumint === | ||
Line 188: | Line 231: | ||
Mapping: {{mapping| 2 0 0 -2 1 11 | 0 1 2 2 2 -1 | 0 0 -4 3 -1 -1 }} | Mapping: {{mapping| 2 0 0 -2 1 11 | 0 1 2 2 2 -1 | 0 0 -4 3 -1 -1 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~99/70 = 600.0000, ~3/2 = 702.5374, ~81/70 = 254.6819 | |||
* CTE: ~99/70 = 600.0000, ~3/2 = 702.7916, ~81/70 = 254.6704 | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 80, 94, 118, 174d, 198, 490f }} | ||
Badness: 2. | Badness (Smith): 2.70 × 10<sup>-3</sup> | ||
=== Semicanouwolf === | === Semicanouwolf === | ||
Line 205: | Line 250: | ||
Mapping: {{mapping| 2 0 0 -2 1 0 | 0 1 2 2 2 3 | 0 0 -4 3 -1 -5 }} | Mapping: {{mapping| 2 0 0 -2 1 0 | 0 1 2 2 2 3 | 0 0 -4 3 -1 -5 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~55/39 = 600.0000, ~3/2 = 702.7417, ~15/13 = 254.3382 | |||
* CWE: ~55/39 = 600.0000, ~3/2 = 702.8092, ~15/13 = 254.3396 | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 80, 104c, 118f, 198f, 420cff }} | ||
Badness: 3. | Badness (Smith): 3.51 × 10<sup>-3</sup> | ||
[[Category:Temperament families]] | [[Category:Temperament families]] |
Revision as of 12:04, 24 February 2025
The canou family of rank-3 temperaments tempers out the canousma, 4802000/4782969 ([4 -14 3 4⟩), a 7-limit comma measuring about 6.9 cents.
Canou
The canou temperament features a period of an octave and generators of 3/2 and 81/70. The ~81/70-generator is about 255 cents. Three make 14/9; four make 9/5. It therefore splits the large septimal diesis, 49/48, into three equal parts, making two distinct interseptimal intervals related to the 35th harmonic.
A basic tuning option would be 99edo, although 80edo is even simpler and distinctive. More intricate tunings are provided by 311edo and 410edo, whereas the optimal patent val goes up to 1131edo, relating it to the amicable temperament.
Subgroup: 2.3.5.7
Mapping: [⟨1 0 0 -1], ⟨0 1 2 2], ⟨0 0 -4 3]]
- mapping generators: ~2, ~3, ~81/70
Lattice basis:
- 3/2 length = 0.8110, 81/70 length = 0.5135
- Angle (3/2, 81/70) = 73.88 deg
- CTE: ~2 = 1200.0000, ~3/2 = 702.3175, ~81/70 = 254.6220
- error map: ⟨0.0000 +0.3625 -0.1667 -0.3249]
- CWE: ~2 = 1200.0000, ~3/2 = 702.3455, ~81/70 = 254.6237
- error map: ⟨0.0000 +0.3904 -0.1175 -0.2640]
- 7-odd-limit: 3 +c/14, 5 and 7 just
- 9-odd-limit: 3 just, 5 and 7 -c/7 to 3 +c/14, 5 and 7 just
Optimal ET sequence: 19, 56d, 61d, 75, 80, 94, 99, 212, 292, 311, 410, 1131, 1541b, 1659b
Badness (Smith): 1.122 × 10-3
Complexity spectrum: 4/3, 9/7, 9/8, 7/6, 6/5, 10/9, 5/4, 8/7, 7/5
Undecimal canou
The fifth is in the range where a stack of four (i.e. a major third) can serve as ~19/15 and a stack of five (i.e. a major seventh) can serve as ~19/10, tempering out 1216/1215. Moreover, the last generator of ~81/70 is sharpened to slightly overshoot 22/19, so it only makes sense to temper out their difference, 1540/1539. The implied 11-limit comma is the symbiotic comma, which suggests the wilschisma should also be tempered out in the 13-limit.
Since the syntonic comma has been split in two, it is natural to map 19/17 to the mean of 9/8 and 10/9, tempering out 1445/1444. From a commatic point of view, notice the other 11-limit comma, 42875/42768, is S34 × S352, suggesting tempering out 595/594 (S34 × S35), 1156/1155 (S34), and 1225/1224 (S35), which coincides with above. Finally, we can map 23/20 to the fourth complement of 22/19 to make an equidistant sequence consisting of 7/6, 22/19, 23/20, and 8/7, tempering out 760/759. 311edo remains an excellent tuning in all the limits.
Subgroup: 2.3.5.7.11
Comma list: 19712/19683, 42875/42768
Mapping: [⟨1 0 0 -1 -7], ⟨0 1 2 2 7], ⟨0 0 -4 3 -3]]
- CTE: ~2 = 1200.0000, ~3/2 = 702.2115, ~81/70 = 254.6215
- error map: ⟨0.0000 +0.2565 -0.3768 -0.5383 +0.2980]
- CWE: ~2 = 1200.0000, ~3/2 = 702.1829, ~81/70 = 254.6186
- error map: ⟨0.0000 +0.2279 -0.4221 -0.6043 +0.1069]
Optimal ET sequence: 94, 99e, 118, 193, 212, 311, 740, 1051d
Badness (Smith): 2.04 × 10-3
Complexity spectrum: 4/3, 9/8, 9/7, 7/6, 5/4, 6/5, 10/9, 11/9, 8/7, 12/11, 11/10, 14/11, 11/8, 7/5
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 19712/19683, 42875/42768
Mapping: [⟨1 0 0 -1 -7 -13], ⟨0 1 2 2 7 10], ⟨0 0 -4 3 -3 4]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~3/2 = 702.2075, ~81/70 = 254.6183
- CWE: ~2 = 1200.0000, ~3/2 = 702.1889, ~81/70 = 254.6222
Optimal ET sequence: 94, 118f, 193f, 212, 217, 311, 740, 1051d
Badness (Smith): 2.56 × 10-3
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 595/594, 833/832, 1156/1155, 19712/19683
Mapping: [⟨1 0 0 -1 -7 -13 -5], ⟨0 1 2 2 7 10 6], ⟨0 0 -4 3 -3 4 -2]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~3/2 = 702.2296, ~51/44 = 254.6012
- CWE: ~2 = 1200.0000, ~3/2 = 702.2055, ~51/44 = 254.6066
Optimal ET sequence: 94, 118f, 193f, 212g, 217, 311, 740g, 1051dg
Badness (Smith): 1.49 × 10-3
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 595/594, 833/832, 969/968, 1156/1155, 1216/1215
Mapping: [⟨1 0 0 -1 -7 -13 -5 -6], ⟨0 1 2 2 7 10 6 7], ⟨0 0 -4 3 -3 4 -2 -4]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~3/2 = 702.2355, ~22/19 = 254.5930
- CWE: ~2 = 1200.0000, ~3/2 = 702.2117, ~22/19 = 254.5983
Optimal ET sequence: 94, 118f, 193f, 212gh, 217, 311, 740g, 1051dgh
Badness (Smith): 1.00 × 10-3
23-limit
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 595/594, 760/759, 833/832, 875/874, 969/968, 1156/1155
Mapping: [⟨1 0 0 -1 -7 -13 -5 -6 4], ⟨0 1 2 2 7 10 6 7 1], ⟨0 0 -4 3 -3 4 -2 -4 -5]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~3/2 = 702.2361, ~22/19 = 254.6222
- CWE: ~2 = 1200.0000, ~3/2 = 702.2359, ~22/19 = 254.6223
Optimal ET sequence: 94, 193f, 212gh, 217, 311
Badness (Smith): 0.948 × 10-3
Canta
By adding 896/891, the pentacircle comma, 33/32 is equated with 28/27, so the scale is filled with this 33/32~28/27 mixture. This may be described as 75e & 80 & 99e, and 80edo makes the optimal. It has a natural extension to the 13-limit since 896/891 = (352/351)(364/363), named gentcanta in earlier materials.
Subgroup: 2.3.5.7.11
Comma list: 896/891, 472392/471625
Mapping: [⟨1 0 0 -1 6], ⟨0 1 2 2 -2], ⟨0 0 4 -3 -3]]
- CTE: ~2 = 1200.0000, ~3/2 = 702.8093, ~64/55 = 254.3378
- error map: ⟨0.0000 +0.8543 +1.9537 -0.1940 +6.0769]
- CWE: ~2 = 1200.0000, ~3/2 = 703.5249, ~64/55 = 254.5492
- error map: ⟨0.0000 +1.5699 +2.5393 +1.8714 +5.2799]
Optimal ET sequence: 75e, 80, 99e, 179e, 457bcddeeee
Badness (Smith): 4.52 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 364/363, 472392/471625
Mapping: [⟨1 0 0 -1 6 11], ⟨0 1 2 2 -2 -5], ⟨0 0 4 -3 -3 -3]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~3/2 = 703.6228, ~64/55 = 254.3447
- CWE: ~2 = 1200.0000, ~3/2 = 703.8323, ~64/55 = 254.5887
Optimal ET sequence: 75e, 80, 99ef, 179ef
Badness (Smith): 4.78 × 10-3
Semicanou
Semicanou adds 9801/9800, the kalisma, to the comma list, and may be described as 80 & 94 & 118. It splits the octave into two equal parts, each representing 99/70~140/99. Note that 99/70 = (81/70)(11/9), this extension is more than natural.
The other comma necessary to define it is 14641/14580, the semicanousma, which is the difference between 121/120 and 243/242. By flattening the 11th harmonic by about one cent, it identifies 20/11 by three 11/9's stacked, so an octave can be divided into 11/9, 11/9, 11/9, and 11/10.
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 14641/14580
Mapping: [⟨2 0 0 -2 1], ⟨0 1 2 2 2], ⟨0 0 -4 3 -1]]
- mapping generators: ~99/70, ~3, ~81/70
- CTE: ~99/70 = 600.0000, ~3/2 = 702.4262, ~81/70 = 254.6191
- error map: ⟨0.0000 +0.4712 +0.0625 -0.1163 -1.0846]
- CWE: ~99/70 = 600.0000, ~3/2 = 702.4048, ~81/70 = 254.6179
- error map: ⟨0.0000 +0.4498 +0.0245 -0.1627 -1.1262]
Optimal ET sequence: 80, 94, 118, 198, 212, 292, 330e, 410
Badness (Smith): 2.20 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1716/1715, 2080/2079, 14641/14580
Mapping: [⟨2 0 0 -2 1 -11], ⟨0 1 2 2 2 5], ⟨0 0 -4 3 -1 6]]
Optimal tunings:
- CTE: ~99/70 = 600.0000, ~3/2 = 702.4802, ~81/70 = 254.6526
- CWE: ~99/70 = 600.0000, ~3/2 = 702.4945, ~81/70 = 254.6511
Optimal ET sequence: 80f, 94, 118f, 198, 410
Badness (Smith): 2.97 × 10-3
Semicanoumint
This extension was named semicanou in the earlier materials. It adds 352/351, the minthma, to the comma list, so that the flat ~11/9 simultaneously represents ~39/32.
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 9801/9800, 14641/14580
Mapping: [⟨2 0 0 -2 1 11], ⟨0 1 2 2 2 -1], ⟨0 0 -4 3 -1 -1]]
Optimal tunings:
- CTE: ~99/70 = 600.0000, ~3/2 = 702.5374, ~81/70 = 254.6819
- CTE: ~99/70 = 600.0000, ~3/2 = 702.7916, ~81/70 = 254.6704
Optimal ET sequence: 80, 94, 118, 174d, 198, 490f
Badness (Smith): 2.70 × 10-3
Semicanouwolf
This extension was named gentsemicanou in the earlier materials. It adds 351/350, the ratwolfsma, as wells as 364/363, the gentle comma, to the comma list. Since 351/350 = (81/70)/(15/13), the 81/70-generator simultaneously represents 15/13, adding a lot of fun to the scale.
Not supported by many patent vals, 80edo easily makes the optimal. Yet 104edo in 104c val and 118edo in 118f val are worth mentioning, and the temperament may be described as 80 & 104c & 118f.
Subgroup: 2.3.5.7.11.13
Comma list: 351/350, 364/363, 11011/10935
Mapping: [⟨2 0 0 -2 1 0], ⟨0 1 2 2 2 3], ⟨0 0 -4 3 -1 -5]]
Optimal tunings:
- CTE: ~55/39 = 600.0000, ~3/2 = 702.7417, ~15/13 = 254.3382
- CWE: ~55/39 = 600.0000, ~3/2 = 702.8092, ~15/13 = 254.3396
Optimal ET sequence: 80, 104c, 118f, 198f, 420cff
Badness (Smith): 3.51 × 10-3