457edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 456edo457edo458edo →
Prime factorization 457 (prime)
Step size 2.62582¢
Fifth 267\457 (701.094¢)
Semitones (A1:m2) 41:36 (107.7¢ : 94.53¢)
Consistency limit 7
Distinct consistency limit 7

457 equal divisions of the octave (457edo), or 457-tone equal temperament (457tet), 457 equal temperament (457et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 457 equal parts of about 2.63 ¢ each.

Theory

457et tempers out 283115520/282475249, 1220703125/1219784832, 26873856/26796875, 65625/65536 and 200120949/200000000 in the 7-limit; 95703125/95664294, 100663296/100656875, 161280/161051, 29296875/29218112, 166698/166375, 1953125/1951488, 151263/151250, 2359296/2358125, 540/539, 5767168/5764801, 825000/823543, 8019/8000, 160083/160000, 16808715/16777216, 539055/537824, 244515348/244140625, 67110351/67108864 and 43923/43904 in the 11-limit.

Odd harmonics

Approximation of odd harmonics in 457edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error absolute (¢) -0.86 -0.32 +0.10 +0.90 +0.10 -0.27 -1.18 +0.08 -0.80 -0.76 -0.70
relative (%) -33 -12 +4 +34 +4 -10 -45 +3 -30 -29 -27
Steps
(reduced)
724
(267)
1061
(147)
1283
(369)
1449
(78)
1581
(210)
1691
(320)
1785
(414)
1868
(40)
1941
(113)
2007
(179)
2067
(239)

Subsets and supersets

457edo is the 88th prime edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-724 457 457 724] 0.2716 0.2716 10.34
2.3.5 [-36 11 8, [-5 31 -19 457 724 1061] 0.2267 0.2307 8.79
2.3.5.7 19683/19600, 65625/65536, 7381125/7340032 457 724 1061 1283] 0.1609 0.2300 8.76
2.3.5.7.11 540/539, 8019/8000, 19683/19600, 43923/43904 457 724 1061 1283 1581] 0.1227 0.2194 8.36
2.3.5.7.11.13 540/539, 1716/1715, 4225/4224, 41067/40960, 43940/43923 457 724 1061 1283 1581 1691] 0.1142 0.2012 7.66
2.3.5.7.11.13.17 936/935, 1089/1088, 1275/1274, 1575/1573, 2601/2600, 4225/4224 457 724 1061 1283 1581 1691 1868] 0.0952 0.1920 7.31

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 10\457 26.258 49/48 Sfourth
1 136\457 357.11 49/40 Dodifo
1 213\457 559.30 864/625 Tritriple