Tritrizo clan
The tritrizo clan of temperaments tempers out the tritrizo comma (no-five ennealimma), [-11 -9 0 9⟩ = 40353607/40310784, and includes these:
- Cobalt → Starling temperaments #Cobalt
- Niner → Augmented family #Niner
- Enneaportent → Marvel temperaments #Enneaportent
- Novemkleismic → Kleismic family #Novemkleismic
- Decades → Compton family #Decades
- Nonant → Schismatic family #Nonant
Primarily, this clan includes the 7-limit ennealimmal temperament and extensions of it.
No-five tritrizo
Subgroup: 2.3.7
Comma list: 40353607/40310784
Sval mapping: [⟨9 0 11], ⟨0 1 1]]
POTE generator: ~3/2 = 701.965
Optimal ET sequence: 27, 36, 99, 135, 171, 306, 4419d, 4725d, ... , 8397dd, 8703dd
Ennea
Subgroup: 2.3.7.11
Comma list: 41503/41472, 43923/43904
Sval mapping: [⟨9 0 11 24], ⟨0 2 2 1]]
POTE generator: ~99/98 = 17.626
Optimal ET sequence: 54, 63, 72, 135, 342, 477, 1089, 1566
Ennealimmal
Ennealimmal tempers out the two smallest 7-limit superparticular commas, 2401/2400 and 4375/4374, leading to a temperament of unusual efficiency. It also tempers out the ennealimma, [1 -27 18⟩, which leads to the identification of (27/25)9 with the octave, and gives ennealimmal a period of 1/9 octave. Its pergen is (P8/9, P5/2). While 27/25 is a 5-limit interval, a stack of two periods equates to 7/6 because of identification by 4375/4374, and this represents 7/6 with such accuracy (a fifth of a cent flat) that there is no realistic possibility of treating ennealimmal as anything other than 7-limit.
Aside from 10/9 which has already been mentioned, possible generators include 36/35, 21/20, 6/5, 7/5 and the neutral thirds pair 49/40~60/49, all of which have their own interesting advantages. Possible tunings are 441-, 612-, or 3600edo, though its hardly likely anyone could tell the difference.
If 1/9 of an octave is too small of a period for you, you could try generator-period pairs of [3, 5], [5/3, 3], [6/5, 4/3], [4/3, 8/5] or [10/9, 4/3] (for example). In particular, people fond of the idea of "tritaves" as analogous to octaves might consider the 28 or 43 note mos with generator an approximate 5/3 within 3; for instance as given by 451/970 of a "tritave". Tetrads have a low enough complexity that (for example) there are nine 1-3/2-7/4-5/2 tetrads in the 28 notes to the tritave mos, which is equivalent in average step size to a 17 2/3 to the octave mos.
Ennealimmal extensions discussed elsewhere include omicronbeta, undecentic, schisennealimmal, and lunennealimmal.
7-limit ennealimmal's S-expression-based comma list is {S25/S27, S49}. Interestingly, the landscape comma is equal to S49/(S25/S27) while the wizma is equal to S49*S25/S27.
For the 5-limit temperament, see Ennealimma#Ennealimmal.
Subgroup: 2.3.5.7
Comma list: 2401/2400, 4375/4374
Mapping: [⟨9 1 1 12], ⟨0 2 3 2]]
Wedgie: ⟨⟨ 18 27 18 1 -22 -34 ]]
- mapping generators: ~27/25, ~5/3
Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.3129 (~36/35 = 49.0205)
- 7-odd-limit diamond monotone: ~36/35 = [26.667, 66.667] (1\45 to 1\18)
- 9-odd-limit diamond monotone: ~36/35 = [44.444, 53.333] (1\27 to 2\45)
- 7- and 9-odd-limit diamond tradeoff: ~36/35 = [48.920, 49.179]
- 7- and 9-odd-limit diamond monotone and tradeoff: ~36/35 = [48.920, 49.179]
Optimal ET sequence: 27, 45, 72, 99, 171, 441, 612
Badness: 0.003610
11-limit
The ennealimmal temperament can be described as 99e & 171e, which tempers out 5632/5625 (vishdel comma) and 19712/19683 (symbiotic comma).
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 5632/5625
Mapping: [⟨9 1 1 12 -75], ⟨0 2 3 2 16]]
Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.4679 (~36/35 = 48.8654)
Optimal ET sequence: 99e, 171e, 270, 909, 1179, 1449c, 1719c
Badness: 0.027332
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1001/1000, 1716/1715, 4096/4095, 4375/4374
Mapping: [⟨9 1 1 12 -75 93], ⟨0 2 3 2 16 -9]]
Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.4304 (~36/35 = 48.9030)
Optimal ET sequence: 99e, 171e, 270
Badness: 0.029404
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 715/714, 1001/1000, 1716/1715, 4096/4095, 4375/4374
Mapping: [⟨9 1 1 12 -75 93 -3], ⟨0 2 3 2 16 -9 6]]
Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.4304 (~36/35 = 48.9030)
Optimal ET sequence: 99e, 171e, 270
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 715/714, 1001/1000, 1216/1215, 1716/1715, 4096/4095, 4375/4374
Mapping: [⟨9 1 1 12 -75 93 -3 -48], ⟨0 2 3 2 16 -9 6 13]]
Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.4304 (~36/35 = 48.9030)
Optimal ET sequence: 99e, 171e, 270
Ennealimmalis
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 2401/2400, 4375/4374, 5632/5625
Mapping: [⟨9 1 1 12 -75 -106], ⟨0 2 3 2 16 21]]
Optimal tuning (CTE): ~27/25 = 1\9, ~5/3 = 884.4560 (~36/35 = 48.8773)
Optimal ET sequence: 99ef, 171ef, 270, 639, 909, 1179, 2088bce
Badness: 0.022068
Ennealimmia
The ennealimmia temperament is an alternative extension and can be described as 99 & 171, which tempers out 131072/130977 (olympia).
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 131072/130977
Mapping: [⟨9 1 1 12 124], ⟨0 2 3 2 -14]]
Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.4089 (~36/35 = 48.9244)
Optimal ET sequence: 99, 171, 270, 711, 981, 1251, 2232e
Badness: 0.026463
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 2401/2400, 4096/4095, 4375/4374
Mapping: [⟨9 1 1 12 124 93], ⟨0 2 3 2 -14 -9]]
Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.3997 (~36/35 = 48.9336)
Optimal ET sequence: 99, 171, 270, 711, 981, 1692e, 2673e
Badness: 0.016607
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 936/935, 2080/2079, 2401/2400, 4096/4095, 4375/4374
Mapping: [⟨9 1 1 12 124 93 -3], ⟨0 2 3 2 -14 -9 6]]
Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.3997 (~36/35 = 48.9336)
Optimal ET sequence: 99, 171, 270
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 936/935, 1216/1215, 2080/2079, 2401/2400, 4096/4095, 4375/4374
Mapping: [⟨9 1 1 12 124 93 -3 -48], ⟨0 2 3 2 -14 -9 6 13]]
Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.3997 (~36/35 = 48.9336)
Optimal ET sequence: 99, 171, 270
Ennealimnic
Ennealimnic (72 & 171) equates 11/9 with 27/22, 49/40, and 60/49 as a neutral third interval.
Subgroup: 2.3.5.7.11
Comma list: 243/242, 441/440, 4375/4356
Mapping: [⟨9 1 1 12 -2], ⟨0 2 3 2 5]]
Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 883.9386 (~36/35 = 49.3948)
Tuning ranges:
- 11-odd-limit diamond monotone: ~36/35 = [44.444, 53.333] (1\27 to 2\45)
- 11-odd-limit diamond tradeoff: ~36/35 = [48.920, 52.592]
- 11-odd-limit diamond monotone and tradeoff: ~36/35 = [48.920, 52.592]
Optimal ET sequence: 72, 171, 243
Badness: 0.020347
See also: Chords of ennealimnic
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 243/242, 364/363, 441/440, 625/624
Mapping: [⟨9 1 1 12 -2 -33], ⟨0 2 3 2 5 10]]
Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 883.9920 (~36/35 = 49.3414)
Tuning ranges:
- 13- and 15-odd-limit diamond monotone: ~36/35 = [48.485, 50.000] (4\99 to 3\72)
- 13- and 15-odd-limit diamond tradeoff: ~36/35 = [48.825, 52.592]
- 13- and 15-odd-limit diamond monotone and tradeoff: ~36/35 = [48.825, 50.000]
Optimal ET sequence: 72, 171, 243
Badness: 0.023250
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 243/242, 364/363, 375/374, 441/440, 595/594
Mapping: [⟨9 1 1 12 -2 -33 -3], ⟨0 2 3 2 5 10 6]]
Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 883.9981 (~36/35 = 49.3353)
Tuning ranges:
- 17-odd-limit diamond monotone: ~36/35 = [48.485, 50.000] (4\99 to 3\72)
- 17-odd-limit diamond tradeoff: ~36/35 = [46.363, 52.592]
- 17-odd-limit diamond monotone and tradeoff: ~36/35 = [48.485, 50.000]
Optimal ET sequence: 72, 171, 243
Badness: 0.014602
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 243/242, 364/363, 375/374, 441/440, 513/512, 595/594
Mapping: [⟨9 1 1 12 -2 -33 -3 78], ⟨0 2 3 2 5 10 6 -6]]
Optimal ET sequence: 72, 171, 243
Ennealim
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 243/242, 325/324, 441/440
Mapping: [⟨9 1 1 12 -2 20], ⟨0 2 3 2 5 2]]
Optimal tuning (POTE): ~13/12 = 1\9, ~5/3 = 883.6257 (~36/35 = 49.7076)
Optimal ET sequence: 27e, 45ef, 72
Badness: 0.020697
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 169/168, 221/220, 243/242, 325/324, 441/440
Mapping: [⟨9 1 1 12 -2 20 -3], ⟨0 2 3 2 5 2 6]]
Optimal tuning (POTE): ~13/12 = 1\9, ~5/3 = 883.6257 (~36/35 = 49.7076)
Optimal ET sequence: 27eg, 45efg, 72
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 169/168, 221/220, 243/242, 325/324, 441/440
Mapping: [⟨9 1 1 12 -2 20 -3 25], ⟨0 2 3 2 5 2 6 2]]
Optimal tuning (POTE): ~13/12 = 1\9, ~5/3 = 883.6257 (~36/35 = 49.7076)
Optimal ET sequence: 27eg, 45efg, 72
Ennealiminal
Subgroup: 2.3.5.7.11
Comma list: 385/384, 1375/1372, 4375/4374
Mapping: [⟨9 1 1 12 51], ⟨0 2 3 2 -3]]
Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 883.8298 (~36/35 = 49.5036)
Optimal ET sequence: 27, 45, 72, 171e, 243e, 315e
Badness: 0.031123
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 325/324, 385/384, 1375/1372
Mapping: [⟨9 1 1 12 51 20], ⟨0 2 3 2 -3 2]]
Optimal tuning (POTE): ~13/12 = 1\9, ~5/3 = 883.8476 (~36/35 = 49.4857)
Optimal ET sequence: 27, 45f, 72, 171ef, 243eff
Badness: 0.030325
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 169/168, 221/220, 325/324, 385/384, 1375/1372
Mapping: [⟨9 1 1 12 51 20 50], ⟨0 2 3 2 -3 2 -2]]
Optimal tuning (POTE): ~13/12 = 1\9, ~5/3 = 883.8476 (~36/35 = 49.4857)
Optimal ET sequence: 27, 45f, 72
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 153/152, 169/168, 221/220, 325/324, 385/384, 1375/1372
Mapping: [⟨9 1 1 12 51 20 50 25], ⟨0 2 3 2 -3 2 -2 2]]
Optimal tuning (POTE): ~13/12 = 1\9, ~5/3 = 883.8476 (~36/35 = 49.4857)
Optimal ET sequence: 27, 45f, 72
Hemiennealimmal
Hemiennealimmal (72 & 198) has a period of 1/18 octave and tempers out the four smallest superparticular commas of the 11-limit JI, 2401/2400, 3025/3024, 4375/4374, and 9801/9800. Tempering out 9801/9800 leads to an octave split into two equal parts. Notably, every one of these commas is part of one or more known infinite comma families; see directly below.
Its S-expression-based comma list is {(S22/S24 = S55 = S25/S27 * S99,) S25/S27, S49, S33/S35 = S99}.
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 3025/3024, 4375/4374
Mapping: [⟨18 0 -1 22 48], ⟨0 2 3 2 1]]
- mapping generators: ~80/77, ~400/231
Optimal tuning (POTE): ~80/77 = 1\18, ~400/231 = 950.9553
Tuning ranges:
- 11-odd-limit diamond monotone: ~99/98 = [13.333, 22.222] (1\90 to 1\54)
- 11-odd-limit diamond tradeoff: ~99/98 = [17.304, 17.985]
- 11-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 17.985]
Optimal ET sequence: 72, 198, 270, 342, 612, 954, 1566
Badness: 0.006283
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 1716/1715, 3025/3024
Mapping: [⟨18 0 -1 22 48 -19], ⟨0 2 3 2 1 6]]
Optimal tuning (POTE): ~27/26 = 1\18, ~26/15 = 951.0837
Tuning ranges:
- 13-odd-limit diamond monotone: ~99/98 = [16.667, 22.222] (1\72 to 1\54)
- 15-odd-limit diamond monotone: ~99/98 = [16.667, 19.048] (1\72 to 2\126)
- 13-odd-limit diamond tradeoff: ~99/98 = [17.304, 18.309]
- 15-odd-limit diamond tradeoff: ~99/98 = [17.304, 18.926]
- 13-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 18.309]
- 15-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 18.926]
Optimal ET sequence: 72, 198, 270
Badness: 0.012505
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 676/675, 715/714, 1001/1000, 1716/1715, 3025/3024
Mapping: [⟨18 0 -1 22 48 -19 -12], ⟨0 2 3 2 1 6 6]]
Optimal tuning (POTE): ~27/26 = 1\18, ~26/15 = 951.0837
Optimal ET sequence: 72, 198g, 270
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 676/675, 715/714, 1001/1000, 1331/1330, 1716/1715, 3025/3024
Mapping: [⟨18 0 -1 22 48 -19 -12 48 105], ⟨0 2 3 2 1 6 6 -2]]
Optimal tuning (POTE): ~27/26 = 1\18, ~26/15 = 951.0837
Optimal ET sequence: 72, 198g, 270
Semihemiennealimmal
Subgroup: 2.3.5.7.11.13
Comma list: 2401/2400, 3025/3024, 4225/4224, 4375/4374
Mapping: [⟨18 0 -1 22 48 88], ⟨0 4 6 4 2 -3]]
- mapping generators: ~80/77, ~1053/800
Optimal tuning (POTE): ~80/77 = 1\18, ~1053/800 = 475.4727
Optimal ET sequence: 126, 144, 270, 684, 954
Badness: 0.013104
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 2401/2400, 2431/2430, 3025/3024, 4225/4224, 4375/4374
Mapping: [⟨18 0 -1 22 48 88 -119], ⟨0 4 6 4 2 -3 27]]
- mapping generators: ~80/77, ~1053/800
Optimal tuning (POTE): ~80/77 = 1\18, ~1053/800 = 475.4727
Optimal ET sequence: 270, 684, 954
Badness: 0.013104
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 2401/2400, 2431/2430, 2926/2925, 3025/3024, 4225/4224, 4375/4374
Mapping: [⟨18 0 -1 22 48 88 -119 -2], ⟨0 4 6 4 2 -3 27 11]]
- mapping generators: ~80/77, ~1053/800
Optimal tuning (POTE): ~80/77 = 1\18, ~1053/800 = 475.4727
Optimal ET sequence: 270, 684h, 954h, 1224
Badness: 0.013104
Semiennealimmal
Semiennealimmal tempers out 4000/3993, and uses a ~140/121 semifourth generator. Notably, however, two generator steps do not reach ~4/3, despite that the name may suggest so. In fact, it splits the generator of ennealimmal into three.
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4000/3993, 4375/4374
Mapping: [⟨9 3 4 14 18], ⟨0 6 9 6 7]]
- mapping generators: ~27/25, ~140/121
Optimal tuning (POTE): ~27/25 = 1\9, ~140/121 = 250.3367
Optimal ET sequence: 72, 369, 441
Badness: 0.034196
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1575/1573, 2080/2079, 2401/2400, 4375/4374
Mapping: [⟨9 3 4 14 18 -8], ⟨0 6 9 6 7 22]]
Optimal tuning (POTE): ~27/25 = 1\9, ~140/121 = 250.3375
Optimal ET sequence: 72, 297ef, 369f, 441
Badness: 0.026122
Quadraennealimmal
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 234375/234256
Mapping: [⟨9 1 1 12 -7], ⟨0 8 12 8 23]]
- mapping generators: ~27/25, ~25/22
Optimal tuning (POTE): ~27/25 = 1\9, ~25/22 = 221.0717
Optimal ET sequence: 342, 1053, 1395, 1737, 4869dd, 6606cdd
Badness: 0.021320
Trinealimmal
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 2097152/2096325
Mapping: [⟨27 1 0 34 177], ⟨0 2 3 2 -4]]
- mapping generators: ~2744/2673, ~2352/1375
Optimal tuning (POTE): ~2744/2673 = 1\27, ~2352/1375 = 928.8000
Optimal ET sequence: 27, 243, 270, 783, 1053, 1323
Badness: 0.029812
Rhodium
Rhodium splits the ennealimmal period in five parts and thereby features a period of 9 × 5 = 45, thus the name is given after the 45th element.
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 117440512/117406179
Mapping: [⟨45 1 -1 56 226], ⟨0 2 3 2 -2]]
- mapping generators: ~3072/3025, ~55/32
Optimal tunings:
- CTE: ~3072/3025 = 1\45, ~55/32 = 937.6658 (~385/384 = 4.3325)
- CWE: ~3072/3025 = 1\45, ~55/32 = 937.6630 (~385/384 = 4.3397)
Optimal ET sequence: 45, 225c, 270, 1125, 1395, 1665, 5265d
Badness: 0.0381
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2401/2400, 4225/4224, 4375/4374, 6656/6655
Mapping: [⟨45 1 -1 56 226 272], ⟨0 2 3 2 -2 -3]]
Optimal tunings:
- CTE: ~66/65 = 1\45, ~55/32 = 937.6569 (~385/384 = 4.3236)
- CWE: ~66/65 = 1\45, ~55/32 = 937.6515 (~385/384 = 4.3182)
Optimal ET sequence: 45, 270, 855, 1125, 1395, 1665, 3060d, 4725df
Badness: 0.0226
Undecentic
Undecentic (99&198) has a period of 1/99 octave.
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 3136/3125, 4375/4374
Mapping: [⟨99 157 230 278 0], ⟨0 0 0 0 1]]
POTE generator: ~11/8 = 552.756
Optimal ET sequence: 99e, 198, 297e, 495ce
Badness: 0.058801
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 847/845, 2401/2400, 3136/3125
Mapping: [⟨99 157 230 278 0 24], ⟨0 0 0 0 1 1]]
POTE generator: ~11/8 = 552.024
Optimal ET sequence: 99ef, 198
Badness: 0.042547
Schisennealimmal
Schisennealimmal (171&342) has a period of 1/171 octave. 171EDO and its multiples are members of both schismic and ennealimmal, and from this it derives its name.
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 32805/32768
Mapping: [⟨171 271 397 480 0], ⟨0 0 0 0 1]]
POTE generator: ~11/8 = 550.954
Badness: 0.031739
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 729/728, 2205/2197, 2401/2400
Mapping: [⟨171 271 397 480 0 633], ⟨0 0 0 0 1 0]]
POTE generator: ~11/8 = 551.322
Optimal ET sequence: 171, 342, 855ff, 1197fff
Badness: 0.054029
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 625/624, 729/728, 833/832, 1225/1224, 2205/2197
Mapping: [⟨171 271 397 480 0 633 699], ⟨0 0 0 0 1 0 0]]
POTE generator: ~11/8 = 551.365
Optimal ET sequence: 171, 342, 855ff, 1197fff
Badness: 0.031323
Schisennealimmic
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 2401/2400, 4375/4374, 32805/32768
Mapping: [⟨171 271 397 480 0 41], ⟨0 0 0 0 1 1]]
POTE generator: ~11/8 = 551.625
Optimal ET sequence: 171, 342f, 513, 855f
Badness: 0.046843
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 936/935, 1225/1224, 1701/1700, 2025/2023, 11271/11264
Mapping: [⟨171 271 397 480 0 41 699], ⟨0 0 0 0 1 1 0]]
POTE generator: ~11/8 = 551.756
Optimal ET sequence: 171, 342f, 513, 855f
Badness: 0.030622
Lunennealimmal
Lunennealimmal (441&882) has has a period of 1/441 octave. 441EDO and its multiples are members of both luna and ennealimmal, and from this it derives its name.
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 274877906944/274658203125
Mapping: [⟨441 699 1024 1238 1526], ⟨0 0 0 0 -1]]
POTE generator: ~11/8 = 551.3584
Optimal ET sequence: 441, 882, 1323, 2205, 3528
Badness: 0.091939
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2401/2400, 4096/4095, 4375/4374, 85750/85683
Mapping: [⟨441 699 1024 1238 1526 1632], ⟨0 0 0 0 -1 0]]
POTE generator: ~11/8 = 551.4043
Optimal ET sequence: 441, 882, 1323, 3528f, 4851ff, 6174dff
Badness: 0.042975
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 2401/2400, 4096/4095, 4375/4374, 8624/8619, 14161/14157
Mapping: [⟨441 699 1024 1238 1526 1632 1803], ⟨0 0 0 0 -1 0 -1]]
POTE generator: ~11/8 = 551.3688
Optimal ET sequence: 441, 882, 1323, 2205f, 3528f
Badness: 0.029334