Septiennealimmal clan
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
The septiennealimmal clan of temperaments tempers out the septimal ennealimma (monzo: [-11 -9 0 9⟩, ratio: 40353607/40310784). Primarily, this clan includes the 7-limit ennealimmal temperament and extensions of it.
Temperaments discussed elsewhere are:
- Cobalt → Starling temperaments #Cobalt
- Niner → Augmented family #Niner
- Enneaportent → Marvel temperaments #Enneaportent
- Novemkleismic → Kleismic family #Novemkleismic
- Gamelstearn → Compton family #Gamelstearn
- Nonant → Schismatic family #Nonant
No-five septiennealimmal
This rank-2 temperament is of interest to anyone who wants a different generator for the ennealimmal-like structure because it represents the part of ennealimmal supported by non-ennealimmal equal temperaments of interest that do well in the 2.3.7 subgroup, such as 36edo, which adds the gamelisma, or 63edo, which in the 7-limit can be used for magic and in higher limits for parapyth among other things.
Subgroup: 2.3.7
Comma list: 40353607/40310784
Sval mapping: [⟨9 0 11], ⟨0 1 1]]
- sval mapping generators: ~2592/2401, ~3
- CTE: ~2592/2401 = 133.3333, ~3/2 = 702.0044
- error map: ⟨0.0000 +0.0494 -0.1549]
- POTE: ~2592/2401 = 133.3333, ~3/2 = 701.9649
- error map: ⟨0.0000 +0.0099 -0.1944]
Optimal ET sequence: 27, 36, 99, 135, 171, 306, 4419d, 4725d, …, 8397dd, 8703dd
Septiennealic
Septiennealic finds a somewhat high-damage but very simple and intuitive mapping of prime 13 by fixing 13/12~14/13 at 1\9.
A notable tuning of septiennealic not appearing in the optimal ET sequence is 63edo. If we include a somewhat more complex mapping for 11 via 36e & 63, it will become the optimal patent val and largest in the sequence.
Subgroup: 2.3.7.13
Comma list: 169/168, 31213/31104
Sval mapping: [⟨9 0 11 19], ⟨0 1 1 1]]
Optimal tuning (CTE): ~13/12 = 133.333, ~3/2 = 702.638
Optimal ET sequence: 27, 36, 99, 135f, 171f
- Smith: 0.0134
- Dirichlet: 0.540
Ennea
Subgroup: 2.3.7.11
Comma list: 41503/41472, 43923/43904
Mapping: [⟨9 0 11 24], ⟨0 2 2 1]]
Optimal tunings:
- CTE: ~121/112 = 133.3333, 343/198 = 951.0143 (~99/98 = 17.6810)
- POTE: ~121/112 = 133.3333, 343/198 = 950.9591 (~99/98 = 17.6258)
Optimal ET sequence: 54, 63, 72, 135, 342, 477, 1089, 1566
Ennealimmal
- For the 5-limit version, see Ennealimma #Ennealimmal.
Ennealimmal tempers out the two smallest 7-limit superparticular commas, 2401/2400 and 4375/4374, leading to a temperament of unusual efficiency. It also tempers out the landscape comma, which is (2401/2400)/(4375/4374), and the wizma, which is (2401/2400)⋅(4375/4374).
In the 5-limit, it tempers out the ennealimma, [1 -27 18⟩, which leads to the identification of (27/25)9 with the octave, and gives ennealimmal a period of 1/9 octave. Its pergen is (P8/9, P5/2), and ploidacot enneaploid dicot. While 27/25 is a 5-limit interval, a stack of two periods equates to 7/6 because of identification by 4375/4374, and this represents 7/6 with such accuracy (a fifth of a cent flat) that there is no realistic possibility of treating ennealimmal as anything other than 7-limit.
Aside from 10/9 which has already been mentioned, possible generators include 36/35, 21/20, 6/5, 7/5 and the neutral thirds pair 49/40~60/49, all of which have their own interesting advantages. Possible tunings are 441-, 612-, or 3600edo, though its hardly likely anyone could tell the difference.
If 1/9 of an octave is too small of a period for you, you could try generator-period pairs of [3, 5], [5/3, 3], [6/5, 4/3], [4/3, 8/5] or [10/9, 4/3] (for example). In particular, people fond of the idea of "tritaves" as analogous to octaves might consider the 28- or 43-note mos with generator an approximate 5/3 within 3; for instance as given by 451/970 of a "tritave". Tetrads have a low enough complexity that (for example) there are nine 1–3/2–7/4–5/2 tetrads in the 28 notes to the tritave mos, which is equivalent in average step size to a 172⁄3 to the octave mos.
Ennealimmal extensions discussed elsewhere include omicronbeta.
7-limit ennealimmal's S-expression-based comma list is {S25/S27, S49}.
Subgroup: 2.3.5.7
Comma list: 2401/2400, 4375/4374
Mapping: [⟨9 1 1 12], ⟨0 2 3 2]]
- mapping generators: ~27/25, ~5/3
- CTE: ~27/25 = 133.3333, ~5/3 = 884.3317 (~36/35 = 49.0016)
- error map: ⟨0.0000 +0.0416 +0.0146 -0.1626]
- POTE: ~27/25 = 133.3333, ~5/3 = 884.3129 (~36/35 = 49.0205)
- error map: ⟨0.0000 +0.0040 -0.0418 -0.2002]
- 7-odd-limit diamond monotone: ~36/35 = [26.667, 66.667] (1\45 to 1\18)
- 9-odd-limit diamond monotone: ~36/35 = [44.444, 53.333] (1\27 to 2\45)
- 7- and 9-odd-limit diamond tradeoff: ~36/35 = [48.920, 49.179]
Optimal ET sequence: 27, 45, 72, 99, 171, 441, 612
Badness (Smith): 0.003610
11-limit
The ennealimmal temperament can be described as 99e & 171e, which tempers out 5632/5625 (vishdel comma) and 19712/19683 (symbiotic comma).
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 5632/5625
Mapping: [⟨9 1 1 12 -75], ⟨0 2 3 2 16]]
Optimal tunings:
- CTE: ~27/25 = 133.3333, ~5/3 = 884.4385 (~36/35 = 48.8948)
- POTE: ~27/25 = 133.3333, ~5/3 = 884.4679 (~36/35 = 48.8654)
Optimal ET sequence: 99e, 171e, 270, 909, 1179, 1449c, 1719c
Badness (Smith): 0.027332
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1001/1000, 1716/1715, 4096/4095, 4375/4374
Mapping: [⟨9 1 1 12 -75 93], ⟨0 2 3 2 16 -9]]
Optimal tunings:
- CTE: ~27/25 = 133.3333, ~5/3 = 884.4285 (~36/35 = 48.9048)
- POTE: ~27/25 = 133.3333, ~5/3 = 884.4304 (~36/35 = 48.9030)
Optimal ET sequence: 99e, 171e, 270
Badness (Smith): 0.029404
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 715/714, 1001/1000, 1716/1715, 4096/4095, 4375/4374
Mapping: [⟨9 1 1 12 -75 93 -3], ⟨0 2 3 2 16 -9 6]]
Optimal tunings:
- CTE: ~27/25 = 133.3333, ~5/3 = 884.4110 (~36/35 = 48.9223)
- POTE: ~27/25 = 133.3333, ~5/3 = 884.4234 (~36/35 = 48.9099)
Optimal ET sequence: 99e, 171e, 270
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 715/714, 1001/1000, 1216/1215, 1716/1715, 4096/4095, 4375/4374
Mapping: [⟨9 1 1 12 -75 93 -3 -48], ⟨0 2 3 2 16 -9 6 13]]
Optimal tunings:
- CTE: ~27/25 = 133.3333, ~5/3 = 884.4139 (~36/35 = 48.9194)
- POTE: ~27/25 = 133.3333, ~5/3 = 884.4270 (~36/35 = 48.9063)
Optimal ET sequence: 99e, 171e, 270
Ennealimmalis
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 2401/2400, 4375/4374, 5632/5625
Mapping: [⟨9 1 1 12 -75 -106], ⟨0 2 3 2 16 21]]
Optimal tunings:
- CTE: ~27/25 = 133.3333, ~5/3 = 884.4560 (~36/35 = 48.8773)
- CWE: ~27/25 = 133.3333, ~5/3 = 884.4745 (~36/35 = 48.8588)
Optimal ET sequence: 99ef, 171ef, 270, 639, 909, 1179, 2088bce
Badness (Smith): 0.022068
Ennealimmia
The ennealimmia temperament is an alternative extension and can be described as 99 & 171, which tempers out 131072/130977 (olympia).
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 131072/130977
Mapping: [⟨9 1 1 12 124], ⟨0 2 3 2 -14]]
Optimal tunings:
- CTE: ~27/25 = 133.3333, ~5/3 = 884.4113 (~36/35 = 48.9220)
- POTE: ~27/25 = 133.3333, ~5/3 = 884.4089 (~36/35 = 48.9244)
Optimal ET sequence: 99, 171, 270, 711, 981, 1251, 2232e
Badness (Smith): 0.026463
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 2401/2400, 4096/4095, 4375/4374
Mapping: [⟨9 1 1 12 124 93], ⟨0 2 3 2 -14 -9]]
Optimal tunings:
- CTE: ~27/25 = 133.3333, ~5/3 = 884.4055 (~36/35 = 48.9278)
- POTE: ~27/25 = 133.3333, ~5/3 = 884.3997 (~36/35 = 48.9336)
Optimal ET sequence: 99, 171, 270, 711, 981, 1692e
Badness (Smith): 0.016607
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 936/935, 2080/2079, 2401/2400, 4096/4095, 4375/4374
Mapping: [⟨9 1 1 12 124 93 -3], ⟨0 2 3 2 -14 -9 6]]
Optimal tunings:
- CTE: ~27/25 = 133.3333, ~5/3 = 884.3867 (~36/35 = 48.9466)
- POTE: ~27/25 = 133.3333, ~5/3 = 884.3808 (~36/35 = 48.9525)
Optimal ET sequence: 99, 171, 270
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 936/935, 1216/1215, 2080/2079, 2401/2400, 4096/4095, 4375/4374
Mapping: [⟨9 1 1 12 124 93 -3 -48], ⟨0 2 3 2 -14 -9 6 13]]
Optimal tunings:
- CTE: ~27/25 = 133.3333, ~5/3 = 884.3960 (~36/35 = 48.9373)
- POTE: ~27/25 = 133.3333, ~5/3 = 884.3985 (~36/35 = 48.9348)
Optimal ET sequence: 99, 171, 270
Ennealimnic
Ennealimnic (72 & 171) equates 11/9 with 27/22, 49/40, and 60/49 as a neutral third interval.
Subgroup: 2.3.5.7.11
Comma list: 243/242, 441/440, 4375/4356
Mapping: [⟨9 1 1 12 -2], ⟨0 2 3 2 5]]
Optimal tunings:
- CTE: ~27/25 = 133.3333, ~5/3 = 884.0697 (~36/35 = 49.2636)
- POTE: ~27/25 = 133.3333, ~5/3 = 883.9386 (~36/35 = 49.3948)
Tuning ranges:
- 11-odd-limit diamond monotone: ~36/35 = [44.444, 53.333] (1\27 to 2\45)
- 11-odd-limit diamond tradeoff: ~36/35 = [48.920, 52.592]
Optimal ET sequence: 72, 171, 243
Badness (Smith): 0.020347
See also: Chords of ennealimnic
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 243/242, 364/363, 441/440, 625/624
Mapping: [⟨9 1 1 12 -2 -33], ⟨0 2 3 2 5 10]]
Optimal tunings:
- CTE: ~27/25 = 133.3333, ~5/3 = 884.0603 (~36/35 = 49.2730)
- POTE: ~27/25 = 133.3333, ~5/3 = 883.9920 (~36/35 = 49.3414)
Tuning ranges:
- 13- and 15-odd-limit diamond monotone: ~36/35 = [48.485, 50.000] (4\99 to 3\72)
- 13- and 15-odd-limit diamond tradeoff: ~36/35 = [48.825, 52.592]
Optimal ET sequence: 72, 171, 243
Badness (Smith): 0.023250
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 243/242, 364/363, 375/374, 441/440, 595/594
Mapping: [⟨9 1 1 12 -2 -33 -3], ⟨0 2 3 2 5 10 6]]
Optimal tunings:
- CTE: ~27/25 = 133.3333, ~5/3 = 884.0742 (~36/35 = 49.2591)
- POTE: ~27/25 = 133.3333, ~5/3 = 883.9981 (~36/35 = 49.3353)
Tuning ranges:
- 17-odd-limit diamond monotone: ~36/35 = [48.485, 50.000] (4\99 to 3\72)
- 17-odd-limit diamond tradeoff: ~36/35 = [46.363, 52.592]
Optimal ET sequence: 72, 171, 243
Badness (Smith): 0.014602
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 243/242, 364/363, 375/374, 441/440, 513/512, 595/594
Mapping: [⟨9 1 1 12 -2 -33 -3 78], ⟨0 2 3 2 5 10 6 -6]]
Optimal tunings:
- CTE: ~27/25 = 133.3333, ~5/3 = 884.0366 (~36/35 = 49.2967)
- CWE: ~27/25 = 133.3333, ~5/3 = 883.9630 (~36/35 = 49.3703)
Optimal ET sequence: 72, 171, 243
Ennealim
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 243/242, 325/324, 441/440
Mapping: [⟨9 1 1 12 -2 20], ⟨0 2 3 2 5 2]]
Optimal tunings:
- CTE: ~13/12 = 133.3333, ~5/3 = 884.2055 (~36/35 = 49.1278)
- POTE: ~13/12 = 133.3333, ~5/3 = 883.6257 (~36/35 = 49.7076)
Optimal ET sequence: 27e, 45ef, 72
Badness (Smith): 0.020697
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 169/168, 221/220, 243/242, 325/324, 441/440
Mapping: [⟨9 1 1 12 -2 20 -3], ⟨0 2 3 2 5 2 6]]
Optimal tunings:
- CTE: ~13/12 = 133.3333, ~5/3 = 884.1935 (~36/35 = 49.1398)
- POTE: ~13/12 = 133.3333, ~5/3 = 883.6257 (~36/35 = 49.7076)
Optimal ET sequence: 27eg, 45efg, 72
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 169/168, 221/220, 243/242, 325/324, 441/440
Mapping: [⟨9 1 1 12 -2 20 -3 25], ⟨0 2 3 2 5 2 6 2]]
Optimal tunings:
- CTE: ~13/12 = 133.3333, ~5/3 = 884.1388 (~36/35 = 49.1945)
- POTE: ~13/12 = 133.3333, ~5/3 = 883.6257 (~36/35 = 49.7076)
Optimal ET sequence: 27eg, 45efg, 72
Ennealiminal
Subgroup: 2.3.5.7.11
Comma list: 385/384, 1375/1372, 4375/4374
Mapping: [⟨9 1 1 12 51], ⟨0 2 3 2 -3]]
Optimal tunings:
- CTE: ~27/25 = 133.3333, ~5/3 = 884.0925 (~36/35 = 49.2408)
- POTE: ~27/25 = 133.3333, ~5/3 = 883.8298 (~36/35 = 49.5036)
Optimal ET sequence: 27, 45, 72, 171e, 243e, 315e
Badness (Smith): 0.031123
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 325/324, 385/384, 1375/1372
Mapping: [⟨9 1 1 12 51 20], ⟨0 2 3 2 -3 2]]
Optimal tunings:
- CTE: ~13/12 = 133.3333, ~5/3 = 884.2648 (~36/35 = 49.0685)
- POTE: ~13/12 = 133.3333, ~5/3 = 883.8476 (~36/35 = 49.4857)
Optimal ET sequence: 27, 45f, 72, 171ef, 243eff
Badness (Smith): 0.030325
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 169/168, 221/220, 325/324, 385/384, 1375/1372
Mapping: [⟨9 1 1 12 51 20 50], ⟨0 2 3 2 -3 2 -2]]
Optimal tunings:
- CTE: ~13/12 = 133.3333, ~5/3 = 884.1032 (~36/35 = 49.2301)
- POTE: ~13/12 = 133.3333, ~5/3 = 883.8476 (~36/35 = 49.4857)
Optimal ET sequence: 27, 45f, 72
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 153/152, 169/168, 221/220, 325/324, 385/384, 1375/1372
Mapping: [⟨9 1 1 12 51 20 50 25], ⟨0 2 3 2 -3 2 -2 2]]
Optimal tunings:
- CTE: ~13/12 = 133.3333, ~5/3 = 884.0186 (~36/35 = 49.3147)
- POTE: ~13/12 = 133.3333, ~5/3 = 883.8476 (~36/35 = 49.4857)
Optimal ET sequence: 27, 45f, 72
Hemiennealimmal
Hemiennealimmal (72 & 198) has a period of 1/18 octave and tempers out the four smallest superparticular commas of the 11-limit JI, 2401/2400, 3025/3024, 4375/4374, and 9801/9800. Tempering out 9801/9800 leads to an octave split into two equal parts. Notably, every one of these commas is part of one or more known infinite comma families; see directly below.
Its S-expression-based comma list is {(S22/S24 = S55 = S25/S27 × S99,) S25/S27, S49, S33/S35 = S99}.
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 3025/3024, 4375/4374
Mapping: [⟨18 0 -1 22 48], ⟨0 2 3 2 1]]
- mapping generators: ~80/77, ~400/231
Optimal tunings:
- POTE: ~80/77 = 66.6667, ~400/231 = 950.9553
Tuning ranges:
- 11-odd-limit diamond monotone: ~99/98 = [13.333, 22.222] (1\90 to 1\54)
- 11-odd-limit diamond tradeoff: ~99/98 = [17.304, 17.985]
Optimal ET sequence: 72, 198, 270, 342, 612, 954, 1566
Badness (Smith): 0.006283
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 1716/1715, 3025/3024
Mapping: [⟨18 0 -1 22 48 -19], ⟨0 2 3 2 1 6]]
Optimal tunings:
- POTE: ~27/26 = 66.6667, ~26/15 = 951.0837
Tuning ranges:
- 13-odd-limit diamond monotone: ~99/98 = [16.667, 22.222] (1\72 to 1\54)
- 15-odd-limit diamond monotone: ~99/98 = [16.667, 19.048] (1\72 to 2\126)
- 13-odd-limit diamond tradeoff: ~99/98 = [17.304, 18.309]
- 15-odd-limit diamond tradeoff: ~99/98 = [17.304, 18.926]
Optimal ET sequence: 72, 198, 270
Badness (Smith): 0.012505
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 676/675, 715/714, 1001/1000, 1716/1715, 3025/3024
Mapping: [⟨18 0 -1 22 48 -19 -12], ⟨0 2 3 2 1 6 6]]
Optimal tunings:
- POTE: ~27/26 = 66.6667, ~26/15 = 951.0837
Optimal ET sequence: 72, 198g, 270
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 676/675, 715/714, 1001/1000, 1331/1330, 1716/1715, 3025/3024
Mapping: [⟨18 0 -1 22 48 -19 -12 48 105], ⟨0 2 3 2 1 6 6 -2]]
Optimal tunings:
- POTE: ~27/26 = 66.6667, ~26/15 = 951.0837
Optimal ET sequence: 72, 198g, 270
Semihemiennealimmal
Subgroup: 2.3.5.7.11.13
Comma list: 2401/2400, 3025/3024, 4225/4224, 4375/4374
Mapping: [⟨18 0 -1 22 48 88], ⟨0 4 6 4 2 -3]]
- mapping generators: ~80/77, ~1053/800
Optimal tunings:
- POTE: ~80/77 = 66.6667, ~1053/800 = 475.4727
Optimal ET sequence: 126, 144, 270, 684, 954
Badness (Smith): 0.013104
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 2401/2400, 2431/2430, 3025/3024, 4225/4224, 4375/4374
Mapping: [⟨18 0 -1 22 48 88 -119], ⟨0 4 6 4 2 -3 27]]
- mapping generators: ~80/77, ~1053/800
Optimal tunings:
- POTE: ~80/77 = 66.6667, ~1053/800 = 475.4727
Optimal ET sequence: 270, 684, 954
Badness (Smith): 0.013104
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 2401/2400, 2431/2430, 2926/2925, 3025/3024, 4225/4224, 4375/4374
Mapping: [⟨18 0 -1 22 48 88 -119 -2], ⟨0 4 6 4 2 -3 27 11]]
- mapping generators: ~80/77, ~1053/800
Optimal tunings:
- POTE: ~80/77 = 66.6667, ~1053/800 = 475.4727
Optimal ET sequence: 270, 684h, 954h, 1224
Badness (Smith): 0.013104
Semiennealimmal
Semiennealimmal tempers out 4000/3993, and uses a ~140/121 semifourth generator. Notably, however, two generator steps do not reach ~4/3, despite that the name may suggest so. In fact, it splits the generator of ennealimmal into three.
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4000/3993, 4375/4374
Mapping: [⟨9 3 4 14 18], ⟨0 6 9 6 7]]
- mapping generators: ~27/25, ~140/121
Optimal tunings:
- POTE: ~27/25 = 133.3333, ~140/121 = 250.3367
Optimal ET sequence: 72, 369, 441
Badness (Smith): 0.034196
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1575/1573, 2080/2079, 2401/2400, 4375/4374
Mapping: [⟨9 3 4 14 18 -8], ⟨0 6 9 6 7 22]]
Optimal tunings:
- POTE: ~27/25 = 133.3333, ~140/121 = 250.3375
Optimal ET sequence: 72, 297ef, 369f, 441
Badness (Smith): 0.026122
Quadraennealimmal
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 234375/234256
Mapping: [⟨9 1 1 12 -7], ⟨0 8 12 8 23]]
- mapping generators: ~27/25, ~25/22
Optimal tunings:
- POTE: ~27/25 = 133.3333, ~25/22 = 221.0717
Optimal ET sequence: 342, 1053, 1395, 1737, 4869dd, 6606cdd
Badness (Smith): 0.021320
Trinealimmal
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 2097152/2096325
Mapping: [⟨27 1 0 34 177], ⟨0 2 3 2 -4]]
- mapping generators: ~2744/2673, ~2352/1375
Optimal tunings:
- POTE: ~2744/2673 = 44.4444, ~2352/1375 = 928.8000
Optimal ET sequence: 27, 243, 270, 783, 1053, 1323
Badness (Smith): 0.029812
Rhodium
Rhodium splits the ennealimmal period in five parts and thereby features a period of 9 × 5 = 45. Thus the name is given after the 45th element.
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 117440512/117406179
Mapping: [⟨45 1 -1 56 226], ⟨0 2 3 2 -2]]
- mapping generators: ~3072/3025, ~55/32
Optimal tunings:
- CTE: ~3072/3025 = 26.6667, ~55/32 = 937.6658 (~385/384 = 4.3325)
- CWE: ~3072/3025 = 26.6667, ~55/32 = 937.6630 (~385/384 = 4.3397)
Optimal ET sequence: 45, 225c, 270, 1125, 1395, 1665, 5265d
Badness (Smith): 0.0381
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2401/2400, 4225/4224, 4375/4374, 6656/6655
Mapping: [⟨45 1 -1 56 226 272], ⟨0 2 3 2 -2 -3]]
Optimal tunings:
- CTE: ~66/65 = 26.6667, ~55/32 = 937.6569 (~385/384 = 4.3236)
- CWE: ~66/65 = 26.6667, ~55/32 = 937.6515 (~385/384 = 4.3182)
Optimal ET sequence: 45, 270, 855, 1125, 1395, 1665, 3060d, 4725df
Badness (Smith): 0.0226
Undecentic
Undecentic (99 & 198) has a period of 1/99 octave.
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 3136/3125, 4375/4374
Mapping: [⟨99 157 230 278 0], ⟨0 0 0 0 1]]
- POTE: ~126/125 = 12.121, ~11/8 = 552.756
Optimal ET sequence: 99e, 198, 297e, 495ce
Badness (Smith): 0.058801
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 847/845, 2401/2400, 3136/3125
Mapping: [⟨99 157 230 278 0 24], ⟨0 0 0 0 1 1]]
Optimal tunings:
- POTE: ~144/143 = 12.121, ~11/8 = 552.024
Optimal ET sequence: 99ef, 198
Badness (Smith): 0.042547
Schisennealimmal
Schisennealimmal (171 & 342) has a period of 1/171 octave. 171edo and its multiples are members of both schismic and ennealimmal, and from this it derives its name.
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 32805/32768
Mapping: [⟨171 271 397 480 0], ⟨0 0 0 0 1]]
- POTE: ~225/224 = 7.018, ~11/8 = 550.954
Badness (Smith): 0.031739
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 729/728, 2205/2197, 2401/2400
Mapping: [⟨171 271 397 480 0 633], ⟨0 0 0 0 1 0]]
Optimal tunings:
- POTE: ~225/224 = 7.018, ~11/8 = 551.322
Optimal ET sequence: 171, 342, 855ff, 1197fff
Badness (Smith): 0.054029
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 625/624, 729/728, 833/832, 1225/1224, 2205/2197
Mapping: [⟨171 271 397 480 0 633 699], ⟨0 0 0 0 1 0 0]]
Optimal tunings:
- POTE: ~225/224 = 7.018, ~11/8 = 551.365
Optimal ET sequence: 171, 342, 855ff, 1197fff
Badness (Smith): 0.031323
Schisennealimmic
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 2401/2400, 4375/4374, 32805/32768
Mapping: [⟨171 271 397 480 0 41], ⟨0 0 0 0 1 1]]
Optimal tunings:
- POTE: ~225/224 = 7.018, ~11/8 = 551.625
Optimal ET sequence: 171, 342f, 513, 855f
Badness (Smith): 0.046843
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 936/935, 1225/1224, 1701/1700, 2025/2023, 11271/11264
Mapping: [⟨171 271 397 480 0 41 699], ⟨0 0 0 0 1 1 0]]
Optimal tunings:
- POTE: ~225/224 = 7.018, ~11/8 = 551.756
Optimal ET sequence: 171, 342f, 513, 855f
Badness (Smith): 0.030622
Lunennealimmal
Lunennealimmal (441 & 882) has has a period of 1/441 octave. 441edo and its multiples are members of both luna and ennealimmal, and from this it derives its name.
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 274877906944/274658203125
Mapping: [⟨441 699 1024 1238 1526], ⟨0 0 0 0 -1]]
- POTE: ~32805/32768 = 2.7211, ~11/8 = 551.3584
Optimal ET sequence: 441, 882, 1323, 2205, 3528
Badness (Smith): 0.091939
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2401/2400, 4096/4095, 4375/4374, 85750/85683
Mapping: [⟨441 699 1024 1238 1526 1632], ⟨0 0 0 0 -1 0]]
Optimal tunings:
- POTE: ~729/728 = 2.7211, ~11/8 = 551.4043
Optimal ET sequence: 441, 882, 1323, 3528f, 4851ff, 6174dff
Badness (Smith): 0.042975
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 2401/2400, 4096/4095, 4375/4374, 8624/8619, 14161/14157
Mapping: [⟨441 699 1024 1238 1526 1632 1803], ⟨0 0 0 0 -1 0 -1]]
Optimal tunings:
- POTE: ~729/728 = 2.7211, ~11/8 = 551.3688
Optimal ET sequence: 441, 882, 1323, 2205f, 3528f
Badness (Smith): 0.029334